Imperial College

Summary of LHCb results Ulrik Egede on behalf of the LHCb collaboration HC2NP, Tenerife 27 Sep 2016

© Ulrik Egede 2016, license CC-BY-4.0

LHC status

Fantastic progress for LHC this year is fantastic

For many LHCb analyses the effective dataset might almost double with respect to Run-I at the end of 2016

LHCb Integrated Luminosity in pp collisions 2010-2016

Still mainly results from Run-I but Run-I+II is getting there

27 Nov 2016

Production cross section

The b production cross section $\sigma(pp \rightarrow H_b X)$ has been measured in the forward region $2 < \eta < 5$.

At the increased energy the production goes more central than prediction. Overall a factor two higher.

Tree level $B^{0} \rightarrow D^{*+} \tau v$ $|V_{ub}|/|V_{cb}|$ update

@Daveybot on Flickr (CC-BY-NC-SA).

В⁺→D*+т v

LHCb has contributed with one measurement on lepton non-universality in $B \rightarrow DIv$ decays

The measurement of many more τ/μ ratios on the way

$B^+ \rightarrow D^{(*)+} \tau v$ global fit

The measurements are internally consistent and have a 4σ tension with SM prediction

Measurement of $|V_{ub}|/|V_{cb}|$

The ratio of CKM elements can be measured from

- The BF ratio of $\Lambda_b \rightarrow p\mu$ v and $\Lambda_b \rightarrow \Lambda_c^+ \mu$ v combined with Lattice QCD prediction of form factors
- Only events in the high q² region is considered to lower lattice uncertainty
- $\frac{|v_{\rm ub}|}{|v_{\rm cb}|} = 0.083 \pm 0.004 \pm 0.004$

Uncertainty dominated by $BF(\Lambda_c^{+} \rightarrow pK\pi)$ and lattice form factors

CKM matrix elements (incl. vs excl.)

Combining the new LHCb measurement with existing measurements of $|V_{cb}|$ and $|V_{ub}|$ enhance discrepancy between inclusive and exclusive measurements

27 September 2016

CKM matrix elements (incl. vs excl.)

Published measurement based on normalisation with $BF(\Lambda_c \rightarrow p K \pi) = (6.84 \pm 0.24 + 0.21) \%$ BES-III has since measured many Λ_c modes and their correlations

 $|V_{ub}| \times 10^3$ PDG 2014 + Combined fit gives CKM fitter + MILC 2015 + $\mathsf{BF}(\Lambda_c \rightarrow \rho K \pi) = (6.46 \pm 0.24)\%$ $Λ_b$ →pµν (LHCb) V_{ub} inclusive $\frac{V_{ub}}{|V_{cb}|}$ $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$. exclusive Comb. exc 2.7%5.5% V_{ub}/V_{cb} LHCb HFAG Preliminary 36 38 42 40 44 $\times 10^{3}$ $|V_{cb}|$

Tension with inclusive is increasing slightly

CP violation

CP violation in baryon decays

@Arran Bee / CC BY 2.0

CP violation

© CERN, CC-BY-4.0, arXiv:1609.05216

CP violation in baryon decays

So far CP violation only seen in K⁰, B⁰ and B⁰_s decays Never in baryons!

Search for direct CP violation in $\Lambda_{b} \rightarrow p\pi^{-}\pi^{+}\pi^{-}$ decays

CP violation in baryon decays

Looking at $\Lambda_{b}/\overline{\Lambda}_{b}$ difference in asymmetry of scalar triple products for $p\pi^{+}\pi^{-}$ system

Studied across phase space to avoid cancellations

Overall 3.3 significance for direct CP violation in decay

Penguin decays

New results

- $\Sigma^+ \rightarrow p \mu^+ \mu^- B^0_{s} \rightarrow \phi \gamma$
- υ_s γγγ
- $B^0_{\ s} \to T^+T^-$
- $B \rightarrow 4\mu$
- $K^0_{\ s} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
- $B \rightarrow K^* \mu \mu, B \rightarrow KII$ HepData record S-wave

