B physics with lattice QCD: status and prospects

$\Lambda_{1} \jmath_{4}$

Outline

- Motivation and Introduction
+ lattice QCD
- Results
+ leptonic decays
+ semileptonic decays
+ neutral meson mixing
+ summary of B, D, K results
Q Phenomenology
+CKM determinations
+UT analysis
+BSM phenomenology
Q Summary and Outlook

Outline

9. Motivation and Introduction

+ lattice QCD
9 Results
The focus of this talk is on "simple" quantities:
hadronic matrix elements of local operators between single (stable) meson states for which lattice results exist with complete systematic error budgets.
- Phenomenology
+CKM determinations
+ UT analysis
+BSM phenomenology
Q Summary and Outlook

Introduction

$$
\text { example: } B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}
$$

Experiment vs. SM theory:

$($ experiment $)=($ known $) \times($ CKM factor $) \times($ had. matrix element $)$

simple processes for CKM determinations

$$
\begin{aligned}
& V_{u d} \\
& \pi \rightarrow \mu v \\
& V_{u b} \\
& \underset{K \rightarrow \mu v}{K \rightarrow \pi \ell v} \quad B \rightarrow \pi \ell v, B_{s} \rightarrow K \ell v \\
& \Lambda_{b} \rightarrow p \ell v \\
& V_{c d} \\
& D \rightarrow \pi \ell v \\
& V_{c s} \\
& V_{c b} \\
& D \rightarrow \ell v \\
& D_{s} \rightarrow \ell v \\
& V_{t d} \\
& B^{0}-\overline{B^{0}} \\
& V_{t s} \\
& B_{s}^{0}-\overline{B_{s}^{0}} \\
& B \rightarrow \pi \ell \ell \\
& B \rightarrow K \boldsymbol{E} \boldsymbol{\ell} \\
& (\rho, \eta) \boldsymbol{K}^{0}-\overline{\boldsymbol{K}^{0}}
\end{aligned}
$$

Lattice QCD Introduction

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{f} \bar{\psi}_{f}\left(\mathbb{D}+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- discrete Euclidean space-time (spacing a) derivatives \rightarrow difference operators, etc...
- finite spatial volume (L)
- finite time extent (T)
adjustable parameters
* lattice spacing: $\quad a \rightarrow 0$
θ
* finite volume, time: $L \rightarrow \infty, T>L$
* quark masses $\left(m_{f}\right)$:
$M_{H, \text { lat }}=M_{H, \text { exp }}$
Θ
tune using hadron masses $\quad m_{f} \rightarrow m_{f, \text { phys }} \quad m_{u d} \quad m_{s} \quad m_{c} \quad m_{b}$ extrapolations/interpolations
* also: $n_{f}=$ number of sea quarks: $3(2+1), 4(2+1+1)$

Lattice QCD Introduction

$$
\langle\mathcal{O}\rangle \sim \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A \mathcal{O}(\psi, \bar{\psi}, A) e^{-S} \quad S=\int d^{4} x\left[\bar{\psi}(\mathbb{D}+m) \psi+\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}\right]
$$

use monte carlo methods (importance sampling) to evaluate the integral.
Note: Integrating over the fermion fields leaves $\operatorname{det}(D+m)$ in the integrand. The correlation functions, \mathcal{O}, are then written in terms of $(D+m)^{-1}$ and gluon fields.

steps of a lattice QCD calculation:

1. generate gluon field configurations according to $\operatorname{det}(\mathbb{D}+m) e^{-S}$
2. calculate quark propagators, $\left(\mathbb{D}+m_{q}\right)^{-1}$, for each valence quark flavor and source point
3. tie together quark propagators into hadronic correlation functions (usually 2 or 3-pt functions)
4. statistical analysis to extract hadron masses, energies, hadronic matrix elements, from correlation functions
5. systematic error analysis

Lattice QCD Introduction

systematic error analysis

...of lattice spacing, chiral, heavy quark, and finite volume effects is based on EFT (Effective Field Theory) descriptions of QCD
\rightarrow ab initio
The EFT description:
Q provides functional form for extrapolation (or interpolation)
Q can be used to build improved lattice actions/methods
Q can be used to anticipate the size of systematic effects
To control and reliably estimate the systematic errors
Q repeat the calculation on several lattice spacings, light quark masses, spatial volumes, ...

