Hadronic uncertainties in EDM calculations

Martin Jung

Motivation

Quark-flavour and CP violation in the SM:

- CKM describes flavour and CP violation
- Extremely constraining, one phase
- Especially, K and B physics agree
- Only tensions so far $(R_K, B \to K^* \ell \ell, B \to D^{(*)} \tau \nu, \ldots)$
- Works well!

Motivation

Quark-flavour and CP violation in the SM:

- CKM describes flavour and CP violation
- Extremely constraining, one phase
- Especially, K and B physics agree
- Only tensions so far $(R_K, B \to K^* \ell \ell, B \to D^{(*)} \tau \nu, \ldots)$
- Works too well!

We expect new physics (ideally at the (few-)TeV scale):

- Baryon asymmetry of the universe
- Hierarchy problem
- Dark matter and energy

^{• . . .}

The Quest for New Physics

Three of the main strategies (missing are e.g. ν , DM, astro,...):

Direct search:

- Tevatron, LHC
- Maximal energy fixed

Indirect search, flavour violating:

- LHCb, Belle II, BES III, NA62, MEG, ...
- Maximal reach flexible

A new era in particle physics!

Indirect search, flavour diagonal:

- EDM experiments, g-2, ...
- Maximal reach flexible, complementary to flavour-violating searches

The curious case of the One-Higgs-Doublet Model EDMs are finite in the SM...

... but flavour-sector of the SM is special (\rightarrow) :

- Unique connection between Flavour- and CP-violation
- FCNCs highly suppressed, $\sim \Delta m^2/M_W^2$ • $\Delta m^2/M_W^2 \sim 10^{-25}$ for ν in the loop!
- FConservingNCs with CPV as well: • $d_e^{SM} \lesssim 10^{-38} e \, {\rm cm}$ [Khriplovich/Pospelov '91]

EDMs are quasi-nulltests of the SM!

NP models typically do not exhibit such strong cancellations

 Background-free precision-laboratories for NP (assuming dynamical solution for strong CP)

 \blacktriangleright EDMs \sim CPV/ Λ^2 (interference with SM, e.g. LFV $\sim 1/\Lambda^4)$

Here: focus as much as possible on model-independent statements

Back to basics: EDMs

Classically: $\mathbf{d} = \int d^3 r \rho(\mathbf{r}) \mathbf{r}$, $U = \mathbf{d} \cdot \mathbf{E}$ QM: non-degenerate ground state implies $\mathbf{d} \sim \mathbf{j}$ $\mathbf{d} \neq \mathbf{0}$ implies T- and P-violation! $\mathbf{d} \neq \mathbf{C}$ P-violation for conserved CPT $\mathbf{d} \neq \mathbf{C}$ Search for linear shift $U = d\mathbf{j} \cdot \mathbf{E}$

Non-relativistic neutral system of point-like particles: Potential EDMs of constituents are shielded! [Schiff'63]

- Sensitivity stems from violations of the assumptions
 - Paramagnetic systems: relativistic enhancement
 - Diamagnetic systems: finite-size effects

Shielding can be reversed, e.g. $d_A^{\rm para} \sim \mathcal{O}(100) \times d_e!$ [Sandars'65,'66]

EDMs and New Physics: Generalities

Sakharov's conditions ('67): NP models necessarily involve new sources of CPV!

- This does not *imply* sizable EDMs
- However, typically (too) large EDMs in NP models
- Generic one-loop contributions excluded (→ SUSY CP-problem)
- EDMs test combination of flavour- and CPV-structure

EDMs important on two levels:

- "Smoking-gun-level": Visible EDMs proof for NP
- Quantitative level:

Setting limits/determining parameters

Theory uncertainties are important!