Photo U.Egede, @ Phillip Island Nature Parks

$\Sigma^+ \rightarrow p\mu^+\mu^-$

Since many years the HyperCP result has been hinting at some intermediate particle, $\Sigma^+ \rightarrow pP^0$, $P^0 \rightarrow \mu^+ \mu^-$ with mass 214.3 MeV/ c^2

$\Sigma^+ \rightarrow p\mu^+\mu^-$

LHCb has searched for decay from prompt Σ^+ baryons

- A challenge due to the small Q value of decay and long lifetime of $\Sigma^{\scriptscriptstyle +}$
- A clear signal is seen with $12.9^{+5.1}_{-4.2}$ events. Significance 4σ Preliminary result is missing normalisation for part of data Thus only upper limit rather than BF. BF < 6.3 10⁻⁸ @95%CL

27 September 2016

15/36

$\Sigma^+ \rightarrow p \mu^+ \mu^-$

The data was background subtracted and then a fit made for a possible narrow peak in the dimuon mass No sign for a narrow peak at all in spectra

$B^0_{\ s} \rightarrow \phi \gamma$

An analysis of the lifetime distribution in $B^0_{\ s} \rightarrow \phi \gamma$ can in principle reveal the presence of right handed currents in the decay

$$\mathcal{P}(t) \propto e^{-\Gamma_s t} \big\{ \cosh\left(\Delta \Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta \Gamma_s t/2\right) \big\}$$

with $A^{\Delta} \propto 2 \frac{\gamma_R}{\gamma_L}$. $A^{\Delta}_{SM} = 0.05 \pm 0.03$

Deviation from pure exponential is small and is correlated to efficiency as a function of decay time.

Use ratio to $B^0 \rightarrow K^{*0}\gamma$ to minimise this problem

© CERN, CC-BY-4.0, arXiv:1609.02032

 $B^0_{s} \rightarrow \phi \gamma$

An analysis of the lifetime distribution in $B^0_{\ _s} \rightarrow \phi \gamma$ can in

Constraints on right-handed currents

27 September 2016

19/36

The decays $B^0_{(s)} \rightarrow T^+T^-$ very interesting to search for The hadronic 3-prong decay of T's used Fewer neutrinos in signal but more background from D⁺ and D⁺_s decays

27 September 2016

B₀

→ T⁺T⁻

$$K^0_{s} \rightarrow \mu^+\mu^-, B \rightarrow 4\mu$$

Further limits are set on very rare decays Limit on $K^0_{s} \to \mu^+\mu^-$ of

 $BF(K_s^0 \rightarrow \mu^+ \mu^-) < 6.9 \times 10^{-9} @ 95\% CL$

Set very strict limits for $B \rightarrow 4\mu$ decays Excludes the SM resonance regions (e.g. $B0s \rightarrow J/\psi\phi$) Assumes that any NP intermediate resonances are short lived

BF($B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$)<2.5×10⁻⁹ @ 95% CL BF($B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$)<6.9×10⁻¹⁰ @ 95% CL

The penguin laboratory

The decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $K^{*0} \rightarrow K^- \pi^+$ is in the SM only possible at loop level

On the other hand NP can show up at either tree or loop level

Angular analysis of 4-body $K^{-}\pi^{+}\mu^{+}\mu^{-}$ final state brings large number of observables

Interference between these

... and their right-handed counterparts

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

Results based on 3 fb⁻¹ from LHCb

© CERN, CC-BY-4.0, JHEP 02 (2016) 104

arXiv:1604.04042

Angular analysis of $B \rightarrow K^{*0} \mu^+ \mu^-$

Preliminary result from BELLE supports the deviation from SM expectation

27 Nov 2016

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

Unbinned fit result in region 1<q²< 6 GeV² See JHEP 06 (2015) 084 for method

©CERN, CC-BY-4.0, JHEP 02 (2016) 104

©CERN, CC-BY-4.0, JHEP 02 (2016) 104

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

HEPdata record

For global fits, it has long been a request to provide results in machine readable format