$a(\mathrm{fm})$

Heavy Quark Treatment

- For light quarks ($m_{\ell}<\Lambda_{\mathrm{QCD}}$), leading discretization errors $\sim \alpha_{s}^{k}\left(a \Lambda_{\mathrm{QCD}}\right)^{n}$
- For heavy quarks, leading discretization errors $\sim \alpha_{s}^{k}\left(a m_{h}\right)^{n}$
with currently available lattice spacings
for b quarks $\quad a m_{b}>1$
for charm $a m_{c} \sim 0.15-0.6$
\Longrightarrow need effective field theory methods for b quarks for charm can use light quark methods, if action is sufficiently improved
- avoid errors of $\left(a m_{b}\right)^{n}$ in the action by using EFT:
+ relativistic HQ actions (Fermilab, Columbia, Tsukuba)
+ HQET
+ NRQCD
or
- use improved light quark actions for charm (HISQ, tmWilson, NP imp. Wilson,...) and for b :
\uparrow use same LQ action as for charm but keep $a m_{h}<1$,
\& use HQET and/or static limit to extrapolate/interpolate to b quark mass

chiral-continuum extrapolation

Some ensembles still have

$$
m_{\text {light }}>1 / 2\left(m_{u}+m_{d}\right)_{\text {phys }}
$$

χ PT guides the extrapolation/interpolation to the physical point.
Q include (light quark) discretization effects (for example, staggered $\chi \mathrm{PT}$)
9 can also add HQ discretization terms to chiral-continuum fits

- combined chiral-continuum extrapolation/interpolation
- for B, D meson processes use Heavy Meson $\chi \mathrm{PT}: ~ \chi \mathrm{PT}+1 / M$ expansion

chiral-continuum extrapolation

Example: Set of ensembles by MILC collaboration

Five collaborations have now generated sets of ensembles that include sea quarks with physical light-quark masses:

PACS-CS, BMW, MILC, RBC/UKQCD, ETM

finite volume effects

One stable hadron (meson) in initial/final state:
If L is large enough, FV error $\sim e^{-m_{\pi} L}$

- keep $m_{\pi} L \gtrsim 4$

To quantify residual error:
Q include FV effects in χ PT
Q compare results at several $L s$ (with other parameters fixed)
The story changes completely with two or more hadrons in initial/final state! (or if there are two or more intermediate state hadrons)

Outline

9 Motivation and Introduction

+ lattice QCD
- Results
+ leptonic decays
+ semileptonic decays
+ neutral meson mixing
+ summary of B, D, K results
Q Phenomenology
+ CKM determinations
+ UT
+BSM phenomenology
Q Summary and Outlook

Leptonic B-meson decay

Example: $B^{+} \rightarrow \tau^{+} \nu_{\tau}$

$$
\Gamma\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=(\text { known }) \times\left(\left|V_{u b}\right|^{2}\right) f_{B}^{2}
$$

Q use experiment + LQCD input for determination of CKM element.
© $\operatorname{SU}(3)$ ratio $f_{B_{s}} / f_{B_{d}}$: statistical and systematic errors tend to cancel.

- Decay constants are also needed for rare leptonic decay, $B_{s(d)} \rightarrow \mu \mu$.

B decay constant summary

| | FLAG average for $\mathrm{N}_{\mathrm{f}}=2+1+1$
 ETM 13 E
 HPQCD 13 |
| :--- | :--- | :--- |

B decay constant summary

S. Aoki et al (FLAG-3 review, arXiv:1607.00299)
status end 2015
A. E

| | FLAG average for $\mathrm{N}_{\mathrm{f}}=2+1+1$
 ETM 13 E
 HPQCD 13 |
| :--- | :--- | :--- |

* new results by ETM (arXiv:1603.04306, 2016 PRD)
- ongoing work by

FNAL/MILC (Komijani @ Lattice 2016), RBC/UKQCD, ...

