J. A. Oller

Departamento de Física Universidad de Murcia¹

in collaboration with D. R. Entem

- [I] arXiv:1609.XXX
- [II] Long version, in preparation

HC2NP, Tenerife, September 30, 2016

¹Partially funded by MINECO (Spain) and EU, project FPA2013-40483-P

Overview

- Lippmann-Schwinger equation
- 2 New exact equation in NR scattering theory
- 3 LS equation in the complex plane
- 4 N/D method with non-perturbative $\Delta(A)$
- 6 Regular interactions
- 6 Singular Interactions
- $\bigcirc T(A)$ in the complex plane
- 8 Conclusions

Lippmann-Schwinger equation

Lippmann-Schwinger equation (LS)

Potential two-body scattering. Given a potential \boldsymbol{V}

Scattering *T*-matrix T(z), $Im(z) \neq 0$

$$T(z) = V - VR_0(z)T(z)$$
$$R_0(z) = [H_0 - z]^{-1}$$
$$H_0 = -\frac{1}{2\mu}\nabla^2$$
$$H = H_0 + V$$

• LS in partial waves

$$T_{\ell}(p',p,z) = V_{\ell}(p',p) + \frac{\mu}{\pi^2} \int_0^\infty dq q^2 \frac{V_{\ell}(p',q)T_{\ell}(q,p,z)}{q^2 - 2\mu z}$$

Lippmann-Schwinger equation

Criterion for Singular Potentials

$$V(r) \xrightarrow[r \to 0]{} \alpha r^{-\gamma}$$

$$\bar{\alpha} = \! \alpha + \ell(\ell+1)$$

Potential	Ordinary	Singular
γ	< 2	> 2
$\gamma = 2$	$\bar{\alpha} > 0$	$\bar{\alpha} \leq 0$

Ordinary/Regular Potentials:

Standard quantum mechanical treatment Boundary condition: u(0) = 0No extra free parameters Lippmann-Schwinger equation

The One-Pion-Exchange (OPE) potential for the singlet NN interaction (r > 0):

Yukawa potential
$$V(r) = -\tau_1 \cdot \tau_2 \left(\frac{g_A m_\pi}{2 f_\pi}\right)^2 \frac{e^{-m_\pi r}}{4\pi r}$$

Exchange of a pion between two nucleons

Lippmann-Schwinger equation

In many instances one has singular potentials

• Molecular physics: Van der Waals Force

$$V(r) = -\frac{3\alpha_A \alpha_B I_A I_B / 2(I_A + I_B)}{\mathbf{r}^6} + \sum_{n=4} \frac{\lambda_n}{r^{2n}}$$

Nuclear physics

Triplet component of one-Pion Exchange (OPE)

$$T(r) = \frac{e^{-m_{\pi}r}}{r} \left[1 + \frac{3}{m_{\pi}r} + \frac{3}{(m_{\pi}r)^2} \right] \xrightarrow[r \to 0]{} r^{-3}$$

Higher orders in CHPT add extra powers of $1/r^{n} \label{eq:charge}$

Particle physics:

Scattering of heavy-quarkonium states, color dipoles, QCD analog to Van der Waals forces pNRQCD, pNRQED NR Quark Models, etc

Lippmann-Schwinger equation

Е

• Full range $r \in]0, \infty[: Case, PR60, 797(1950)]$

$$-u''(r) + \left(2\mu V(r) + \frac{\ell(\ell+1)}{r^2} - k^2\right)u(r) = 0$$

• Singular Attractive Potential

Two linearly independent wave functions One has to fix a relative phase, $\varphi(p)$ How to do it?.

Which are the appropriate boundary conditions? Historical Mess

Theoretical control within LS only for $\varphi(p) = const.$ Case, PR60,797('50); Arriola, Pavón, PRC72,054002('05)

The attractive singular potential does not determine uniquely the scattering problem Plesset, PR41,278(1932), Case, PR60,797(1950)

Lippmann-Schwinger equation

• Singular Repulsive Potential

There is only one finite (vanishing) reduced wave function at r = 0

The solution is fixed

Pavón Valderrama, Ruiz Arriola, Ann.Phys.323,1037(2008) New exact equation in NR scattering theory