The Durham HepData Project

REACTION DATABASE • DATA REVIEWS • PDF PLOTTER

Reaction Database Full Record Display

View short record or as: input, plain text, AIDA, PyROOT, YODA, ROOT, mpl, DMelt, MarcXML or YAML

AAIJ 2016 — Angular analysis of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay using $3~{\rm fb}^{-1}$ of integrated luminosity

Experiment: CERN-LHC-LHCb (LHCb) Published in JHEP 1602,104 (DOI:10.1007/JHEP02(2016)104) Preprinted as CERN-PH-EP-2015-314 Preprinted as LHCB-PAPER-2015-051 Archived as: ARXIV:1512.04442 Record in: INSPIRE Record in: CERN Document Server Record in: HEPData (new site in development)

©CERN, CC-BY-4.0, JHEP 02 (2016) 104

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

HEPdata record

For global fits, it has long been a request to provide results in machine readable format

The Durham HepData Project

All the tables from paper

REACTION E	Table 2 (Appendix B, Table 3, Figure 6.) HIDE DATA or as: input, plain text, AIDA, PyROOT, YODA, ROOT, mpl, I CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.				
Reaction	reaction keywords: [P P> B0 + X] observable keywords: [POL, ASYM]				
	q ² = M**2(<mu+ MU->)</mu+ 	0.1-0.98 GeV^2	1.1-2.5 GeV^2	2.5-4.0 GeV^2	4.0-6.0 GeV^2
Experiment: Published in Preprinted as Preprinted as Archived as: Record in: IN Record in: CI Record in: HI	RE	P P> B0 < K*(892) < K+ PI- > MU+ MU- > X			
	SQRT(S)	7000.0 GeV			
	SQRT(S)	8000.0 GeV			
	Observable				q^2 in
	$F_{ m L}$	0.263 +0.045,-0.044 (stat) ± 0.017 (sys)	0.660 +0.083,-0.077 (stat) ± 0.022 (sys)	0.876 +0.109,-0.097 (stat) ± 0.017 (sys)	0.611 +0.052,-0.053 (stat) ± 0.017 (sys)
	S_3	-0.036 ± 0.063 (stat) ± 0.005 (sys)	-0.077 +0.087,-0.105 (stat) ± 0.005 (sys)	0.035 +0.098,-0.089 (stat) ± 0.007 (sys)	0.035 +0.069,-0.068 (stat) ± 0.007 (sys)
	S_4	0.082 +0.068,-0.069 (stat) ± 0.009 (sys)	-0.077 +0.111,-0.113 (stat) ± 0.005 (sys)	-0.234 +0.127,-0.144 (stat) ± 0.006 (sys)	-0.219 +0.086,-0.084 (stat) ± 0.008 (sys)
	S_5	0.170 +0.059,-0.058 (stat) ± 0.018 (sys)	0.137 +0.099,-0.094 (stat) ± 0.009 (sys)	-0.022 +0.110,-0.103 (stat) ± 0.008 (sys)	-0.146 +0.077,-0.078 (stat) ± 0.011 (sys)

27 September 2016

©CERN, CC-BY-4.0, JHEP 02 (2016) 104

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

HEPdata record

For global fits, it has long been a request to provide results in machine readable format

name: 'Table 2'

description:

label: 'Data from Appendix B, Table 3, Figure 6'