NIW expect to reduce errors on $f_{B,}, f_{B S}$ to $\approx 1 \%$

Semileptonic B decay to light hadrons

Example: $B \rightarrow \pi \ell \nu$

$$
\left.\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}=(\text { known }) \times\left|V_{u b}\right|^{2}\right) \times\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

\star calculate the form factors in the low recoil energy (high q^{2}) range.
\star use z-expansion for model-independent parameterization of q^{2} dependence.
\star calculate the complete set of form factors, $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$ and $f_{T}\left(q^{2}\right)$.
\star for $f_{+}\left(q^{2}\right)$ compare shape between experiment and lattice.

form factors for $B \rightarrow \pi \ell \nu \& V_{u b}$

RBC (arXiv:1501.05373, PRD 2015)
FNAL/MILC (arXiv:1503.07839, PRD 2015)

* FNAL/MILC \& RBC form factors are in good agreement

NHPQCD (arXiv:1510.07446, PRD 2016): f_{0} with physical light quarks at zero recoil satisfies soft-pion theorem
N Note: two independent LQCD predictions for $B_{s} \rightarrow K \ell v$ form factors (HPQCD, arXiv:1406.2279, PRD 2014; RBC, arXiv:1501.05373, PRD 2015) + ongoing work by ALPHA (Banerjee, Koren @ Lattice 2016), FNAL/MILC, ...

form factors for $B \rightarrow \pi \ell \nu \& V_{u b}$

T shape of f_{+}agrees with experiment and uncertainties are commensurate
w fit lattice form factors together with experimental data to determine $\left|V_{u b}\right|$ and obtain form factors $\left(f_{+}, f_{0}\right)$ with improved precision...

form factors for $B \rightarrow \pi \ell \nu \& V_{u b}$

2 shape of f_{+}agrees with experiment and uncertainties are commensurate
is fit lattice form factors together with experimental data to determine $\left|V_{u b}\right|$ and obtain form factors $\left(f_{+}, f_{0}\right)$ with improved precision...

Note: plot is for illustration only. FLAG-3 will update this combined fit soon!

Rare semileptonic B decay

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t q}^{*} V_{t b} \sum_{i} C_{i}(\mu) Q_{i}+\ldots
$$

Parameterize the amplitude in terms of the three form factors $f_{+, 0, T}\left(q^{2}\right)$:

$$
A(B \rightarrow P \ell \ell) \sim C_{7}^{\mathrm{eff}} f_{T}+\left(C_{9}^{\mathrm{eff}}+C_{10}\right) f_{+}+\text {nonfactorizable terms }
$$

form factors for $B \rightarrow K \ell \ell$

HPQCD (arXiv:1306.0434,
1306.2384, PRL 2013)

FNAL/MILC
(arXiv:1509.06235, PRD 2016)
«Two LQCD calculations (on overlapping ensemble sets, different valence actions):
HPQCD (NRQCD $b+$ HISQ), FNAL/MILC (Fermilab $b+\operatorname{asqtad}$)
\approx consistent results for all three form factors
~ also consistent with LCSR (Khodjamarian et al, arXiv:1006.4945, JHEP 2010)
\approx Note: First LQCD calculation of $\Lambda_{b} \rightarrow \Lambda \ell^{+} \ell^{-}$form factors (10 total) (see Meinel talk)

form factors for $B \rightarrow \pi \ell \ell$

FNAL/MILC (arXiv:1507.01618, PRL 2015)

First LQCD calculation of f_{T} by FNAL/MILC
\approx Take f_{+}, f_{0} from combined fit of lattice form factors + experimental data for $d \mathcal{B}(B \rightarrow \pi \ell v) / d q^{2}$

Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Experiment vs. Theory

Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Experiment vs. theory

- LHCb data + FNAL/MILC form factors (arXiv:1509.00414, JHEP 2015;1403.8044, JHEP 2014)
- focus on large bins above and below charmonium resonances
- theory errors commensurate with experiment
- yields $\sim 1-2 \sigma$ tensions
- \Rightarrow determine $\left|V_{t d} / V_{t s},\left|V_{t d}\right|,\left|V_{t s}\right|\right.$ or constrain Wilson coefficients
D. Du et al (arXiv:1510.02349, PRD 2016)