New exact equation in NR scattering theory

Yukawa potential,

$$V(\mathbf{q}) = \frac{2g}{\mathbf{q}^2 + m_\pi^2}$$

Singularity for $\mathbf{q}^2=-m_\pi^2$

¹S₀ potential:
$$({}^{2S+1}L_J)$$
 $g = (g_A m_\pi / \sqrt{8} f_\pi)^2$
 $V(p) = \frac{g}{2p^2} \log(4p^2 / m_\pi^2 + 1)$
 $\Delta_{1\pi}(p^2) = \frac{V(p^2 + i0^+) - V(p^2 - i0^+)}{2i} = \text{Im}V(p^2 + i0^+) = \frac{g\pi}{2p^2}$

Left-hand cut (LHC) discontinuity for On-shell scattering

$$p^2 < -m_\pi^2/4 = L$$

Born approximation

New exact equation in NR scattering theory

Full LHC Discontinuity ,
$$p^2 = -k^2 < L$$

 $2i\Delta(p^2) = T(p^2 + i0^+) - T(p^2 - i0^+)$
 $\Delta(p^2) = \text{Im}T(p^2 + i0^+)$

The LS generates contributions with any number of pions to $\Delta(p^2),$ $p^2 < L$

 $\Delta_{n\pi}(p^2)$ for $p^2 < -n^2 m_\pi^2/4$

New exact equation in NR scattering theory

Notation: $A = p^2$; How to calculate $\Delta(A)$?:

G.E. Brown, A.D. Jackson "The Nucleon-Nucleon interaction", North-Holland, 1976. Page 86: "In practice, of course, we do not know the exact form of $\Delta(p^2)$ for a given potential ..."

$$p = ik \pm \varepsilon , \ \varepsilon = 0^{+} , \ p^{2} = -k^{2} < L$$
$$T(ik \pm \varepsilon, ik \pm \varepsilon) = V(ik \pm \varepsilon, ik \pm \varepsilon)$$
$$+ \frac{\mu}{2\pi^{2}} \int_{0}^{\infty} dqq^{2} \frac{V(ik \pm \varepsilon, q)T(q, ik \pm \varepsilon)}{q^{2} + k^{2}}$$

The last integral, so calculated, IS PURELY REAL!!

You can try to calculate numerically just the once iterated OPE

$$\frac{\mu}{2\pi^2}\int_0^\infty dqq^2\frac{V(ik\pm\varepsilon,q)V(q,ik\pm\varepsilon)}{q^2+k^2}\in\mathbb{R}$$

New exact equation in NR scattering theory

• GENERAL method:

Analytic extrapolation of the LS from its integral expression

$$\begin{aligned} \Delta(A) &= \frac{1}{2} \mathfrak{f}(-k) \ , \ A &= -k^2 \\ \mathfrak{f}(\nu) &= \Delta v(\nu, k) + \frac{\theta(k - 2m_\pi - \nu)m}{2\pi^2} \int_{m_\pi + \nu}^{k - m_\pi} \frac{d\nu_1 \nu_1^2}{k^2 - \nu_1^2} \Delta v(\nu, \nu_1) \mathfrak{f}(\nu_1) \end{aligned}$$

IE :
$$-k + m_{\pi} < \nu < k - m_{\pi}$$

- The limits in the IE ARE FINITE
- $\bullet\,$ The denominator never vanishes , $|\nu_1| \leq k-m_\pi$ in the IE
- NO FREE PARAMETERS

Reason: Contact interactions (monomials) do not contribute to the discontinuity of $T({\boldsymbol A})$

Short-distance physics is not resolved \rightarrow Contact interactions

New exact equation in NR scattering theory

$$\begin{split} \Delta(A) &= \frac{\mathfrak{f}(-k)}{2} \ , \ k = \sqrt{-A} \\ \mathfrak{f}(\nu) &= \Delta v(\nu, k) + \frac{\theta(k - 2m_{\pi} - \nu)m}{2\pi^2} \int_{m_{\pi} + \nu}^{k - m_{\pi}} \frac{d\nu_1 \nu_1^2}{k^2 - \nu_1^2} \Delta v(\nu, \nu_1) \mathfrak{f}(\nu_1) \end{split}$$

IE :
$$-k + m_{\pi} < \nu < k - m_{\pi}$$

It can be applied to:

• Any local potential (spectral decomposition:)

$$V(\mathbf{p}', \mathbf{p}) = \frac{1}{\pi} \int_{\mu_0^2}^{\infty} d\mu^2 \frac{\eta(\mu^2)}{\mathbf{q}^2 + \mu^2} , \ \mathbf{q} = \mathbf{p}' - \mathbf{p}$$

