S-matrix solution of the Lippmann-Schwinger equation for regular and singular potentials

J. A. Oller
Departamento de Física Universidad de Murcia ${ }^{1}$
in collaboration with D. R. Entem
- [I] arXiv:1609.XXX
- [II] Long version, in preparation
HC2NP, Tenerife, September 30, 2016

[^0]
Overview

(1) Lippmann-Schwinger equation
(2) New exact equation in NR scattering theory
(3) LS equation in the complex plane
(4) N / D method with non-perturbative $\Delta(A)$
(5) Regular interactions
(6) Singular Interactions
(7) $T(A)$ in the complex plane
(8) Conclusions

Lippmann-Schwinger equation (LS)

Potential two-body scattering. Given a potential V
Scattering T-matrix $T(z), \operatorname{Im}(z) \neq 0$

$$
\begin{aligned}
T(z) & =V-V R_{0}(z) T(z) \\
R_{0}(z) & =\left[H_{0}-z\right]^{-1} \\
H_{0} & =-\frac{1}{2 \mu} \nabla^{2} \\
H & =H_{0}+V
\end{aligned}
$$

- LS in partial waves

$$
T_{\ell}\left(p^{\prime}, p, z\right)=V_{\ell}\left(p^{\prime}, p\right)+\frac{\mu}{\pi^{2}} \int_{0}^{\infty} d q q^{2} \frac{V_{\ell}\left(p^{\prime}, q\right) T_{\ell}(q, p, z)}{q^{2}-2 \mu z}
$$

Criterion for Singular Potentials

$$
\begin{gathered}
V(r) \xrightarrow[r \rightarrow 0]{ } \alpha r^{-\gamma} \\
\bar{\alpha}=\alpha+\ell(\ell+1)
\end{gathered}
$$

Potential	Ordinary	Singular
γ	<2	>2
$\gamma=2$	$\bar{\alpha}>0$	$\bar{\alpha} \leq 0$

Ordinary/Regular Potentials:

Standard quantum mechanical treatment Boundary condition: $u(0)=0$
No extra free parameters

The One-Pion-Exchange (OPE) potential for the singlet $N N$ interaction $(r>0)$:

Yukawa potential

$$
V(r)=-\tau_{1} \cdot \tau_{2}\left(\frac{g_{A} m_{\pi}}{2 f_{\pi}}\right)^{2} \frac{e^{-m_{\pi} r}}{4 \pi r}
$$

Exchange of a pion between two nucleons

In many instances one has singular potentials

- Molecular physics: Van der Waals Force

$$
V(r)=-\frac{3 \alpha_{A} \alpha_{B} I_{A} I_{B} / 2\left(I_{A}+I_{B}\right)}{\mathbf{r}^{6}}+\sum_{n=4} \frac{\lambda_{n}}{r^{2 n}}
$$

Nuclear physics

Triplet component of one-Pion Exchange (OPE)

$$
T(r)=\frac{e^{-m_{\pi} r}}{r}\left[1+\frac{3}{m_{\pi} r}+\frac{3}{\left(m_{\pi} r\right)^{2}}\right] \underset{r \rightarrow 0}{\longrightarrow} r^{-3}
$$

Higher orders in CHPT add extra powers of $1 / r^{n}$
Particle physics:
Scattering of heavy-quarkonium states, color dipoles, QCD analog to Van der Waals forces pNRQCD, pNRQED NR Quark Models, etc

- Full range $r \in] 0, \infty[:$ Case, PR60,797(1950)
$-u^{\prime \prime}(r)+\left(2 \mu V(r)+\frac{\ell(\ell+1)}{r^{2}}-k^{2}\right) u(r)=0$

- Singular Attractive Potential

Two linearly independent wave functions
One has to fix a relative phase, $\varphi(p)$ How to do it?.