D. Du et al (arXiv:1510.02349, PRD 2016)

Phenomenology for $B \rightarrow K, \pi \nu \bar{\nu}$

theoretically clean

D. Du et al (arXiv:1510.02349, PRD 2016)

form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

$$
\begin{aligned}
& \frac{d \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{d \omega}=(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(\omega^{2}-1\right)^{1 / 2}|\mathcal{F}(\omega)|^{2} \\
& \frac{d \Gamma(B \rightarrow D \ell \nu)}{d \omega}=(\text { known }) \times\left. V_{c b}^{2}\right|^{2} \times\left.\left(\omega^{2}-1\right)^{3 / 2} \mathcal{G}(\omega)\right|^{2}
\end{aligned}
$$

at zero recoil (HFAG 2014):

$$
\begin{aligned}
B \rightarrow D^{*} \ell \nu: & \eta_{\mathrm{EW}}\left|V_{c b}\right| \mathcal{F}(1)=(35.81 \pm 0.11 \pm 0.44) 10^{-3} \\
B \rightarrow D \ell \nu: & \eta_{\mathrm{EW}}\left|V_{c b}\right| \mathcal{G}(1)=(42.65 \pm 0.71 \pm 1.35) 10^{-3}
\end{aligned}
$$

* need form-factors at non-zero recoil for shape comparison, $R\left(D^{(*)}\right)$
* new LQCD results for $B \rightarrow D$ form factors at non-zero recoil
* ongoing LQCD calculations for $B \rightarrow D^{*}$ form factors at non-zero recoil by HPQCD, FNAL/MILC, RBC/UKQCD, LANL using different methods.

form factors for $B \rightarrow D \ell \nu, \quad(\ell=e, \mu, \tau)$

HPQCD (arXiv:1505.03925, PRD 2015)
FNAL/MILC (arXiv:1503.07237, PRD 2015)
~Two LQCD calculations (FNAL/MILC, HPQCD)
~ LQCD form factor uncertainties ($\sim 1.2 \%$) smaller than experiment.
is LQCD form factors can be used to calculate the CKM free ratio:

$$
R(D) \equiv \frac{\mathcal{B}\left(B \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}(B \rightarrow D \ell \nu)}
$$

form factors for $B \rightarrow D \ell \nu, \quad(\ell=e, \mu, \tau)$

~ combine LQCD form factors with experiment:

FLAG-3 combined fit is currently being updated.

Neutral B meson mixing

Standard Model

$\mathrm{SM}: \quad \Delta M_{q}=($ known $) \times\left|V_{t q}^{*} V_{t b}\right|^{2} \times\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{1}\left|B_{q}^{0}\right\rangle$ also:
$\frac{\Delta M_{s}}{\Delta M_{d}}=\frac{m_{B_{s}}}{m_{B d}} \times\left|\frac{V_{t s}}{V_{t d}}\right|^{2} \times \xi^{2} \quad$ with $\quad \xi \equiv \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}$
$\Delta \Gamma_{q}=\left[G_{1}\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{1}\left|B_{q}^{0}\right\rangle+G_{3}\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{3}\left|B_{q}^{0}\right\rangle\right] \cos \phi_{q}+O\left(1 / m_{b}\right)$

HFAG, PDG 2016 averages:

$$
\begin{array}{ll}
\Delta M_{d}=(0.5055 \pm 0.0020) \mathrm{ps}^{-1}(0.4 \%) & \Delta \Gamma_{d} / \Gamma_{d}=0.001 \pm 0.010 \\
\Delta M_{s}=(17.575 \pm 0.021) \mathrm{ps}^{-1}(0.1 \%) & \Delta \Gamma_{s} / \Gamma_{s}=0.124 \pm 0.009
\end{array}
$$

Neutral B meson mixing

Standard Model

In general :
$\mathcal{H}_{\text {eff }}=\sum_{i=1}^{5} c_{i}(\mu) \mathcal{O}_{i}(\mu)$

SM:

$$
\begin{aligned}
& \mathcal{O}_{1}=\left(\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}\right)\left(\bar{b}^{\beta} \gamma_{\mu} L q^{\beta}\right) \\
& \mathcal{O}_{2}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} L q^{\beta}\right) \\
& \mathcal{O}_{3}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} L q^{\alpha}\right)
\end{aligned}
$$

$$
\left\langle\mathcal{O}_{i}\right\rangle \equiv\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{i}\left|B_{q}^{0}\right\rangle(\mu)=e_{i} m_{B_{q}}^{2} f_{B_{q}}^{2} B_{B_{q}}^{(i)}(\mu)
$$

The matrix elements of all five operators can be calculated in LQCD.