Experimental approaches [K. Jungmann'13 in Annalen der Physik] Lines of attack towards an EDM

Neutron EDM:

- $|d_n| \le 3.6 \times 10^{-26} e \operatorname{cm} (95\% CL)$ [Pendlebury+'15,Baker+'06]
- Worldwide effort aiming at $(10 \rightarrow 0.1) \times 10^{-27} e\, {\rm cm}$
- UCN sources critical problem

Paramagnetic systems:

[P.Schmidt-Wellenburg'16]

- Atomic: $|d_{\rm Tl}| \le 9.6 imes 10^{-25} e\,{
 m cm}\,(95\%\,{
 m CL})$ [Regan+'02]
- Molecular: $|\omega_{\mathrm{ThO}}| \leq 11.1\,\mathrm{mrad/s}\,(90\%\,\mathrm{CL})$ [Baron+'13]
- **•** Naive interpretation: $|d_e| \le 8.7 \times 10^{-29} e \, \mathrm{cm}$
- Ongoing: ThO, YbF, Cs, Fr, Rb, ...

Diamagnetic systems:

- $|d_{\rm Hg}| \le 7.4 imes 10^{-30} e\,{
 m cm}\,(95\%\,{
 m CL})$ [Graner+'16]
- Ongoing: exploit octupole deformation, e.g. Ra, Rn,...

 $\begin{array}{l} \mbox{Solid state systems: } |d_e| \leq 6.1 \times 10^{-24-25} e\,{\rm cm} \ \mbox{[Eckel+'12,Kim+'15]} \\ \mbox{Storage rings: } |d_{\mu}| \leq 1.9 \times 10^{-19} e\,{\rm cm} \ \mbox{[Bennett+'08]} \end{array}$

Relating NP parameters and experiment

Most stringent constraints from neutron, atoms and molecules
 Shielding applies to some extent

- Each step potentially involves large uncertainties!
- 4/5 steps model-independent \Rightarrow series of EFTs [e.g. deVries+'11]
- Limits usually displayed as allowed regions
 - Conservative uncertainty-estimates important

Schematic EFT framework [Pospelov/Ritz'05,Hoecker'12]

The EDM in heavy paramagnetic systems

Two main contributions, enhanced by Z^3 : [Sandars'65, Flambaum'76] A single measurement does not restrict d_e directly

- C_S: CP-odd electron-nucleon interaction
- Atoms: typically polarized in external field
- Molecules: aligned in external field
 Exploit huge internal field

For molecules: energy shift $\Delta E = \hbar \omega$ with

$$\omega = 2\pi \left(rac{W_d^M}{2} d_e + rac{W_c^M}{2} C_S
ight) \, .$$

Molecule	$W_d^M/10^{25}\mathrm{Hz}/e\mathrm{cm}$	W_c^M/kHz
YbF	-1.3 ± 0.1	-92 ± 9
ThO	-3.67 ± 0.18	-598 ± 90

[Results entering: Nayak/Chaudhuri'07,'08,'09; Dzuba et al.'11, Meyer/Bohn'08, Skripnikov et al.'13, Fleig/Nayak'14; Averages: MJ'13, MJ/Pich'14]

Model-independent extraction of d_e and C_S In principle: two unknowns, three measurements (TI,YbF,ThO) Extract d_e , C_S model-independently [Dzuba et al.'11,MJ'13]

Problem: Aligned constraints

Model-independent extraction of d_e and C_S In principle: two unknowns, three measurements (TI,YbF,ThO) Extract d_e , C_S model-independently [Dzuba et al.'11,MJ'13]

Problem: Aligned constraints Mercury bound \sim orthogonal! Assumption: C_S , d_e saturate d_{Hg} \triangleright Conservative!

$$\begin{array}{l} d_e \leq 2.7 \times 10^{-28} e \ \mathrm{cm} \\ C_S \leq 1.5 \times 10^{-8} \end{array}$$

Further atomic measurements:Not competitive yetpredicted from this fit!

Issue: C_S , d_e -coefficients for Hg less reliable (wip [Fleig/MJ('16)]) Relation to quark-electron operators involves scalar MEs $\langle N|\bar{q}q|N\rangle$: \blacksquare e.g. important for strange-quark influence in EDMs

Model-independent extraction of d_e and C_S In principle: two unknowns, three measurements (TI,YbF,ThO) Extract d_e , C_S model-independently [Dzuba et al.'11,MJ'13]

Problem: Aligned constraints Mercury bound \sim orthogonal! Assumption: C_S , d_e saturate d_{Hg} \triangleright Conservative!

$$d_e \le 2.7 imes 10^{-28} e {
m ~cm}$$

 $C_S \le 1.5 imes 10^{-8}$

Further atomic measurements:Not competitive yetpredicted from this fit!

