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Introduction

We have a ‘composite Higgs’ scenario in mind...

Motivation:
- Do we ‘need’ “anomalous” fermionic operators?
- What is the size of the EW radiative corrections to the CKM elements?
- In which renormalization scheme are the CKM given?
- Does it matter?
- What’s the size of possible NP contributions (effective lagrangian)?
- Possible new manifestations of CP-violation and CKM non-unitarity.

I will review a consistent EW on-shell scheme for flavour changing
transitions in presence of gauge-dependent branch cuts
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Introduction

2002: sin 2β = 0.82± 0.13 (Belle)
2014: sin 2β = 0.691± 0.017 (WA)
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A resonance at 2 TeV?
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Excess events at 2 TeV?
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Excess events at 2 TeV?

p-values for ATLAS WZ events
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Excess events at 2 TeV??

However...no significant signal in early 13 TeV results
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Parametrizing composite Higgs physics

A light “Higgs boson” with mass MH ∼ 125 GeV is coupled to the EW
bosons according to (non-linear realization)

Leff ⊃ −
1

2
TrWµ νW

µ ν −
1

4
TrBµ νB

µ ν + LGF + LFP +
∑

i

Li

+

[
1 + 2a

(
h

v

)
+ b

(
h

v

)2
]
v2

4
TrDµU

†DµU−V (h)

U = exp(i ω · τ/v)

DµU = ∂µU +
1

2
igW i

µτ
iU −

1

2
ig ′B i

µUτ
3

and additional gauge-invariant operators are encoded in Li.
Setting a = b = 1 (and Li=0) reproduces the SM interactions
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O(p4) operators

The Li are a full set of C , P , and SU(2)L × U(1)Y gauge invariant,
d = 4 operators that parameterize the low-energy effects of the
model-dependent high-energy EWSB sector along with a,b.
The two relevant custodial-symmetry preserving operators are

L4 = a4 (Tr [VµVν ])
2 L5 = a5 (Tr [VµV

µ])2 Vµ = (DµU)U†

The ai could be functions of h
v

For example: Heavy Higgs QCD-like technicolor

a4 = 0 −2a5
a5 = v2

8M2
H

NTC

96π2

(up to logarithmic corrections)

W+

µ

W−
ν

Zρ

Zσ

ig 4 [a4 (g
µσgν ρ + gµρgν σ) + 2a5g

µ νgρσ]
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Unitarization: Inverse Amplitude Method

Partial wave unitarity requires

Im tI J(s) = σ(s)|tI J(s)|
2 + σH(s)|tH,I J(s)|

2

Elastic Inelastic

WW → WW WW → hh

where σ and σH are phase space factors.

Given a perturbative expansion

tI J ≈ t
(2)
I J + t

(4)
I J + · · ·

tree one-loop

+ ai terms

we can require unitarity to hold exactly if (Note: non-coupled channels)

tI J ≈
t
(2)
I J

1− t
(4)
I J /t

(2)
I J

Several mild analyticity assumptions are implied.
Is this unitarization method unique?
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Unitarization: Inverse Amplitude Method

Partial wave unitarity requires

Im tI J(s) = σ(s)|tI J(s)|
2 + σH(s)|tH,I J(s)|

2

Elastic Inelastic

WW → WW WW → hh

where σ and σH are phase space factors.

Given a perturbative expansion

tI J ≈ t
(2)
I J + t

(4)
I J + · · ·

tree one-loop

+ ai terms

we can require unitarity to hold exactly if (Note: non-coupled channels)

tI J ≈
t
(2)
I J

1− t
(4)
I J /t

(2)
I J

Several mild analyticity assumptions are implied.
No, it is not. Many methods exist: IAM, K-matrix approach, N/D
expansions, Roy equations,... qualitatively they all agree.
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Unitarization: Inverse Amplitude Method

Partial wave unitarity requires

Im tI J(s) = σ(s)|tI J(s)|
2 + σH(s)|tH,I J(s)|

2

Elastic Inelastic

WW → WW WW → hh

where σ and σH are phase space factors.