B mixing results in comparison

ETM ($n=2$, arXiv:1308.1851, JHEP 2014) vs. FNAL/MILC ($n=3$, arXiv:1602.03560, PRD 2016)

i First three flavor LQCD results for all five matrix elements including the correlations between all 10 MEs .

B mixing results in comparison

- Note: FLAG-3 is currently updating their averages for B mixing quantities to include the new FNAL/MILC results.
- ongoing LQCD calculations by HPQCD, ETM, RBC/UKQCD, ...

B meson Summary

D meson summary

errors (in \%) comparison:

Kaon summary

For all quantities there are results that use physical mass ensembles errors (in \%) FLAG-3 averages

Outline

9 Motivation and Introduction

+ lattice QCD
- Results
+ leptonic decays
+ semileptonic decays
+ neutral meson mixing
+ summary of B, D, K results
- Phenomenology
+ CKM determinations
+ UT analysis
+ BSM phenomenology
- Summary and Outlook

Implications for $\left|V_{u s}\right|, V_{u d} \mid$

A. El-Khadra

HC2NP, Puerto de la Cruz, Tenerife, 26-30 Sep 2016

$1^{\text {st }}$ row CKM unitarity test

Implications for $\left|V_{c s}\right|,\left|V_{c d}\right|$

S. Aoki et al (FLAG review, arXiv:1607.00299)

S. Gottlieb, T. Primer (FNAL/MILC) @ Lattice 2016
$\left|V_{c s}\right|$ comparison
Leptonic
Semileptonic

Implications for the $2^{\text {nd }}$ row of the CKM Matrix

FNAL/MILC (arXiv:1407.3772, 2014 PRD)

errors on $\left|V_{c s}\right|$ and $\left|V_{c d}\right|$ are dominated by experiment (PDG 2015, arXiv:509.02220):

$$
\begin{aligned}
& \left|V_{c d}\right|=0.217(1)_{\mathrm{LQCD}}(5)_{\exp } \\
& \left|V_{c s}\right|=1.007(4)_{\mathrm{LQCD}}(16)_{\mathrm{exp}}
\end{aligned}
$$

(based on the PDG average of 2+1 \& 2+1+1 flavor LQCD results; average is dominated by FNAL/MILC)
2σ tension with unitarity:

$$
\left|V_{c s}\right|^{2}+\left|V_{c d}\right|^{2}+\left|V_{c b}\right|^{2}-1=0.064(32)
$$

Exclusive vs. inclusive $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$

Implications for $\left|V_{t s}\right|,\left|V_{t d}\right|,\left|V_{t d} / V_{t s}\right|$

D. Du et al (arXiv:1510.02349, PRD 2016)

> $\sim 2 \sigma$ tensions between loop processes and CKM unitarity.

Blanke \& Buras:

(arXiv:1602.04020, EPJC 2016)
tension between $\Delta M_{s, d} \& \epsilon_{K}$ inconsistent with CMFV
(Constrained Minimal Flavor Violation)

Buras \& De Fazio: (arXiv:1604.02334) implications for "331" models

UT analysis

Laiho. Lunghi \& Van de Water (Phvs.Rev.D81:034503.2010). E. Lunghi. private comm.

UT analysis

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

implicatons for $\Delta \Gamma_{s(d)} \& a_{S L}$

Standard Model theory from Jubb et al (arXiv:1603.07770) and M. Kirk @ Lattice 2016:

Rare leptonic decay $B_{s} \rightarrow \mu^{+} \mu^{-}$

Standard Model prediction: Buras, et al (arXiv:1303.3820, JHEP 2013), Bobeth, et al (arXiv:1311.0903, PRL 2014)
$\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=3.53(11)(9)(9) \times 10^{-9}$

$$
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=3.22(22)(6) \times 10^{-9}
$$

BSM phenomenology $B_{s(d)} \rightarrow \mu^{+} \mu^{-}$

CMS+LHCb combined (arXiv:1411.4413, Nature 2015)

exp. measurements consistent with SM expectations, but with ample room for NP.

SM predictions depend on $f_{B(s)}$ or $\hat{B}_{B_{s}}$

BSM phenomenology $B_{s(d)} \rightarrow \mu^{+} \mu^{-}$

CMS+LHCb combined (arXiv:1411.4413, Nature 2015) and ATLAS (arXiv:1604.04263)

exp. measurements consistent with SM expectations, but with ample room for NP.