Future measurements aim at precision beyond present constraints!
Help to resolve the alignment problem
Requires precision measurements of low-Z and high-Z elements

EDMs of diamagnetic systems and nucleons

Situation more complicated than for paramagnetic systems:

- Potential SM contribution: $\bar{ heta}$ (ightarrow strong CP puzzle)
- Contributions from $\bar{\theta}, d_q, \tilde{d}_q, w, C_{S,P,T}, C_{qq}$
 - Interpretation usually model-dependent

(for model-independent prospects: [Chupp/Ramsey-Musolf'14])

Complementary measurements, different sources possible/likely Multiple EDM measurements in various systems essential!

- |d_{Hg}| ≤ 7.4 × 10⁻³⁰ e cm [Graner et al. '16], very constraining Problem: QCD and nuclear theory uncertainties (x00%!)
 ▶ No conservative constraint on CEDMs left! [MJ/Pich'13]
- $|d_n| \le 3.6 \times 10^{-26} e$ cm [Pendlebury'15] Theory in better shape, still $\mathcal{O}(100\%)$ uncertainties

[Pospelov/Ritz'01,Hisano et al'12,Demir et al'03,'04,de Vries et al'11]

Progress in theory necessary to fully exploit these measurements!

- Atomic theory relates d_A to P-,T-odd nuclear moments
 - 1. Schiff moment: typically dominant in diamagnetic systems
 - 2. MQM: relevant in paramagnetic systems (nuclear spin \geq 3/2)
 - 3. EDM: typically shielded, but relevant for ions
- Nuclear theory relates nuclear moments to hadronic operators
 - 1. EDMs of neutron and proton $d_{n,p}$
 - 2. CP-violating pion-nucleon interactions $\bar{g}_{\pi NN}$
 - 3. Four-nucleon contact terms (C_{4N})
 - Challenge: calculate S, M, d_N(d_{n,p}, g_{πNN}, C_{4N}) for A ~ 200 Often (too?) simple models used, e.g. S(d_{n,p})
 - Hg: sign of $ar{g}_{\pi NN}^{(1)}$ unclear ightarrow no constraint
- QCD relates hadronic operators to quark-level operators
 - Hg: sign of $ar{g}^0_{\pi NN}/(ar{d}_u+ar{d}_d)$ unclear ightarrow no constraint

- Atomic theory relates *d_A* to P-,T-odd nuclear moments
 - 1. Schiff moment: typically dominant in diamagnetic systems
 - 2. MQM: relevant in paramagnetic systems (nuclear spin $\geq 3/2$)
 - 3. EDM: typically shielded, but relevant for ions
- Nuclear theory relates nuclear moments to hadronic operators
 - 1. EDMs of neutron and proton $d_{n,p}$
 - 2. CP-violating pion-nucleon interactions $\bar{g}_{\pi NN}$
 - 3. Four-nucleon contact terms (C_{4N})
 - Challenge: calculate $S, M, d_N(d_{n,p}, \overline{g}_{\pi NN}, C_{4N})$ for $A \sim 200$ Often (too?) simple models used, e.g. $S(d_{n,p})$
 - Hg: sign of $ar{g}^{(1)}_{\pi NN}$ unclear ightarrow no constraint
- QCD relates hadronic operators to quark-level operators
 - Hg: sign of $ar{g}^0_{\pi NN}/(ar{d}_u+ar{d}_d)$ unclear o no constraint

- Atomic theory relates d_A to P-,T-odd nuclear moments
 - 1. Schiff moment: typically dominant in diamagnetic systems
 - 2. MQM: relevant in paramagnetic systems (nuclear spin \geq 3/2)
 - 3. EDM: typically shielded, but relevant for ions
- Nuclear theory relates nuclear moments to hadronic operators
 - 1. EDMs of neutron and proton $d_{n,p}$
 - 2. CP-violating pion-nucleon interactions $\bar{g}_{\pi NN}$
 - 3. Four-nucleon contact terms (C_{4N})
 - Challenge: calculate $S, M, d_N(d_{n,p}, \bar{g}_{\pi NN}, C_{4N})$ for $A \sim 200$ Often (too?) simple models used, e.g. $S(d_{n,p})$
 - Hg: sign of $ar{g}^{(1)}_{\pi NN}$ unclear ightarrow no constraint
- QCD relates hadronic operators to quark-level operators
 - Hg: sign of $ar{g}^0_{\pi NN}/(ilde{d}_u+ ilde{d}_d)$ unclear o no constraint