Given a perturbative expansion

tI J ≈ t
(2)
I J + t

(4)
I J + · · ·

tree one-loop

+ ai terms

we can require unitarity to hold exactly if (Note: non-coupled channels)

tI J ≈
t
(2)
I J

1− t
(4)
I J /t

(2)
I J

Several mild analyticity assumptions are implied.
For a detailed comparative analysis see e.g. Delgado, Dobado and Llanes
(2015)
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New resonances

The unitarization of the amplitudes may result in the appearance of new
heavy resonances associated with the high-energy theory

t00 → Scalar isoscalar

t11 → Vector isovector

t20 → Scalar isotensor

Will search for poles in tI J(s) up to (4πv) ∼ 3 TeV (domain of
applicability)

True resonances will have the phase shift pass through +π/2

δIJ = tan−1

(
Im tIJ
Re tIJ

)

This method is known to work remarkably well in strong interactions: ππ
scattering ⇒ σ and ρ meson masses and widths
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Are these resonances detectable?
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⇑ ⇑ ⇑ ⇑
Signal of IAM scalar/vector vs. SM Higgs of same mass
The large contribution that the SM Higgs represents leaves little room for
additional resonances.
Note: only in WW → WW or WW → ZZ channels!

D.E., Mescia, Yencho (2012)
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Masses and cross-sections

Vector Resonance Mass (GeV)
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a 4

0.020

0.302
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0.866

1.147

1.429

1.711

1.993

2.275

2.557

2.838

MV ∼ 550− 2300 GeV, ΓV ∼ 2− 24 GeV (narrow resonances)

There are constraints on vector masses from S ,T ,U parameter
constraints in some models. e.g. Pich, Rosell and Sanz-Cillero (2014).

A resonance in the 2 TeV region requires a4, a5 in the 10−3 − 10−4 range.
Natural from an EFT point of view?

Cross-sections off by a factor 10−2
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DY: anomalous q̄LqL coupling

Drell-Yan + rescattering

Production of a pair of Goldstone bosons by q̄q′ annihilation through a
W -meson and anomalous BSM vertex enhancing it

Gauge invariant operator: δ1ψ̄LU 6DU†ψL

(one of several d = 4 Longhitano’s operators)

Changes the relation between GF and the TGB vertex

Dobado, D.E., Llanes-Estrada (2015)
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Effect of an anomalous q̄LqL coupling

1 1.5 2 2.5 3
E (TeV)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

dσ
/d

s 
(p

ba
rn

 T
eV

-2
)

δ
1
 = 0

δ
1
 = 0.05

δ
1
 = 0.1

CMS bound

FV : Form factor (Watson’s theorem)

a = 0.90, a4 = 7× 10−4, a5 = 0 (computed via ET).

Difficult to set precise bounds on δ1 but at least δ1 < 0.01.
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d = 4 EFT operators

Longhitano (1980) —extended to the flavour sector:

L1
L = i f̄M1

Lγ
µU (DµU)† Lf + h.c .,

L2
L = i f̄M2

Lγ
µ (DµU) τ3U†Lf + h.c .,

L3
L = i f̄M3

Lγ
µUτ3U† (DµU) τ3U†Lf + h.c .,

L4
L = i f̄M4

Lγ
µUτ3U†DL

µLf + h.c .,

L1
R = i f̄M1

Rγ
µU† (DµU)Rf + h.c .,

L2
R = i f̄M2

Rγ
µτ3U† (DµU)Rf + h.c .,

L3
R = i f̄M3

Rγ
µτ3U† (DµU) τ3Rf + h.c ..

M1
L , M

1
R , M

3
L and M3

R hermitian
M2

L , M
2
R and M4

L are completely general.
If we require the above operators to be CP conserving, the matrices M i

L,R

must be real.
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The ‘SM’ after integrating out heavy d.o.f.

LL
kin = i f̄XLγ

µDL
µLf,

LR
kin = i f̄

(
τuXRu + τdXRd

)
γµDR

µRf,

Lm = −f̄
(
U
(
τu ỹ f

u + τd ỹ f
d

)
R +

(
τu ỹ f †

u + τd ỹ f †
d

)
U†L

)
f.

XL, XRu and XRd are non-singular Hermitian matrices with family indices

ỹ f
u and ỹ f

d are arbitrary matrices and have only family indices too.

In the Standard Model, the XL,R can always be reabsorbed so one does
not even contemplate the possibility that left and right ‘kinetic’ terms are
differently normalized, but this is perfectly possible in an EFT.