BSM Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Constraints on Wilson coefficients (C_{9}, C_{10})
New physics contributions modify the Wilson coefficients:

$$
C_{i} \rightarrow C_{i}+C_{i}^{\mathrm{NP}}
$$

at the high scale, $\mu_{0}=120 \mathrm{GeV}$
乞take $C_{7,8}^{\mathrm{NP}}=0$ using constraints from $B \rightarrow X_{s} \gamma$
iv assume MFV so that $C_{i}(b \rightarrow s \ell \ell)=C_{i}(b \rightarrow d \ell \ell)$
\approx assume $C_{9,10}^{\mathrm{NP}}$ are real (no new CP violating phases)
\approx take measured $\Delta \mathcal{B}\left(B \rightarrow K, \pi \mu^{+} \mu^{-}\right)$in $\Delta q^{2}=1-6,15-22 \mathrm{GeV}^{2}$ and FNAL/MILC form factors
add $B_{s} \rightarrow \mu^{+} \mu^{-}$constraint with lattice $f_{B s}$

BSM Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Constraints on Wilson coefficients (C_{9}, C_{10})

BSM Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Constraints on Wilson coefficients (C_{9}, C_{10})

> D. Du et al (arXiv:1510.02349, PRD 2016)

- 2σ tension with the SM
- favored region consistent with inclusive constraints
- competitive with $B \rightarrow K^{*} \mu \mu$ constraints

[^0]
BSM phenomenology: LFU τ / ℓ

HFAG average for EPS 2015

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

HFAG average: combined 4σ excess

BSM phenomenology: LFU τ / ℓ

HFAG average for EPS 2015

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

BSM phenomenology: LFU τ / ℓ

D. Du et al (arXiv:1510.02349, PRD 2016)

SM prediction for $R(\pi)=\frac{\mathcal{B}\left(B \rightarrow \pi \tau \nu_{\tau}\right)}{\mathcal{B}(B \rightarrow \pi \ell \nu)}=0.641(17)$

Uses the form factors from the combined LQCD + exp. fit to $d \mathcal{B}(B \rightarrow \pi \ell v) / d q^{2}$

BSM phenomenology: LFU μ / e

Lepton universality test: $B \rightarrow K \mu^{+} \mu^{-} / B \rightarrow K e^{+} e^{-}$

$\sim 2.6 \sigma$ tension between LHCb measurement and SM theory

BSM phenomenology: LFU μ / e

$\sim 2.6 \sigma$ tension between LHCb measurement and SM theory

In the SM these ratios are insensitive to the form factors (see also C. Bouchard et al, arXiv:1303.0434, PRL 2013)

Summary

i Gauge field ensembles with light sea quarks at their physical masses are being used in a growing number of LQCD calculations.
|ner removes chiral extrapolation errors Nu* better precision
iz LQCD results for $K, \pi, D_{(s)}$ decay constants and $K_{\ell 3}$ form factor are very precise (0.25~0.5\% errors), B decay constants still at 2\% level

Ime slight (2σ) tensions with 1st and 2nd row unitarity
T Precise LQCD results for semileptonic form factors for $B \rightarrow \pi, K, D$ transitions
$>$ SM pre/postdictions with theory errors that are commensurate with experimental uncertainties
$>$ tension for $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ between exclusive and inclusive determinations remains, but $\left|V_{c b}\right|$ from new $B \rightarrow D$ analysis with LQCD form factors at nonzero recoil is consistent with inclusive result.
III* need LQCD form factors for $B \rightarrow D^{*}$ at nonzero recoil
$>2 \sigma$ tensions in LFU observables
is new LQCD results for neutral B meson mixing matrix elements with significantly smaller theory uncertainties than before ... but still larger than experimental errors ...
Nult emerging $\sim 2 \sigma$ tensions between loop processes and CKM unitarity

Outlook

Outlook

How do/did we get to 1% total errors (or below)?
i physical mass ensembles are essential
~ small lattice spacings
iz calculate renormalizations nonperturbatively
is small statistical errors (straightforward, but expensive)
it will need to include
\downarrow strong isospin breaking $\left(m_{u} \neq m_{d}\right)$ effects \checkmark