- Higher partial waves, $\ell \ge 0$
- Coupled Channels
- $\bullet\,$ Nonlocal potentials due to relativistic corrections $\to \eta(\mu^2)$

LS equation in the complex plane

LS equation in the complex plane

Analytical properties of the potential

• Local potential, spectral decomposition:

$$V(\mathbf{q}^2) = \frac{1}{\pi} \int_{\mu_0^2}^{\infty} d\mu^2 \frac{\eta(\mu^2)}{\mathbf{q}^2 + \mu^2} , \ \mathbf{q} = \mathbf{p}_2 - \mathbf{p}_1$$

• S-wave projection:

$$v(p_1, p_2) = \frac{1}{2\pi} \int_{-1}^{+1} dt \int_{\mu_0^2}^{\infty} d\mu^2 \frac{\eta(\mu^2)}{p_1^2 + p_2^2 - 2p_1 p_2 t + \mu^2}$$

= $\frac{1}{4\pi p_1 p_2} \int_{\mu_0^2}^{\infty} d\mu^2 \eta(\mu^2)$
× { log [$\mu^2 + (p_1 + p_2)^2$] - log [$\mu^2 + (p_1 - p_2)^2$] }

LS equation in the complex plane

Vertical cuts:

$$p_2 = \pm (p_1 \pm i\sqrt{m_\pi^2 + x^2}) \ x \in \mathbb{R}$$

Analogously for p_1

$$p_1 = m_{\pi}$$
. Branch points at $\pm (p_1 \pm im_{\pi})$

LS equation in the complex plane

Deforming the integration contour in the LS equation

 $k, \ k' \in \mathbb{R}$ in the half-off-shell T-matrix $t(k,k';{k'}^2/m)$,

$$t(k,k';\frac{k'^2}{m}) = v(k,k') + \frac{m}{2\pi^2} \int_0^\infty \frac{dp_1 p_1^2}{p_1^2 - {k'}^2} v(k,p_1) t(p_1,k';\frac{k'^2}{m}) ,$$

 $v(k, p_1)$ implies the vertical cuts

LS equation in the complex plane

We add an increasing positive imaginary part to \boldsymbol{k}

$$\begin{split} k = & k_r + i \, k_i \ , \ k_i > 0 \\ p_1 = \pm \left(k_r + i \, k_i \pm i \sqrt{m_\pi^2 + x^2} \right) \, x \in \mathbb{R} \end{split}$$

 $k + i m_{\pi}$

į

LS equation in the complex plane

We add an increasing positive imaginary part to k

$$k = k_r + i \, k_i \ , \ k_i > m_\pi$$

• $t(p_1, k'; k'^2/m)$ follows the same pattern in terms of k'.

LS equation in the complex plane

Calculation of $\Delta(-k^2)$: Discontinuity across the LHC

On-shell scattering $t(k,k;k^2/m)$ LHC:

$$p = -p \pm i\sqrt{m_{\pi}^2 + x^2} \longrightarrow p = \pm \frac{i}{2}\sqrt{m_{\pi}^2 + x^2}$$
$$p^2 = -\frac{1}{4}(m_{\pi}^2 + x^2) \longrightarrow p^2 \in]-\infty, L] , \ L = -m_{\pi}^2/4$$

$$2i\Delta(-k^2) = t(ik + i\varepsilon, ik + i\varepsilon) - t(ik - i\varepsilon, ik + i\varepsilon)$$

$$= (-1)^{\ell} \bigg\{ t(-ik + \varepsilon^{-}, ik + \varepsilon) - t(-ik + \varepsilon^{+}, ik + \varepsilon) \bigg\}$$

 $\varepsilon^- < \varepsilon < \varepsilon^+$

LS equation in the complex plane

$$t(-ik+\varepsilon^-,ik+\varepsilon) \qquad \qquad t(-ik+\varepsilon^+,ik+\varepsilon)$$

LS equation in the complex plane

$$Im t(-ik + \varepsilon^{-}, ik + \varepsilon) - Im t(-ik + \varepsilon^{+}, ik + \varepsilon)$$