In addition we have the Longhitano operators:

LL = f̄γµMLO
µ
L Lf + h.c .,

LR = f̄γµMRO
µ
RRf + h.c .,
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Longhitano’s operators

How do all these possible d = 4 terms in an EFT contribute to
observables such as effective couplings and so on?

My prejudice: forget about large effects.

They have to be treated on the same footing as radiative corrections
(effects at the 1% to 0.1% level)
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Some notation...

WFR:
Ψ0 = Z

1
2Ψ , Ψ̄0 = Ψ̄Z̄

1
2 .

For reasons that will become clear along the discussion, we shall allow Z
and Z̄ to be independent renormalisation constants (hermiticity?)
These renormalisation constants contain flavour, family and Dirac
indices. We can decompose them into

Z
1
2 = Z u 1

2 τu + Z d 1
2 τd , Z̄

1
2 = Z̄ u 1

2 τu + Z̄ d 1
2 τd , (1)

with τu and τd the up and down flavour projectors and furthermore each
piece in left and right chiral projectors, L and R respectively,

Z u 1
2 = Z uL 1

2 L+ Z uR 1
2R , Z̄ u 1

2 = Z̄ uL 1
2R + Z̄ uR 1

2 L . (2)

Analogous decompositions hold for Z d 1
2 and Z̄ d 1

2 .
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Example: top decay

Tree level:
fi (p1) → W+ (q) fj (p2)

There are two different Lorentz structures (at the one loop level)

M
(1)
L = ūj (p2) 6 ε

∗ (q) Lui (p1) , (L ↔ R) ,

M
(2)
L = ūj (p2) Lui (p1) p1 · ε

∗ (q) , (L ↔ R) .

At tree level only M
(1)
L appears.

The transition amplitude at tree level is

M0 = −
eKij

2sW
M

(1)
L ,
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t-decay: one loop

M1 = −
e

2sW
M

(1)
L [Kij(1 +

δe

e
−
δsW
sW

+
1

2
δZW ) + δKij

+
1

2

∑

r

(
δZ̄ Lu

ir Krj + KirδZ
Ld
rj

)
]

−
e

2sW

(
δF

(1)
L M

(1)
L +M

(2)
L δF

(2)
L +M

(1)
R δF

(1)
R +M

(2)
R δF

(2)
R

)

δF
(1,2)
L,R : electroweak form factors coming from one-loop vertex diagrams.

δe

e
= −

1

2

[(
δZA

2 − δZA
1

)
+ δZA

2

]
= −

sW
cWM2

Z

ΠZA (0) +
1

2

∂ΠAA

∂k2
(0) ,

δsW
sW

= −
c2W
2s2W

(
δM2

W

M2
W

−
δM2

Z

M2
Z

)
= −

c2W
2s2W

Re

(
ΠWW

(
M2

W

)

M2
W

−
ΠZZ

(
M2

Z

)

M2
Z

)
,

δZW = −
∂ΠWW

∂k2

(
M2

W

)
,
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CKM renormalization versus WFR

Weak basis (
u0
d0

)
= ZL

(
u
d

)

Mass diagonal basis (
ũ0
d̃0

)
=

(
Z

1
2
u u

Z
1
2

d d

)

ũ = V †
u u, ũ0 = (V 0

u )
†u0, d̃ = V †

d d , d̃0 = (V 0
d )

†d0.

Z
1
2

L = V 0
u Z

1
2
u V

†
u , Z

1
2

L = V 0
d Z

1
2

d V
†
d

Z
1
2
u K = K 0Z

1
2

d ⇒ δK =
1

2
δZuK −

1

2
KδZd

Ward identity (unitarity of K and K 0): (Z †
u )

1
2Z

1
2
u K = K (Z †

d )
1
2Z

1
2

d ⇒

δKjk =
1

4

[(
δẐ uL − δẐ uL†

)
K − K

(
δẐ dL − δẐ dL†

)]
jk

Ẑ means that the wfr. constants here are not necessarily the same ones
used for the LSZ factors.
For instance, can use MS Z ’s for the δZ .Domènec Espriu CKM renormalization and new physics



What about WFR?