Which are the appropriate boundary conditions?
Historical Mess
Theoretical control within LS only for $\varphi(p)=$ const. Case, PR60,797('50); Arriola, Pavón, PRC72,054002('05)

The attractive singular potential does not determine uniquely the scattering problem Plesset, PR41,278(1932), Case, PR60,797(1950)

- Singular Repulsive Potential

There is only one finite (vanishing) reduced wave function at $r=0$

The solution is fixed

Pavón Valderrama, Ruiz Arriola, Ann.Phys.323,1037(2008)

New exact equation in NR scattering theory

Yukawa potential,

$$
V(\mathbf{q})=\frac{2 g}{\mathbf{q}^{2}+m_{\pi}^{2}}
$$

Singularity for $\mathbf{q}^{2}=-m_{\pi}^{2}$
${ }^{1} S_{0}$ potential: $\left({ }^{2 S+1} L_{J}\right) \quad g=\left(g_{A} m_{\pi} / \sqrt{8} f_{\pi}\right)^{2}$

$$
\begin{aligned}
V(p) & =\frac{g}{2 p^{2}} \log \left(4 p^{2} / m_{\pi}^{2}+1\right) \\
\Delta_{1 \pi}\left(p^{2}\right) & =\frac{V\left(p^{2}+i 0^{+}\right)-V\left(p^{2}-i 0^{+}\right)}{2 i}=\operatorname{Im} V\left(p^{2}+i 0^{+}\right)=\frac{g \pi}{2 p^{2}}
\end{aligned}
$$

Left-hand cut (LHC) discontinuity for On-shell scattering

$$
p^{2}<-m_{\pi}^{2} / 4=L
$$

Full LHC Discontinuity, $p^{2}=-k^{2}<L$

$$
\begin{aligned}
2 i \Delta\left(p^{2}\right) & =T\left(p^{2}+i 0^{+}\right)-T\left(p^{2}-i 0^{+}\right) \\
\Delta\left(p^{2}\right) & =\operatorname{Im} T\left(p^{2}+i 0^{+}\right)
\end{aligned}
$$

Notation: $A=p^{2}$; How to calculate $\Delta(A)$?:

G.E. Brown, A.D. Jackson "The Nucleon-Nucleon interaction", North-Holland, 1976. Page 86: "In practice, of course, we do not know the exact form of $\Delta\left(p^{2}\right)$ for a given potential ..."

$$
\begin{aligned}
p & =i k \pm \varepsilon, \varepsilon=0^{+}, p^{2}=-k^{2}<L \\
T(i k \pm \varepsilon, i k \pm \varepsilon) & =V(i k \pm \varepsilon, i k \pm \varepsilon) \\
& +\frac{\mu}{2 \pi^{2}} \int_{0}^{\infty} d q q^{2} \frac{V(i k \pm \varepsilon, q) T(q, i k \pm \varepsilon)}{q^{2}+k^{2}}
\end{aligned}
$$

The last integral, so calculated, IS PURELY REAL!!

You can try to calculate numerically just the once iterated OPE

$$
\frac{\mu}{2 \pi^{2}} \int_{0}^{\infty} d q q^{2} \frac{V(i k \pm \varepsilon, q) V(q, i k \pm \varepsilon)}{q^{2}+k^{2}} \in \mathbb{R}
$$

- GENERAL method:

Analytic extrapolation of the LS from its integral expression

$$
\begin{aligned}
\Delta(A) & =\frac{1}{2} \mathfrak{f}(-k), A=-k^{2} \\
\mathfrak{f}(\nu) & =\Delta v(\nu, k)+\frac{\theta\left(k-2 m_{\pi}-\nu\right) m}{2 \pi^{2}} \int_{m_{\pi}+\nu}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \Delta v\left(\nu, \nu_{1}\right) \mathfrak{f}\left(\nu_{1}\right)
\end{aligned}
$$

$$
\mathrm{IE}:-k+m_{\pi}<\nu<k-m_{\pi}
$$

- The limits in the IE ARE FINITE
- The denominator never vanishes, $\left|\nu_{1}\right| \leq k-m_{\pi}$ in the IE
- NO FREE PARAMETERS

Reason: Contact interactions (monomials) do not contribute to the discontinuity of $T(A)$
Short-distance physics is not resolved \rightarrow Contact interactions

$$
\begin{aligned}
\Delta(A) & =\frac{\mathfrak{f}(-k)}{2}, k=\sqrt{-A} \\
\mathfrak{f}(\nu) & =\Delta v(\nu, k)+\frac{\theta\left(k-2 m_{\pi}-\nu\right) m}{2 \pi^{2}} \int_{m_{\pi}+\nu}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \Delta v\left(\nu, \nu_{1}\right) \mathfrak{f}\left(\nu_{1}\right)
\end{aligned}
$$

$$
\mathrm{IE}:-k+m_{\pi}<\nu<k-m_{\pi}
$$

It can be applied to:

- Any local potential (spectral decomposition:)

$$
V\left(\mathbf{p}^{\prime}, \mathbf{p}\right)=\frac{1}{\pi} \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \frac{\eta\left(\mu^{2}\right)}{\mathbf{q}^{2}+\mu^{2}}, \mathbf{q}=\mathbf{p}^{\prime}-\mathbf{p}
$$