= Im $v(i\nu + \varepsilon^{-}, ik + \varepsilon) - Im v(i\nu + \varepsilon^{+}, ik + \varepsilon)$
+ $\theta(k - \nu - 2m_{\pi}) \frac{m}{2\pi^{2}} \int_{-k+m_{\pi}}^{k-m_{\pi}} \frac{d\nu_{1}\nu_{1}^{2}}{k^{2} - \nu_{1}^{2}}$
× $[Im v(i\nu + \varepsilon^{-}, i\nu_{1} + \varepsilon) - Im v(i\nu + \varepsilon^{+}, i\nu_{1} + \varepsilon)]$
× $[Im t(i\nu_{1} + \varepsilon - \delta, ik + \varepsilon) - Im t(i\nu_{1} + \varepsilon + \delta, ik + \varepsilon)]$

• One needs to know

$$\operatorname{Im} t(i\nu + \varepsilon^{-}, ik + \varepsilon) - \operatorname{Im} t(i\nu + \varepsilon^{+}, ik + \varepsilon)$$
$$-k + m_{\pi} < \nu < k - m_{\pi}$$

•

LS equation in the complex plane

Proceeding in the same way Integral Equation $-k + m_{\pi} < \nu < k - m_{\pi}$:

$$\begin{split} \mathfrak{f}(\nu) \equiv & \operatorname{Im} t(i\nu + \varepsilon^-, ik + \varepsilon) - \operatorname{Im} t(i\nu + \varepsilon^+, ik + \varepsilon) \\ = & \operatorname{Im} v(i\nu + \varepsilon^-, ik + \varepsilon) - \operatorname{Im} v(i\nu + \varepsilon^+, ik + \varepsilon) \\ & + \theta(k - \nu - 2m_\pi) \frac{m}{2\pi^2} \int_{\nu + m_\pi}^{k - m_\pi} \frac{d\nu_1 \nu_1^2}{k^2 - \nu_1^2} \\ & \times \left[\operatorname{Im} v(i\nu + \varepsilon^-, i\nu_1 + \varepsilon) - \operatorname{Im} v(i\nu + \varepsilon^+, i\nu_1 + \varepsilon) \right] \\ & \times \left[\operatorname{Im} t(i\nu_1 + \varepsilon - \delta, ik + \varepsilon) - \operatorname{Im} t(i\nu_1 + \varepsilon + \delta, ik + \varepsilon) \right] \,. \end{split}$$

$$\Delta(A) = (-1)^{\ell} \frac{\mathfrak{f}(-k)}{2}$$

LS equation in the complex plane

log-log plot for ${}^{1}S_{0}$ (Yukawa Pot.) $\Delta(A)$; $g_{A} = 6.80$

- $|L| = m_{\pi}^2/4$; $\Delta_{1\pi}$, $\Delta_{2\pi}$, $\Delta_{3\pi}$, $\Delta_{4\pi}$, Asymptotic sol. (dots) $|A| \gg m_{\pi}^2$
- Full solution $\Delta(A)$

LS equation in the complex plane

Yukawa potential

• Asymptotic solution for $k \gg m_\pi$

$$\frac{\mathfrak{f}'(\nu)}{\mathfrak{f}(\nu)} = -\lambda \frac{\theta(k-2m_{\pi}-\nu)}{k^2 - (m_{\pi}+\nu)^2}$$

$$\Delta(A) = \frac{\lambda \pi^2}{M_N A} e^{\frac{2\lambda}{\sqrt{-A}} \operatorname{arctanh} \left(1 - \frac{m_\pi}{\sqrt{-A}}\right)}$$
$$\lambda = \frac{gM_N}{2\pi}$$

LS equation in the complex plane

${}^{3}P_{0}$: singular attractive potential; $m{}^{3}P_{0}$:singular repulsive potential ($g \rightarrow -g$)

LS equation in the complex plane

Qualitative difference

- Ordinary Potential $\Delta(A)$ vanishes for $A \to -\infty$
- \bullet For the attractive singular potentials $|\Delta(A)|$ grows faster than any power

• The full non-perturbative solution for a singular and ordinary potentials are qualitatively different

With singular potentials short- and long-range physics are interrelated

Nonperturbative Solutions: Any number of counterterms are not effective

 $\square N/D$ method with non-perturbative $\Delta(A)$

N/D method with non-perturbative $\Delta(A)$

Once we now the exact $\Delta(A)$ for a given potential we can use S-matrix theory to solve the LS: N/D method with the full $\Delta(A)$

$$T_{J\ell S}(A) = \frac{N_{J\ell S}(A)}{D_{J\ell S}(A)}$$

 $N_{J\ell S}(A)$ has Only LHC $D_{J\ell S}(A)$ has Only RHC

$$\begin{split} \mathrm{Im} D_{\ell}(A) &= -N_{\ell}(A)\rho(A) \ , \ A > 0 \ (\mathbf{RHC}-\mathbf{Unitarity}) \\ \mathrm{Im} N_{\ell}(A) &= D_{\ell}(A) \Delta(A) \ , \ A < L \ (\mathbf{LHC}) \end{split}$$