Due to radiative corrections the propagator mixes fermion of different
family indices

iS−1 (p) = Z̄
1
2

(
6 p −m − δm − Σ (p)

)
Z

1
2 ,

Introducing the family indices explicitly we have

iS−1
ij (p) = ( 6 p −mi ) δij − Σ̂ij (p) .

The one-loop renormalised self-energy is given by

Σ̂ij (p) = Σij (p)−
1

2
δZ̄ij (6 p −mj)−

1

2
(6 p −mi ) δZij + δmiδij .

Σ̂ij (p) = 6 p
(
Σ̂γR

ij

(
p2
)
R + Σ̂γL

ij

(
p2
)
L
)
+ Σ̂R

ij

(
p2
)
R + Σ̂L

ij

(
p2
)
L

Note that we acount for Z and Z̄ separately.
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On-shell conditions

Off-diagonal conditions:

The conditions will be

Σ̂ij (p) u
(s)
j (p) = 0 , (p2 → m2

j ) , (incoming particle)

v̄
(s)
i (−p) Σ̂ij (p) = 0 , (p2 → m2

i ) , (incoming anti−particle)

ū
(s)
i (p) Σ̂ij (p) = 0 , (p2 → m2

i ) , (outgoing particle)

Σ̂ij (p) v
(s)
j (−p) = 0 , (p2 → m2

j ) , (outgoing anti−particle)

where no summation over repeated indices is assumed and i 6= j .

(Plus the unit-residue condition)
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Solving the on-shell conditions

δZ L
ij =

2

m2
j −m2

i

[
ΣγR

ij

(
m2

j

)
mimj +ΣγL

ij

(
m2

j

)
m2

j +miΣ
L
ij

(
m2

j

)
+ΣR

ij

(
m2

j

)
mj

]

δZR
ij =

2

m2
j −m2

i

[
ΣγL

ij

(
m2

j

)
mimj +ΣγR

ij

(
m2

j

)
m2

j +miΣ
R
ij

(
m2

j

)
+ΣL

ij

(
m2

j

)
mj

]

δZ̄ L
ij =

2

m2
i −m2

j

[
ΣγR

ij

(
m2

i

)
mimj +ΣγL

ij

(
m2

i

)
m2

i +miΣ
L
ij

(
m2

i

)
+ΣR

ij

(
m2

i

)
mj

]

δZ̄R
ij =

2

m2
i −m2

j

[
ΣγL

ij

(
m2

i

)
mimj +ΣγR

ij

(
m2

i

)
m2

i +miΣ
R
ij

(
m2

i

)
+ΣL

ij

(
m2

i

)
mj

]
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Solving the on-shell condition

Diagonal conditions:

δmi = −
1

2
Re
{
miΣ

γL
ii

(
m2

i

)
+miΣ

γR
ii +ΣL

ii

(
m2

i

)
+ΣR

ii

(
m2

i

)}
.

δZ̄ L
ii = δZ L

ii , δZ̄R
ii = δZR

ii

Z L
ii = ΣγL

ii

(
m2

i

)
+m2

i

(
ΣγL′

ii

(
m2

i

)
+ΣγR′

ii

(
m2

i

))
+mi

(
ΣL′

ii

(
m2

i

)
+ΣR′

ii

(
m2

i

))

Note that ΣR
ii

(
m2

i

)
= ΣL

ii

(
m2

i

)
at one loop in the SM.
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Hermiticity?

δZ̄ L
ij − δZ L†

ij =
2

m2
i −m2

j

{(
ΣγR

ij

(
m2

i

)
− ΣγR∗

ji

(
m2

i

))
mimj

+
(
ΣγL

ij

(
m2

i

)
− ΣγL∗

ji

(
m2

i

))
m2

i

+
(
m2

i +m2
j

) (
ΣS

ij

(
m2

i

)
− ΣS∗

ji

(
m2

i

))}
6= 0 ,

ΣR
ij

(
p2
)
≡ ΣS

ij

(
p2
)
mj , ΣL

ij

(
p2
)
≡ miΣ

S
ij

(
p2
)

A similar relation holds for δZ̄R
ij − δZR†

ij

i.e.
δZ̄ 6= δZ †

D.E., Manzano, Talavera (2002)
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Hermiticity?