- Higher partial waves, $\ell \geq 0$
- Coupled Channels
- Nonlocal potentials due to relativistic corrections $\rightarrow \eta\left(\mu^{2}\right)$

LS equation in the complex plane

Analytical properties of the potential

- Local potential, spectral decomposition:

$$
V\left(\mathbf{q}^{2}\right)=\frac{1}{\pi} \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \frac{\eta\left(\mu^{2}\right)}{\mathbf{q}^{2}+\mu^{2}}, \mathbf{q}=\mathbf{p}_{2}-\mathbf{p}_{1}
$$

- S-wave projection:

$$
\begin{aligned}
v\left(p_{1}, p_{2}\right) & =\frac{1}{2 \pi} \int_{-1}^{+1} d t \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \frac{\eta\left(\mu^{2}\right)}{p_{1}^{2}+p_{2}^{2}-2 p_{1} p_{2} t+\mu^{2}} \\
= & \frac{1}{4 \pi p_{1} p_{2}} \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \eta\left(\mu^{2}\right) \\
\times & \left\{\log \left[\mu^{2}+\left(p_{1}+p_{2}\right)^{2}\right]-\log \left[\mu^{2}+\left(p_{1}-p_{2}\right)^{2}\right]\right\}
\end{aligned}
$$

Vertical cuts:

$$
p_{2}= \pm\left(p_{1} \pm i \sqrt{m_{\pi}^{2}+x^{2}}\right) x \in \mathbb{R}
$$

Analogously for p_{1}

$p_{1}=m_{\pi}$. Branch points at $\pm\left(p_{1} \pm i m_{\pi}\right)$

Deforming the integration contour in the LS equation

$k, k^{\prime} \in \mathbb{R}$ in the half-off-shell T-matrix $t\left(k, k^{\prime} ; k^{\prime 2} / m\right)$,

$$
t\left(k, k^{\prime} ; \frac{k^{\prime 2}}{m}\right)=v\left(k, k^{\prime}\right)+\frac{m}{2 \pi^{2}} \int_{0}^{\infty} \frac{d p_{1} p_{1}^{2}}{p_{1}^{2}-{k^{\prime 2}}^{\prime 2}} v\left(k, p_{1}\right) t\left(p_{1}, k^{\prime} ; \frac{k^{\prime 2}}{m}\right)
$$

$v\left(k, p_{1}\right)$ implies the vertical cuts

$$
p_{1}= \pm\left(k \pm i \sqrt{m_{\pi}^{2}+x^{2}}\right) x \in \mathbb{R}
$$

We add an increasing positive imaginary part to k

$$
\begin{aligned}
k & =k_{r}+i k_{i}, k_{i}>0 \\
p_{1} & = \pm\left(k_{r}+i k_{i} \pm i \sqrt{m_{\pi}^{2}+x^{2}}\right) x \in \mathbb{R}
\end{aligned}
$$

p_{1}

We add an increasing positive imaginary part to k

$$
k=k_{r}+i k_{i}, k_{i}>m_{\pi}
$$

$$
\begin{aligned}
& k_{r}>0, \quad k_{i}>m_{\pi} \\
& k_{r}<0, \quad k_{i}<-m_{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& k_{r}>0, k_{i}<-m_{\pi} \\
& k_{r}<0, k_{i}>m_{\pi}
\end{aligned}
$$

- $t\left(p_{1}, k^{\prime} ; k^{\prime 2} / m\right)$ follows the same pattern in terms of k^{\prime}.

Calculation of $\Delta\left(-k^{2}\right)$: Discontinuity across the LHC

On-shell scattering $t\left(k, k ; k^{2} / m\right)$ LHC:

$$
\begin{aligned}
p & =-p \pm i \sqrt{m_{\pi}^{2}+x^{2}} \longrightarrow p= \pm \frac{i}{2} \sqrt{m_{\pi}^{2}+x^{2}} \\
p^{2} & \left.\left.=-\frac{1}{4}\left(m_{\pi}^{2}+x^{2}\right) \longrightarrow p^{2} \in\right]-\infty, L\right], L=-m_{\pi}^{2} / 4
\end{aligned}
$$