 $\square N/D$ method with non-perturbative $\Delta(A)$

 $(m_1, m_2) N/D$ equations for D(A) and N(A)

$N/D_{m_1 m_2}$

$$N(A) = \sum_{i=1}^{m_1} \nu_i (A-C)^{m_1-i} + \frac{(A-C)^{m_1}}{\pi} \int_{-\infty}^{L} dk^2 \frac{\Delta(k^2)D(k^2)}{(k^2-A)(k^2-C)^{m_1}}$$
$$D(A) = \sum_{i=1}^{m_2} \delta_i (A-C)^{m_2-i} - \frac{(A-C)^{m_2}}{\pi} \int_{0}^{\infty} dq^2 \frac{\rho(q^2)N(q^2)}{(q^2-A)(q^2-C)^{m_2}}$$

- N(A) is substituted in D(A)
- Linear IE for D(A) arises
- D(0) = 1. To fix a floating constant in the ratio T(A) = N(A)/D(A)

Regular interactions

Regular interactions

• N/D_{01} : Regular solution for an ordinary potential

Scattering is completely fixed by the potential

$$D(A) = 1 - \frac{i\mu\sqrt{A}}{2\pi^2} \int_{-\infty}^{L} d\omega_L \frac{\Delta(\omega_L)D(\omega_L)}{\sqrt{\omega_L}\left(\sqrt{\omega_L} + \sqrt{A}\right)}$$

• N/D_{11} : Additional subtraction in N(A) is fixed in terms of scattering length

$$D(A) = 1 + i a \sqrt{A} + i \frac{M_N}{4\pi^2} \int_{-\infty}^{L} d\omega_L \frac{D(\omega_L)\Delta(\omega_L)}{\omega_L} \frac{A}{\sqrt{A} + \sqrt{\omega_L}}$$

Effective Range Expansion (ERE)

$$k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2}rk^2 + \sum_{i=2} v_i k^{2i}$$

Regular interactions

• N/D_{12} : Additional subtraction in D(A), r is fixed

$$D(A) = 1 + i a \sqrt{A} - \frac{ar}{2} A - i \frac{M_N A}{4\pi^2} \int_{-\infty}^{L} d\omega_L \frac{D(\omega_L) \Delta(\omega_L)}{\omega_L}$$
$$\times \left[\frac{\sqrt{A}}{(\sqrt{\omega_L} + \sqrt{A})\sqrt{\omega_L}} - \frac{i}{a\omega_L} \right]$$

• N/D_{22} : v_2 is fixed additionally

$$D(A) = (1 - \frac{2\nu_2}{r}A)(1 + ia\sqrt{A}) - \frac{ar}{2}A + i\frac{M_N}{4\pi^2}A\int_{-\infty}^L d\omega_L \frac{D(\omega_L)\Delta(\omega_L)}{\omega_L^2} \times \left[\frac{A}{\sqrt{A} + \sqrt{\omega_L}} + i\frac{2}{ra^2\omega_L}(1 + ia\sqrt{\omega_L})(1 + ia\sqrt{A})\right]$$

The results are just dependent on $\Delta(A)$ (input potential) and experimental ERE parameters

Regular interactions

Example: Regular case. ${}^{1}S_{0}$ Yukawa potential

 N/D_{01} ; LS (black dots)

Singular Interactions

Analytical properties determine the solutions for singular potentials

Attractive singular interaction: ${}^{3}P_{0}$ N/D₁₂ T(A) = 0 (N/D₁₁ does not converge) At least one parameter is needed The scattering volume is fixed

We compare with LS renormalized with one contact term C_1 :

 $V(p_1, p_2) \to V(p_1, p_2) + C_1 p_1 p_2$

 N/D_{12} ; LS (black dots); Phase shifts: Granada analysis Singular Interactions

Repulsive singular interaction: Minus- ${}^{3}P_{0}$ ($g \rightarrow -g$)