- QED effects
$>$ program being developed for kaon quantities, muon $g-2$

Extend LQCD calculations to include "hard(er)" quantities

\approx theoretical framework for semileptonic B decays to vector meson final states under development (Briceño et al, arXiv:1406.5965, 2015 PRD; Agadjanov et al, arXiv:1605.03386).
$>$ LQCD calculations of form factors for $B_{s} \rightarrow K^{*} \ell \nu, B \rightarrow K^{*} \ell \ell, \ldots$ pilot studies are underway
i Ongoing work for kaons (RBC/UKQCD, JLQCD): $K \rightarrow \pi \pi, \epsilon^{\prime}, \Delta M_{K}, \ldots$

Thank you!

Backup slides

Leptonic D, K decay

example: $D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}$

$$
\Gamma\left(D_{s}^{+} \rightarrow \ell^{+} \nu_{\ell}(\gamma)\right)=(\text { known }) \times\left(1+\delta_{\mathrm{EM}}^{\ell}\right) \rtimes\left(\left|V_{c s}\right|^{2}\right) f_{D_{s}}^{2}
$$

- $\delta_{\mathrm{EM}}^{\ell}$ includes structure dependent EM corrections. It is needed to relate the "pure QCD" decay constant to experiment and is currently estimated phenomenologically.

Kaon decay constant summary

S. Aoki et al (FLAG-3 review, arXiv:1607.00299)
status
end 2015

$D_{(s)}$ decay constant summary

S. Aoki et al (FLAG-3 review, arXiv:1607.00299)

$D_{(s)}$ decay constant summary

small errors in FNAL/MILC 14A (arXiv:1407.3772, 2014 PRD) due to

- physical mass ensembles
- improved action (small discretization errors)
- small lattice spacings
- PCAC (no renormalization)

$D_{(s)}$ decay constant summary

J. T. Tsang (RBC/UKQCD) @ Lattice 2016:

RBC/UKQCD (J.T. Tsang @ Lattice 2016):

- 2+1 flavors of DW fermions
- physical mass ensembles
- PCAC (no renormalization)

Semileptonic D-meson decay

$$
\text { Example: } D \rightarrow \pi \ell \nu
$$

$$
\frac{d \Gamma(D \rightarrow \pi \ell \nu)}{d q^{2}}=(\text { known }) \times\left|V_{c d}\right|^{2} f_{+}^{2}\left(q^{2}\right) \quad \ell=e, \mu
$$

\star can calculate the form factors for the entire recoil energy range
\star can use z-expansion ${ }^{\star}$ for model-independent parameterization of q^{2} dependence
\star calculate both form factors $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$
\star can compare shape between experiment and lattice
\star extension to rare SL decay form factors (f_{T}) straightforward

D SL form factor results

D SL form factor results

adapted from S. Aoki et al (arXiv:1607.00299)

new preliminary results @ Lattice 2016:

- ETM (G. Salerno)

2+1+1 flavors of tmWilson
calculate all form factors over whole q^{2} range modified z-expansion
preliminary sys. errors

- FNAL/MILC (S. Gottlieb, T. Primer) no central values (yet)
2+1+1 flavors of HISQ
physical mass ensembles
calculate directly at zero q^{2}
- JLQCD (T. Kaneko)

2+1 flavors of DW fermions
extrapolate to zero q^{2} with z-expansion
chiral-continuum extrapolaton
still adding ensembles to analysis

summary for $K_{\ell 3}$ form factor

S. Aoki et al (FLAG-3 review, arXiv:1607.00299)
status end 2015

- FLAG2016		$\mathrm{f}_{+}(0)$	
$\begin{aligned} & \pm \\ & + \\ & \stackrel{+}{ \pm} \\ & \\ & \hline \end{aligned}$	$0.33 \% \rightarrow \leftarrow$	FLAG average for $\mathrm{N}_{\mathrm{f}}=2+1+1$ ETM 15C FNAL/MILC 13 E FNAL/MILC $13 C$	
$\begin{aligned} & z \\ & - \\ & \underset{~}{2} \\ & \stackrel{1}{z} \end{aligned}$		FLAG average for $\mathrm{N}_{\mathrm{f}}=2+1$ RBC/UKQCD 15A RBC/UKQCD 13 FNAL/MILC 121 JLQCD 12 RBC/UKQCD 10 RBC/UKQCD 07	
$\begin{aligned} & N \\ & \\| \\ & Z \end{aligned}$		FLAG average for $\mathrm{N}_{\mathrm{f}}=2$ ETM 10D (stat. err. only) ETM 09A QCDSF 07 (stat. err. only) RBC 06 JLQCD 05 JLQCD 05	
		Kastner 08 Cirigliano 05 Jamin 04 Bijnens 03 Leutwyler 84	
C	$0.94 \begin{array}{llll}0.96 & 0.98 & 1.0\end{array}$		