$$
\begin{aligned}
2 i \Delta\left(-k^{2}\right) & =t(i k+i \varepsilon, i k+i \varepsilon)-t(i k-i \varepsilon, i k+i \varepsilon) \\
& =(-1)^{\ell}\left\{t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)-t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right)\right\} \\
& \varepsilon^{-}<\varepsilon<\varepsilon^{+}
\end{aligned}
$$

$$
t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)
$$

$$
t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right)
$$

$$
\begin{aligned}
& \operatorname{Im} t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right) \\
& =\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
+ & \theta\left(k-\nu-2 m_{\pi}\right) \frac{m}{2 \pi^{2}} \int_{-k+m_{\pi}}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \\
\times & {\left[\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i \nu_{1}+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i \nu_{1}+\varepsilon\right)\right] } \\
\times & {\left[\operatorname{Im} t\left(i \nu_{1}+\varepsilon-\delta, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu_{1}+\varepsilon+\delta, i k+\varepsilon\right)\right] . }
\end{aligned}
$$

- One needs to know

$$
\begin{aligned}
& \operatorname{Im} t\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
& -k+m_{\pi}<\nu<k-m_{\pi}
\end{aligned}
$$

Proceeding in the same way

Integral Equation $-k+m_{\pi}<\nu<k-m_{\pi}$:

$$
\begin{aligned}
\mathfrak{f}(\nu) & \equiv \operatorname{Im} t\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
& =\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
& +\theta\left(k-\nu-2 m_{\pi}\right) \frac{m}{2 \pi^{2}} \int_{\nu+m_{\pi}}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \\
& \times\left[\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i \nu_{1}+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i \nu_{1}+\varepsilon\right)\right] \\
& \times\left[\operatorname{Im} t\left(i \nu_{1}+\varepsilon-\delta, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu_{1}+\varepsilon+\delta, i k+\varepsilon\right)\right]
\end{aligned}
$$

$$
\Delta(A)=(-1)^{\ell} \frac{\mathfrak{f}(-k)}{2}
$$

log-log plot for ${ }^{1} S_{0}$ (Yukawa Pot.) $\Delta(A) ; g_{A}=6.80$

- $|L|=m_{\pi}^{2} / 4 ; \Delta_{1 \pi}, \Delta_{2 \pi}, \Delta_{3 \pi}, \Delta_{4 \pi}$, Asymptotic sol. (dots) $|A| \gg m_{\pi}^{2}$
- Full solution $\Delta(A)$

Yukawa potential

- Asymptotic solution for $k \gg m_{\pi}$

$$
\begin{aligned}
& \frac{\mathfrak{f}^{\prime}(\nu)}{\mathfrak{f}(\nu)}=-\lambda \frac{\theta\left(k-2 m_{\pi}-\nu\right)}{k^{2}-\left(m_{\pi}+\nu\right)^{2}} \\
& \Delta(A)=\frac{\lambda \pi^{2}}{M_{N} A} e^{\frac{2 \lambda}{\sqrt{-A}} \operatorname{arctanh}\left(1-\frac{m_{\pi}}{\sqrt{-A}}\right)} \\
& \lambda=\frac{g M_{N}}{2 \pi}
\end{aligned}
$$

${ }^{3} P_{0}$: singular attractive potential; $m^{3} P_{0}$ singular repulsive potential $(g \rightarrow-g)$

$k \rightarrow+\infty$:
${ }^{3} P_{0}$:"Exponential" growth
$\mathrm{m}^{3} P_{0}$: Oscillatory
"Exponential" growth
${ }^{1} S_{0}$:Vanishes

Qualitative difference

- Ordinary Potential $\Delta(A)$ vanishes for $A \rightarrow-\infty$
- For the attractive singular potentials $|\Delta(A)|$ grows faster than any power
- The full non-perturbative solution for a singular and ordinary potentials are qualitatively different

With singular potentials short- and long-range physics are interrelated

Nonperturbative Solutions: Any number of counterterms are not effective

N / D method with non-perturbative $\Delta(A)$

Once we now the exact $\Delta(A)$ for a given potential we can use S-matrix theory to solve the LS: N / D method with the full $\Delta(A)$

$$
T_{J \ell S}(A)=\frac{N_{J \ell S}(A)}{D_{J \ell S}(A)}
$$

$$
N_{J \ell S}(A) \text { has Only LHC }
$$

$$
D_{J \ell S}(A) \text { has Only RHC }
$$

$$
\begin{aligned}
& \operatorname{Im} D_{\ell}(A)=-N_{\ell}(A) \rho(A), A>0(\mathbf{R H C}-\text { Unitarity }) \\
& \operatorname{Im} N_{\ell}(A)=D_{\ell}(A) \Delta(A), A<L(\mathbf{L H C})
\end{aligned}
$$