The non-vanishing difference δZ̄ 6= δZ † is due to the presence of branch
cuts in the self-energies that invalidate the pseudo-hermiticity relation

Σij (p) 6= γ0Σ†
ij (p) γ

0 .

In the SM these branch cuts are generically gauge dependent!

Some popular prescriptions existing in the literature do not consider the
contribution from absorptive cuts in the WFR constants. Then δZ̄ = δZ †

but the amplitudes are gauge dependent.

There is no issue of loss of hermiticity in the bare lagrangian. These
WFR are to be used only for the LSZ reduction formulae

These constants need not be the same that appear in δK (δẐ ). In fact
they are not.

Aoki et al (1982), Denner and Sack (1990),Gambino, Grassi and
Madricardo (1999), Diener, Kniehl, Madricardo, Sirlin, Steinhauser (2000
- 2006),...
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Gauge invariance

Gauge invariance is an issue

∂ξδF
(2)
L = ∂ξδF

(1)
R = ∂ξδF

(2)
R = 0 .

Nielsen identities:

@

�

=

-
@

�

�

+ +

�

∂ξ

(
ūuǫ

µΓ
(1)

W+
µ ūidj

vd

)
=

e

2sW
M

(1)
L ∂ξ

(
δZ̄ uL

ir Krj + KirδZ
dL
rj + δZWKij

)

Absorptive parts are absolutely necessary to fulfill the Nielsen identities.
Then

0 = ∂ξM1 = −
e

2sW
M

(1)
L ∂ξ

[
Kij

(
δe

e
−
δsW
sW

)
+ δKij

]

The combination δe
e
− δsW

sW
is gauge independent, so

∂ξδKij = 0
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Absorptive parts

i Ĩmξ

(
δZ uL

ij

)
=

∑

h

iKihK
†
hj

8πv2mu2
j

θ
(
mu

j −md
h −

√
ξMW

) (
mu2

j −md2
h − ξM2

W

)

×

√((
mu

j −md
h

)2
− ξM2

W

)((
mu

j +md
h

)2
− ξM2

W

)
,

i Ĩmξ

(
δZ̄ uL

ij

)
=

∑

h

iKihK
†
hj

8πv2mu2
i

θ
(
mu

i −md
h −

√
ξMW

) (
mu2

i −md2
h − ξM2

W

)

×

√((
mu

i −md
h

)2
− ξM2

W

)((
mu

i +md
h

)2
− ξM2

W

)
,

Ĩmξ

(
δZ uR

ij

)
= Ĩmξ

(
δZ̄ uR

ij

)
= 0 ,

For d-type quarks δZ ’s we have the same formulae replacing u ↔ d and
K ↔ K †.

For t-decay the correction is at the 1 per mille level.
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To take home

The scheme proposed is LSZ-compliant (at the one-loop level)

Is gauge invariant. Other prescriptions found in the literature are not.

Even if Z̄ 6= γ0Z †γ0 one can check easily that no poblems with CP or
CPT arise:

Γ = Γ̄,

B(i → f ) = B(ī → f̄ ) if CP holds,

etc.

EW radiative corrections in this sector are small
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BSM and mass-matrix diagonalization

The D = 4 fermionic operators in the weak basis need to be transformed
to the physical basis to be of any use

f =
[
ṼLL+

(
ṼRuτ

u + ṼRdτ
d
)
R
]
f,

with the help of the unitary matrices ṼL ,ṼRu and ṼRd

(
ỹ f
u τ

u + ỹ f
d τ

d
)
→
(
Ṽ †
L ỹ

f
u ṼRuτ

u + Ṽ †
L ỹ

f
d ṼRdτ

d
)

Then

XL → Ṽ †
LXLṼL = DL,

XRu → Ṽ †
RuXRuṼRu = DRu,

XRd → Ṽ †
RdXRd ṼRd = DRd ,

DL, DRu and DRd are diagonal matrices with eigenvalues 6= 0.
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BSM and mass-matrix diagonalization

Then, with the help of the non-unitary transformation

f →
[
D

− 1
2

L L+
(
D

− 1
2

Ru τ
u + D

− 1
2

Rd τ
d
)
R
]
f,

The matrix ỹ f
u τ

u + ỹ f
d τ

d transforms to

(
D

− 1
2

L

)∗
Ṽ †
L ỹ

f
u ṼRuD

− 1
2

Ru τ
u +

(
D

− 1
2

L

)∗
Ṽ †
L ỹ

f
d ṼRdD

− 1
2

Rd τ
d ≡ y f

u τ
u + y f

d τ
d

y f
u and y f

d are the Yukawa couplings.