summary for B_{K}

S．Aoki et al（FLAG－3 review，arXiv：1607．00299）
status
end 2015

	B_{2}	B_{3}	B_{4}	B_{5}	FLAG2016
$\begin{aligned} & - \\ & + \\ & + \\ & \underset{N}{I} \\ & Z^{4} \end{aligned}$	$\square \square-1$	$\square \square \square$	다	\square	ETM 15
$\begin{aligned} & - \\ & \underset{N}{+} \\ & \underset{z}{4} \end{aligned}$	+ぃ-4	$\begin{gathered} \text { ஈー } \\ \longmapsto \square- \end{gathered}$	\|rar	㳖	SWME 15A SWME 14C RBC／UKQCD 12E
$\begin{aligned} & \mathbb{N} \\ & Z^{2} \end{aligned}$	H－H	$\square \square$	\square	\square	ETM 12D
	0.40 .5	50.8	0.70 .9	40.60 .8	

Neutral D meson mixing

$$
M_{12}-\frac{i}{2} \Gamma_{12} \propto\left\langle D^{0}\right| H_{W}^{\Delta c=2}\left|\bar{D}^{0}\right\rangle+\sum_{n} \frac{\left\langle D^{0}\right| H_{W}^{\Delta c=1}|n\rangle\langle n| H_{W}^{\Delta c=1}\left|\bar{D}^{0}\right\rangle}{M_{D}-E_{n}+i \epsilon}
$$

- can use the same methods as for B mixing (and decay constants, form factors)
- BSMs with heavy new particles can contribute here
- large contribution "Hard"
- intermediate state can include multiple (>2)
hadrons:
- formalism for multi-hadron states still under
development (Hansen \& Sharpe, arXiv:1602.00324, 2016
PRD)
+ not a problem for Kaon mixing
$\quad \| \rightarrow$ first calculation of long-distance contribution
already exists (RBC/UKCD, arXiv:1406.0916, 2014 PRL)

Neutral D meson mixing

In the SM and beyond:

$$
\mathfrak{O}_{1}=\bar{c} \gamma^{\mu} L u \bar{c} \gamma^{\mu} L u
$$

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{eff}}=\sum_{i=1}^{5} c_{i}(\mu) \mathcal{O}_{i}(\mu) \quad \mathscr{O}_{2}=\bar{c} L u \bar{c} L u \\
& \mathscr{O}_{3}=\bar{c}^{\alpha} L u^{\beta} \bar{c}^{\beta} L u^{\alpha} \\
& \mathcal{O}_{4}=\bar{c} L u \bar{c} R u \\
& \mathscr{O}_{5}=\bar{c}^{\alpha} L u^{\beta} \bar{c}^{\beta} R u^{\alpha}{ }^{c} c \\
&\left\langle\mathcal{O}_{i}\right\rangle \equiv\left\langle D^{0}\right| \mathcal{O}_{i}\left|\bar{D}^{0}\right\rangle(\mu)=e_{i} M_{D}^{2} f_{D}^{2} B_{D}^{(i)}(\mu) \quad \text { choose } \mu=3 \mathrm{GeV}
\end{aligned}
$$

- calculate the matrix elements of all five local operators.

D mixing results in comparison

$$
\mu=3 \mathrm{GeV}
$$

- ETM:

$$
n_{f}=2+1+1
$$

arXiv:1505.06639

- Fermilab/MILC: $n_{f}=2+1$
- ETM:

$$
n_{f}=2
$$

arXiv:1403.7302
A. Kronfeld @ Lattice 2016 (plot by C.C. Chang)

[^0]: $B \rightarrow K \mu \mu$, high q^{2} bin dominates constraint