- Atomic theory relates d_A to P-,T-odd nuclear moments
 - 1. Schiff moment: typically dominant in diamagnetic systems
 - 2. MQM: relevant in paramagnetic systems (nuclear spin $\geq 3/2$)
 - 3. EDM: typically shielded, but relevant for ions
- Nuclear theory relates nuclear moments to hadronic operators
 - 1. EDMs of neutron and proton $d_{n,p}$
 - 2. CP-violating pion-nucleon interactions $\bar{g}_{\pi NN}$
 - 3. Four-nucleon contact terms (C_{4N})
 - Challenge: calculate $S, M, d_N(d_{n,p}, \overline{g}_{\pi NN}, C_{4N})$ for $A \sim 200$ Often (too?) simple models used, e.g. $S(d_{n,p})$
 - Hg: sign of $ar{g}^{(1)}_{\pi NN}$ unclear ightarrow no constraint
- QCD relates hadronic operators to quark-level operators
 - Hg: sign of $ar{g}^0_{\pi NN}/(ilde{d}_u+ ilde{d}_d)$ unclear o no constraint

Hadronic uncertainties crucial *e.g.* for limits from Hg Unique chance: orders of magnitude *without a new experiment!*

EDMs in NP Models

EDM constraints \Rightarrow huge scales or highly specific structure!

- simple power-counting insufficient (UV sensitivity)
- EFT approach at EW scale seems problematic
- Model-independent analyses difficult
- strong model-dependent correlations

Example: 2HDMs (with non-trivial flavour-structure) [MJ/Pich'14]

- Two-loop graphs dominant [Weinberg'89,Dicus'90,Barr+'90,Gunion+'90,...]
- Tree-level can be relevant: $(m_q \times \text{tree})$ vs. $(m_t \times \text{two-loop})$
- Electron EDM: $\operatorname{Im}(\varsigma_t^*\varsigma_e) \lesssim \mathcal{O}(0.05)$ ~ $10^{-3} \times$ leptonic constraints $(\varsigma_t = \varsigma_c)!$
- Neutron EDM:
 - So far no fine-tuning necessary
 - Complementary to e.g. $b
 ightarrow s\gamma!$
- Hg: potentially a few times stronger
 but different combination!

Conclusions

- EDMs unique tests of NP models
- Model-independent constraints on NP parameters difficult
 Need (at least) as many experiments as (eff.) parameters
- Quantitative results require close look at theory uncertainties
 Use conservative limits, allowing for cancellations
 - **•** For *e.g.* d_n , d_{Hg} bottleneck! Chance for theory
- Robust, model-independent limit on electron EDM (C_S not model-independently negligible):

 $|d_e| \le 2.7 imes 10^{-28} e \, {
m cm}$ (95% CL, Hg)

- General discussion of 2HDM constraints possible
- Interplay of EDMs with flavour physics
 - Flavour suppression just sufficient
 - CPV in other observables strongly restricted
- Plethora of new results to come
 - Might turn limits into determinations!

Low-Energy Probes of New Physics

May 2 - 24, 2017, JGU Campus Mainz

Selected Topics:

- Fundamental neutron physics
- Electric dipole moments
- "Exotics" (e.g. axion-like particles)
- Parity violation
- Fundamental muon physics

Organizers:

Peter Fierlinger (TU Munich)

Susan Gardner (University of Kentucky)

Martin Jung (Excellence Cluster Universe / TU Munich)

Backup slides

- EDM EFT framework
- 2HDM Framework
- Limits on $|d_e|$ and $|C_S|$
- Expected limits from paramagnetic systems