The Durham HepData Project

CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. keywords: {name: reactions, values: ['P P --> B0 + X']} {name: observables, values: ['POL', 'ASYM']} - {name: cmenergies, values: [7000.0-8000.0]} additional resources: independent variables: - header: {name: 'Observable'} In YAML and many other Reaction values: - {value: '\$F_{\rm L}\$'} machine readable formats {value: '\$5 3\$'} {value: '\$S 4\$' {value: '\$5 5\$'} $q^2 =$ {value: '\$A {\rm FB}\$'} - {value: '\$5 7\$'} 0.1-0.98 GeV^2 1.1-2.5 M**2(<MU+ - {value: '\$S 8\$'] - {value: '\$S 9\$'} **AAII 20** dependent variables: P P --> B0 < K*(892) < K+ PI- > MU+ - header: {name: '\$q^2\$', units: 'GEV**2'} integra qualifiers: - {name: '\$q^2\$ = M**2(<MU+ MU->)', value: '0.1-0.98', units: 'GeV^2'} - {name: 'RE', value: 'P P --> B0 < K*(892) < K+ PI- > MU+ MU- > X'} - {name: 'SQRT(S)', value: '7000.0', units: 'GeV'} - {name: 'SQRT(S)', value: '8000.0', units: 'GeV'} values: Observable - value: 0.263 errors: - {asymerror: {plus: 0.045, minus: -0.044}, label: 'stat'} - {symerror: 0.017, label: 'sys'} - value: -0.036 errors: - {symerror: 0.063, label: 'stat'} - {symerror: 0.005, label: 'sys'} value: 0.082 errors: - {asymerror: {plus: 0.068, minus: -0.069}, label: 'stat'} - {symerror: 0.009, label: 'sys'}

27 September 2016

Lepton non-universality

Lepton universality is one of the corner stones of the Standard Model

Only theoretical uncertainty in ratios of semileptonic decays is from different masses of quarks

Z decays tested lepton universality at the per-mille level Heavy flavour decays test e- μ universality in B \rightarrow KIv at the 5% level

For μ -T universality to constraints are poorer In charm, a single constraint by BF(D_s⁺ \rightarrow T⁺v)/BF(D_s⁺ \rightarrow μ ⁺v) at 10% level

LHCb : PRL113, 151601 (2014)

Lepton universality test in B⁺→K⁺I⁺I⁻

Due to lepton universality, the B \rightarrow Kµµ and B \rightarrow Kee decays should have same BF to within a factor 10⁻³

The ratio

Sensitive to lepton flavour violating NP Look in q²< 6 GeV² region Muon mode and its control mode B⁺ \rightarrow K⁺J/ ψ , J/ ψ \rightarrow µµ are easy

LHCb : PRL113, 151601 (2014)

Lepton universality test in $B^+ \rightarrow K^+ I^+ I^-$

Measure $R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$

Compatible with earlier, but less precise measurements

Large ongoing effort to measure many other μ /e ratios

27 Nov 2016

Interpretations

To understand the different anomalies, different approaches have gained some traction

- There is a problem with the uncertainties
 - Experimental side most like for lepton non-universality measurements
 - Theory side more likely for electroweak penguin angular analysis
- Introduce a leptoquark sector
 - Provides straight forward explanation of lepton nonuniversality
- Introduce a Z' that allows for flavour changing neutral currents at tree level

Aims mainly at $B \rightarrow K^* \mu^+ \mu^-$ but can also explain R_{κ}

Interpretation of results

Use an Operator Product expansion

CC-BY-4.0, JHEP 06 (2016) 092 $\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \sum_{j=7,9,10} \frac{e^{i\phi_j}}{\Lambda_j^2} \mathscr{O}_j$ **Branching Ratios** Angular Observables (P_i) 2 All d ₽ ₽ 0 **Standard Model prediction** of coefficients are very -1 Standard Model precise prediction -2 -3-2 -3-1 0 1 2 3 $C_9^{\rm NP}$

Interpretation of results

A new vector boson, Z', would only contribute to the O_9 operator

Direct observation of new boson would be fantastic

... but maybe out of reach of LHC

27 Nov 2016

Interpretation of results

27 Nov 2016

Conclusion

LHCb continues as the dominating experiment for new results in quark flavour physics

Still many results coming out for LHC run-I with very significant updates for run-II coming soon.

Several measurements are coming out which are in significant tension with the SM

 $B \rightarrow K^* \mu^+ \mu^-$, $B \rightarrow KI^+I^-$, $B \rightarrow DIv$

Phenomenologists and experimentalists need to talk even more in order further understanding

How to cross check experimental and theoretical uncertainties

Develop new measurements