 $\mathbf{N}/\mathbf{D_{01}}$ No free parameters

Repulsive Singular Potential: LS is insensitive to all C_i

 N/D_{12} ; LS (black dots);

Singular Interactions

Attractive singular interaction: Sensitivity to scatter inner structure

One can go beyond the case of just one counterterm

Example: NN ${}^{1}S_{0}$ partial wave

LS renormalized with contact terms:

$$V(p_1, p_2) \to V(p_1, p_2) + C_0 + C_1(p_1^2 + p_2^2) + \dots$$

LS is insensitive or not convergent when including C_i , i > 0Entem, Arriola, Pavon, Machleidt PRC77,044006('08)

NLO and NNLO ChPT NN potentials

Full spectral decomposition of the potential

Singular Interactions

 \bullet Not all the N/D types of IE's converge for sing. pot. (they do for ord. pot.)

•
$$N/D_{11}$$
 (a) and N/D_{22} (a, r, v_2) are convergent

 $\bullet~N/D_{01}$ (at least one parameter is needed) and N/D_{12} are not convergent

Singular Interactions

70

60

50

40

30

20

10

0

-10

 $\delta \iota_{S_0}$

N/D_{11} , N/D_{22}

Subtractive-renormalized LS: points One counterterm *It cannot reproduce* r Yang, Elster, Phillips, PRC80,044002('09)

a = -23.75 , r = 2.655 fm , $v_2 = -0.6265$ fm³

 $\Box_T(A)$ in the complex plane

T(A) in the complex plane

• As a **bonus** the non-perturbative- $\Delta N/D$ method allows to calculate T(A) for $A \in \mathbb{C}$ in the 1st/2nd Riemann sheet

This is not trivial with LS

Look for and study resonances, virtual states and bound states

For bound states one does not need to solve the full-off-shell LS equation or Schrödinger equation

Bound State p = ik, $A = -k^2$

Binding energy of near threshold bound state, $g_A = 7.45$ One does not need to solve Schrödinger equation Poles of $T(A) \leftrightarrow$ zeros of D(A) $\Box_T(A)$ in the complex plane

• As a **bonus** the non-perturbative- $\Delta N/D$ method allows to calculate T(A) for $A \in \mathbb{C}$ in the 1st/2nd Riemann sheet

This is not trivial with LS

Binding energy of near threshold bound state, $g_A = 7.45$ One does not need to solve Schrödinger equation Poles of $T(A) \leftrightarrow$ zeros of D(A)

$A = (ik)^2$	N/D_{01}	N/D_{11}	Schrödinger
$\Delta_{1\pi}$		2.02	
$\Delta_{2\pi}$		2.18	
$\Delta_{3\pi}$		2.21	
$\Delta_{4\pi}$	0.89	2.22	
Non-perturbative	2.22	2.22	2.22

 $\Box_{T(A)}$ in the complex plane

• Anti-bound (virtual) state for 1S_0

$$\begin{array}{lll} T_{II}^{-1}(A) & = & T_{I}^{-1}(A) + 2i\rho(A) \\ & = & \frac{D_{I} + N_{I} 2i\rho(A)}{N_{I}} \;, \; \mathrm{Im}\sqrt{A} \geq 0 \end{array}$$

Look for zero of $D_{II}({\boldsymbol A})$. ${\boldsymbol E}={\boldsymbol A}/M_N=$

 N/D_{11} : -0.070 (LO) , -0.067 (NLO,NNLO) MeV

For the other $N/D_{m_1m_2}$: -0.066 MeV always

 $\Box_T(A)$ in the complex plane

G.E. Brown, A.D. Jackson "The Nucleon-Nucleon interaction", North-Holland, 1976. Page 86: "In practice, of course, we do not know the exact form of $\Delta(p^2)$ for a given potential and the N/D equations do not represent a practical alternative to the exact solution of the LS equation for potential scattering..."

Now this statement is superseded

Furthermore: This method is superior for singular potentials.

Conclusions

Conclusions

- \bullet A new non-singular IE allows to calculate the exact $\Delta(A)$ in potential scattering for a given potential
- One can calculate the scattering amplitude for regular/singular potentials from its analytical/unitarity properties.
- Any proper solution for singular potentials can be found with this method
- We reproduce the LS outcome with/without one counterterm
- One can go go beyond LS+one counterterm for an attractive singular potential.

- It can be straightforwardly used in the whole complex plane (bound states, resonances, virtual states)
- Including as well higher order chiral NN potentials.