Framework

Effective Lagrangian at a hadronic scale:

$$\mathcal{L} = -\sum_{f=u,d,e} \left[\frac{d_f^{\gamma}}{2} \mathcal{O}_f^{\gamma} + \frac{d_f^C}{2} \mathcal{O}_f^C \right] + C_W \mathcal{O}_W + \sum_{i,j=(q,l)} C_{ij} \mathcal{O}_{ij}^{4f} ,$$

in the operator basis

$$\mathcal{O}_{f}^{\gamma} = i e \bar{\psi}_{f} F^{\mu\nu} \sigma_{\mu\nu} \gamma_{5} \psi_{f} , \qquad \mathcal{O}_{f}^{C} = i g_{s} \bar{\psi}_{f} G^{\mu\nu} \sigma_{\mu\nu} \gamma_{5} \psi_{f} ,$$
$$\mathcal{O}_{W} = +\frac{1}{3} f^{abc} G^{a}_{\mu\nu} \tilde{G}^{\nu\beta,b} G_{\beta}^{\ \mu,c} , \qquad \mathcal{O}_{ij}^{4f} = (\bar{\psi}_{i} \psi_{i}) (\bar{\psi}_{j} i \gamma_{5} \psi_{j})$$

Options for matrix elements:

- Naive dimensional analysis[Georgi/Manohar '84] : only order-of-magnitude estimates
- Baryon χPT : not applicable for all the operators
- QCD sum rules: used here [Pospelov et al.], uncertainties large

Framework for 2HDM contributions In 2HDMs, CPV in new interactions can generate EDMs!

Parametrization for H^{\pm} Yukawas, ς_i complex:

$$\mathcal{L}_{Y}^{H^{\pm}} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[V_{\varsigma_{d}} M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d + \bar{\nu}_{\varsigma_{l}} M_{l} \mathcal{P}_{R} l \right\} + \text{ h.c.}$$

- General for coupling matrices ς_i (M_i choice of normalization)
- Numbers ς_i: Aligned 2HDM [Pich/Tuzon'09,MJ/Pich/Tuzon'10]
- · Easily matched on your favourite model

For mass eigenstates $\varphi_i^0 = \{h, H, A\}$, $\mathcal{M}_{diag}^2 = \mathcal{RM}^2 \mathcal{R}^T$, we have

$$\begin{split} \mathcal{L}_{Y}^{\varphi_{i}^{0}} &= -\frac{1}{v} \sum_{\varphi,f} \varphi_{i}^{0} \ \bar{f} \ y_{f}^{\varphi_{i}^{0}} \ M_{f} \mathcal{P}_{R} f \ + \ \mathrm{h.c.} \,, \\ y_{f}^{\varphi_{i}^{0}} &= \mathcal{R}_{i1} + \left(\mathcal{R}_{i2} \pm i \ \mathcal{R}_{i3}\right) \left(\varsigma_{F(f)}^{(*)}\right)_{ff} \quad \mathrm{for} \quad F(f) = d, \ I(u) \,. \end{split}$$

For neutrals: additional CPV contributions from the potential!

Theory uncertainties and the EDM of Mercury

- Extremely precise atomic EDM limit: $|d_{Hg}| \le 3.1 \times 10^{-29} e \,\mathrm{cm}$ [Griffith et al. '09]
- However: difficult diamagnetic system
 - Shielding efficient \rightarrow sensitivity $\sim d_n, d_{TI}$

$$d_{Hg} \stackrel{Atomic}{=} d_{Hg}(S, C^{N}_{S,P}) \stackrel{Nuclear}{=} d_{Hg}(\bar{g}_{\pi NN}, C^{p,n}_{S,P})$$
$$\stackrel{QCD}{=} d_{Hg}(d^{C}_{f}, C_{qq'}, C^{q}_{S,P})$$

Uncertainties:

(

Atomic \sim 20%, Nuclear \sim x00%, QCD sum rules \sim 100 – 200%

No conservative constraint on CEDMs left! [MJ/Pich'13]

$$\begin{split} d_{\rm Hg} &= & \left\{ -(1.0\pm 0.2) \left((1.0\pm 0.9) \, \bar{g}^{(0)}_{\pi NN} + 1.1 \, (1.0\pm 1.8) \, \bar{g}^{(1)}_{\pi NN} \right) \right. \\ & \left. + \, (1.0\pm 0.1) \times 10^{-5} \, \left[-4.7 \, C_S + 0.49 \, C_P \right] \right\} \times 10^{-17} \, e \, {\rm cm} \, , \end{split}$$