$\left(m_{1}, m_{2}\right) N / D$ equations for $D(A)$ and $N(A)$

$$
\begin{gathered}
N / D_{m_{1} m_{2}} \\
N(A)=\sum_{i=1}^{m_{1}} \nu_{i}(A-C)^{m_{1}-i}+\frac{(A-C)^{m_{1}}}{\pi} \int_{-\infty}^{L} d k^{2} \frac{\Delta\left(k^{2}\right) D\left(k^{2}\right)}{\left(k^{2}-A\right)\left(k^{2}-C\right)^{m_{1}}} \\
D(A)=\sum_{i=1}^{m_{2}} \delta_{i}(A-C)^{m_{2}-i}-\frac{(A-C)^{m_{2}}}{\pi} \int_{0}^{\infty} d q^{2} \frac{\rho\left(q^{2}\right) N\left(q^{2}\right)}{\left(q^{2}-A\right)\left(q^{2}-C\right)^{m_{2}}}
\end{gathered}
$$

- $N(A)$ is substituted in $D(A)$
- Linear IE for $D(A)$ arises
- $D(0)=1$. To fix a floating constant in the ratio $T(A)=N(A) / D(A)$

Regular interactions

- N / D_{01} : Regular solution for an ordinary potential

Scattering is completely fixed by the potential

$$
D(A)=1-\frac{i \mu \sqrt{A}}{2 \pi^{2}} \int_{-\infty}^{L} d \omega_{L} \frac{\Delta\left(\omega_{L}\right) D\left(\omega_{L}\right)}{\sqrt{\omega_{L}}\left(\sqrt{\omega_{L}}+\sqrt{A}\right)}
$$

- N / D_{11} : Additional subtraction in $N(A)$ is fixed in terms of scattering length

$$
D(A)=1+i a \sqrt{A}+i \frac{M_{N}}{4 \pi^{2}} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}} \frac{A}{\sqrt{A}+\sqrt{\omega_{L}}}
$$

Effective Range Expansion (ERE)

$$
k \cot \delta(k)=-\frac{1}{a}+\frac{1}{2} r k^{2}+\sum_{i=2} v_{i} k^{2 i}
$$

- N / D_{12} : Additional subtraction in $D(A), r$ is fixed

$$
\begin{aligned}
D(A) & =1+i a \sqrt{A}-\frac{a r}{2} A-i \frac{M_{N} A}{4 \pi^{2}} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}} \\
& \times\left[\frac{\sqrt{A}}{\left(\sqrt{\omega_{L}}+\sqrt{A}\right) \sqrt{\omega_{L}}}-\frac{i}{a \omega_{L}}\right]
\end{aligned}
$$

- $N / D_{22}: v_{2}$ is fixed additionally

$$
\begin{aligned}
D(A)= & \left(1-\frac{2 v_{2}}{r} A\right)(1+i a \sqrt{A})-\frac{a r}{2} A \\
& +i \frac{M_{N}}{4 \pi^{2}} A \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}^{2}} \\
\times & {\left[\frac{A}{\sqrt{A}+\sqrt{\omega_{L}}}+i \frac{2}{r a^{2} \omega_{L}}\left(1+i a \sqrt{\omega_{L}}\right)(1+i a \sqrt{A})\right] }
\end{aligned}
$$

The results are just dependent on $\Delta(A)$ (input potential) and experimental ERE parameters

Example: Regular case. ${ }^{1} S_{0}$ Yukawa potential

$N / D_{01} ; \mathbf{L S}$ (black dots)

Attractive singular interaction: ${ }^{3} P_{0}$
 $\mathbf{N} / \mathbf{D}_{12} T(A)=0\left(N / D_{11}\right.$ does not converge $)$
 At least one parameter is needed The scattering volume is fixed

We compare with
LS renormalized with one contact term C_{1} :
$V\left(p_{1}, p_{2}\right) \rightarrow V\left(p_{1}, p_{2}\right)+C_{1} p_{1} p_{2}$
N / D_{12};
LS (black dots);
Phase shifts: Granada analysis

Repulsive singular interaction: Minus- ${ }^{3} P_{0}(g \rightarrow-g)$

$\mathbf{N} / \mathbf{D}_{01}$ No free parameters

Repulsive Singular Potential: LS is insensitive to all C_{i}

N / D_{12};
LS (black dots);