Progress in theory necessary to fully exploit precision measurements of diamagnetic EDMs

The EDM of the Neutron

Explicit expressions for the neutron EDM [MJ/Pich'13 (refs therein)]

$$\begin{aligned} d_n \Big(d_q^{\gamma}, d_q^{C} \Big) / e &= \left(1.0^{+0.5}_{-0.7} \right) \left[1.4 \left(d_d^{\gamma}(\mu_h) - 0.25 \, d_u^{\gamma}(\mu_h) \right) \right. \\ &+ 1.1 \left(d_d^{C}(\mu_h) + 0.5 \, d_u^{C}(\mu_h) \right) \Big] \left. \frac{\langle \bar{q}q \rangle (\mu_h)}{(225 \text{ MeV})^3} \right. \\ &\left. |d_n(C_W)/e| &= \left(1.0^{+1.0}_{-0.5} \right) 20 \text{ MeV } C_W \,, \\ &\left. |d_n(C_{bd})/e| &= 2.6 \left(1.0^{+1.0}_{-0.5} \right) \times 10^{-3} \text{ GeV}^2 \left(\frac{C_{bd}(\mu_b)}{m_b(\mu_b)} + 0.75 \, \frac{C_{db}(\mu_b)}{m_b(\mu_b)} \right) \,. \end{aligned}$$

Results for d_e and C_S from ThO [MJ/Pich'14]

Input	$ d_e $ limit (95% CL)	$ \mathcal{C}_{\mathcal{S}} $ limit (95% CL)
Result w/o ThO [MJ'13]	$1.4 imes10^{-27}e{ m cm}$	$7 imes 10^{-8}$
Including ThO, C_S Hg	$1.0 imes 10^{-27} e\mathrm{cm}$	$7 imes10^{-8}$
Including ThO, C_S ThO $(n = 3)$	$0.35 imes 10^{-27} e{ m cm}$	$2.3 imes10^{-8}$
Including ThO, C_S ThO $(n = 2)$	$0.25 imes10^{-27}e\mathrm{cm}$	$1.6 imes10^{-8}$
Including ThO, C_S ThO $(n = 1)$	$0.16 imes 10^{-27} e{ m cm}$	$0.8 imes10^{-8}$
ThO only, $C_S = 0$, 90% CL	$0.089 imes 10^{-27} e { m cm}^{\dagger, \ddagger}$	$0.6 imes10^{-8,\ddagger}$

Table : New limits on the electron EDM and C_S , including the measurement in the ThO system [Baron et al,'13]. [†]: Using W_d from [Skripnikov et al.'13]. [‡]: Theory errors neglected.

Turning the argument around

Other limits not relevant to global fit Use results to conservatively bound their EDMs

System	Indirect bound($n=1/Hg$)	Present/Expected limit	
Cs	0.02/0.1	14 [Murthy+'89] $/0.01$	
Rb	0.005/0.03	10^{6} [Ensberg+'67] $/0.001$	
	unpublished:	(12) [Huang-Hellinger'87]	
Fr	0.2/0.6	—/0.01	
Bounds on $ d_X $ in $10^{-24}e$ cm			

Several orders of magnitude below present limits!

Experiments aiming at even better sensitivity:

Important progress to be expected

In case of a violation of the above limits:

Cancellations (n=1), theory or experimental problem (Hg)

$\mathsf{EDMs}\xspace$ in NP Models

EDM constraints forbid generic CPV contributions up to two loops huge scales or highly specific structure!

- hardly testable elsewhere
- simple power-counting insufficient (UV sensitivity)
- Model-independent analyses difficult

EDMs unique, both blessing and curse

- some model-independent relations exist, *e.g.* to β decay [Khriplovich'91]
- strong (model-dependent) constaints of related observables

Remainder of this talk: 2HDMs as an example

Why 2HDM?