Attractive singular interaction:

One can go beyond the case of just one counterterm

Example: NN ${ }^{1} S_{0}$ partial wave
LS renormalized with contact terms:

$$
V\left(p_{1}, p_{2}\right) \rightarrow V\left(p_{1}, p_{2}\right)+C_{0}+C_{1}\left(p_{1}^{2}+p_{2}^{2}\right)+\ldots
$$

LS is insensitive or not convergent when including $C_{i}, i>0$ Entem, Arriola, Pavon, Machleidt PRC77,044006('08)

NLO and NNLO ChPT $N N$ potentials

Full spectral decomposition of the potential

- Not all the N / D types of IE's converge for sing. pot. (they do for ord. pot.)
- $N / D_{11}(a)$ and $N / D_{22}\left(a, r, v_{2}\right)$ are convergent
- N / D_{01} (at least one parameter is needed) and N / D_{12} are not convergent

NLO

NNLO

$N / D_{11}, N / D_{22}$
Subtractive-renormalized LS: points One counterterm It cannot reproduce r Yang,Elster,Phillips, PRC80,044002('09) $a=-23.75, r=2.655 \mathrm{fm}, v_{2}=-0.6265 \mathrm{fm}^{3}$

$T(A)$ in the complex plane

- As a bonus the non-perturbative- $\Delta N / D$ method allows to calculate $T(A)$ for $A \in \mathbb{C}$ in the 1 st $/ 2$ nd Riemann sheet

This is not trivial with LS
Look for and study resonances, virtual states and bound states
For bound states one does not need to solve the full-off-shell LS equation or Schrödinger equation

Bound State $p=i k, A=-k^{2}$
Binding energy of near threshold bound state, $g_{A}=7.45$
One does not need to solve Schrödinger equation

$$
\text { Poles of } T(A) \leftrightarrow \text { zeros of } D(A)
$$

- As a bonus the non-perturbative- $\Delta N / D$ method allows to calculate $T(A)$ for $A \in \mathbb{C}$ in the 1st/2nd Riemann sheet

This is not trivial with LS

Binding energy of near threshold bound state, $g_{A}=7.45$
One does not need to solve Schrödinger equation
Poles of $T(A) \leftrightarrow$ zeros of $D(A)$

$A=(i k)^{2}$	$\mathrm{~N} / \mathrm{D}_{01}$	$\mathrm{~N} / \mathrm{D}_{11}$	Schrödinger
$\Delta_{1 \pi}$		2.02	
$\Delta_{2 \pi}$		2.18	
$\Delta_{3 \pi}$		2.21	
$\Delta_{4 \pi}$	0.89	2.22	
Non-perturbative	2.22	2.22	2.22

- Anti-bound (virtual) state for ${ }^{1} S_{0}$

$$
\begin{aligned}
T_{I I}^{-1}(A) & =T_{I}^{-1}(A)+2 i \rho(A) \\
& =\frac{D_{I}+N_{I} 2 i \rho(A)}{N_{I}}, \operatorname{Im} \sqrt{A} \geq 0
\end{aligned}
$$

Look for zero of $D_{I I}(A) \cdot E=A / M_{N}=$
N / D_{11} :
-0.070 (LO) , -0.067 (NLO,NNLO) MeV
For the other $N / D_{m_{1} m_{2}}:-0.066 \mathrm{MeV}$ always
G.E. Brown, A.D. Jackson "The Nucleon-Nucleon interaction", North-Holland, 1976. Page 86: "In practice, of course, we do not know the exact form of $\Delta\left(p^{2}\right)$ for a given potential and the N / D equations do not represent a practical alternative to the exact solution of the $L S$ equation for potential scattering. . ."

Now this statement is superseded

Furthermore: This method is superior for singular potentials.

Conclusions

- A new non-singular IE allows to calculate the exact $\Delta(A)$ in potential scattering for a given potential
- One can calculate the scattering amplitude for regular/singular potentials from its analytical/unitarity properties.
- Any proper solution for singular potentials can be found with this method
- We reproduce the LS outcome with/without one counterterm
- One can go go beyond LS+one counterterm for an attractive singular potential.
- It can be straightforwardly used in the whole complex plane (bound states, resonances, virtual states)
- Including as well higher order chiral $N N$ potentials.

[^0]: $1_{\text {Partially funded by MINECO (Spain) and EU, project FPA2013-40483-P }}$