Model-independent NP analysis: Too many parameters in general

EW symmetry breaking mechanism still not completely fixed:

- 1HDM minimal and elegant, but "unlikely" (SUSY,GUTs,...)
- 2HDM "next-to-minimal":
 - ρ -parameter "implies" doublets
 - low-energy limit of more complete NP models
 Model-independent element
 - simple structure, but interesting phenomenology
 - important effects in flavour observables
- Plethora of 2HDMs:
 - differ in their suppression mechanism for FCNCs

Could explain tensions in the flavour sector (e.g. $B \rightarrow D^{(*)} \tau \nu$)

Framework for 2HDM contributions

The CPV interactions of the 2nd doublet can generate EDMs

General parametrization for H^{\pm} Yukawas, ς_i complex matrices:

$$\mathcal{L}_{Y}^{H^{\pm}} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[V_{\varsigma_{d}} M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d + \bar{\nu}_{\varsigma_{l}} M_{l} \mathcal{P}_{R} l \right\} + \text{ h.c.}$$

- Induce couplings like W-exchange, just with a charged Higgs $(M_{H^\pm}\gtrsim m_t)$
- Easily matched on your favourite model
 - *M_i* only choice of normalization
- $\varsigma_i \rightarrow$ numbers: Aligned 2HDM [Pich/Tuzon'09,MJ/Pich/Tuzon'10]
 - Comparisons with flavour data in this model

Neutral Higgs exchanges: couplings y_i⁰ (s_i, V)
Additional CPV contributions from the potential
Analysis depends on many unknown parameters

EDMs in 2HDMs

From necessary flavour suppression for a viable model:

- One-loop (C)EDMs: controlled (not tiny) [e.g. Buras et al. '10]
- 4-quark operators small (no tan³β-enhancement)
- Two-loop graphs dominant

[Weinberg '89, Dicus '90, Barr/Zee '90, Gunion/Wyler '90,...]

- Weinberg diagram important for neutron EDM
- Barr-Zee(-like) diagrams dominate other EDMs

Paramagnetic systems: tree-level can be relevant ($C_S \times Z^3$) (light-quark mass \times tree) vs. (top mass \times two-loop)

Neutral Higgs contributions in general 2HDMs [MJ/Pich'13]

Contributions typically involve the following sum:

(f,f': fermions, F(f): family of the fermion)

$$\sum_{i} \operatorname{Re}\left(y_{f}^{\varphi_{i}^{0}}\right) \operatorname{Im}\left(y_{f'}^{\varphi_{i}^{0}}\right) = \pm \operatorname{Im}\left[\left(\varsigma_{F(f)}^{*}\right)_{ff}\left(\varsigma_{F(f')}\right)_{f'f'}\right]$$

- R.h.s. independent of the Higgs potential
- Vanishes for equal fermions (universality: equal family)
- Modified by mass-dependent weight factors...
 - but holds for degenerate masses and decoupling limit

CPV in the potential tends to have smaller impact

Approximation for phenomenological analysis:

$$\sum_{i} f(M_{\varphi_{i}^{0}}) \operatorname{Re}\left(y_{f}^{\varphi_{i}^{0}}\right) \operatorname{Im}\left(y_{f'}^{\varphi_{i}^{0}}\right) \to \pm f(\overline{M}_{\varphi}) \operatorname{Im}\left[(\varsigma_{F(f)}^{*})_{ff}(\varsigma_{F(f')})_{f'f'}\right]$$

Bounds from the electron EDM

- Contributions via Barr-Zee diagrams [Bowser-Chao et al.'97]
- Sensitivity to $d_e \sim \operatorname{Im}(\varsigma_{u,33}^* \varsigma_{l,11})$
- Bounds $\operatorname{Im}(\varsigma_u^*\varsigma_l) \lesssim \mathcal{O}(0.05)$
 - Strong despite two-loop suppression and mass factors
- Implies $\text{Im}(\varsigma_l \varsigma_u^*) / M_{H^{\pm}}^2 \le \times 10^{-5} \text{GeV}^{-2}$ (universal ς_l 's)
 - A factor 1000 stronger than (semi)leptonic constraints!

Bounds from the neutron EDM

- Size of Weinberg (charged) and Barr-Zee (neutral) similar
- So far no fine-tuning necessary
- Next-generation experiments will test critical parameter space
- Constraint from Hg potentially a few times stronger
- Comparison with b → sγ: large impact![MJ/Pich'14,MJ/Li/Pich'12]
 EDMs restrict CPV in other modes