The left and right kinetic terms can be brought to the canonical form at
the sole expense of redefining the Yukawa couplings. Since this is all
there is in the Standard Model, we see that the effect of considering the
more general coefficients for the kinetic terms is irrelevant
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Effect on BSM terms

These transformations leave some traces

f → ṼL

(
DL
)−1

2
(
VLuτ

u + VLdτ
d
)
Lf

+

(
ṼRu

(
DR

u

)−1
2 VRuτ

u + ṼRd

(
DR

d

)−1
2 VRdτ

d

)
Rf

≡
(
C u
L τ

u + C d
L τ

d
)
Lf +

(
C u
Rτ

u + C d
R τ

d
)
Rf.

Note that because of the presence of the matrices D, the matrices C are
in general non-unitary
For R operators: they just redefine the matrices M i

R (i = 1, 2, 3)
For L operators new structures appear

LL → f̄γµO
µ
LLf + h.c .

Oµ
L = NτuOµ

L τ
u + NKτuOµ

L τ
d + K †NKτdOµ

L τ
d + K †NτdOµ

L τ
u

N ≡ C u†
L MLC

u
L
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Why WFR is relevant

Consider

L4
L = −f̄γµ

{(
N4τu − K †N4Kτd

)
[−i∂µ + eQAµ

+
e

cW sW

(
τ3

2
− Qs2W

)
Zµ + gs

λ

2
· Gµ

]

+
e

sW

(
N4K

τ−

2
W+

µ − K †N4 τ
+

2
W−

µ

)}
Lf + h.c .

L4
L is the only operator potentially contributing to the gluon and photon

effective couplings.

The photon and the gluon are associated to currents which are exactly
conserved and radiative corrections (including those from NP) are
prohibited at zero momentum transfer.
However one must take into account the WFR.

In fact L4
L is the only operator that can possibly contribute to such

renormalization at the order we are working.

Eventually L4
L drops from observables involving neutral couplings.
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Effective couplings

Z effective couplings

gu
L = −N1 − N1† + N2† + N2 + N3 + N3†,

gd
L = K †

(
N1 + N1† + N2† + N2 − N3 − N3†

)
K ,

gu
R = M̃1

R + M̃1†
R + M̃2

R + M̃2†
R + M̃3

R + M̃3†
R ,

gd
R = M̃2

R + M̃2†
R − M̃1

R − M̃1†
R − M̃3

R − M̃3†
R .

W couplings (everything included: WFR, CKM etc.)

hL =
(
−N1 − N1† + N2 − N2† − N3 − N3† + N4 − N4†

)
K ,

hR =
(
M̃1

R + M̃1†
R + M̃2

R − M̃2†
R − M̃3

R − M̃3†
R

)
.
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CP violation

LL = f̄γµS
µLf + h.c .

Sµ ≡ NτuOµτu + NKτuOµτd + K †NKτdOµτd + K †NτdOµτu

Under CP Sµ → S ′µ

S ′µ ≡ N tτuOµτu + K tN tτdOµτu + K tN tK ∗τdOµτd + N tK ∗τuOµτd

For CP invariance we require

N = N∗,

NK = NK ∗,

K tNK ∗ = K †NK

Sufficient (but not necessary) condition:

N = N∗, K = K ∗
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More about CP-violation

Even if the matrices ML,R were real phases do appear after the
diagonalization:

- due to the appearance of the usual CKM matrix in operators
involving L fields

- diagonalization matrices appear explicitly, both for left and
right-handed operators

- the effective operators couplings are redefined by matrices which are
not unitary in general.

- large custodially breaking contributions in the NP could give
different values for XRu and XRd , yielding eigenvalues < 1 possibly
enhancing CP violation in R sector.

In the Standard Model there is a link between the existence of three
families and the presence of CP violation. This disappears completely,
both in the left and right-handed sectors, once additional operators are
included.
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Unitarity triangle

How can we check for the presence of all this wealth of new phases?

In the left-handed sector the analysis is usually done in terms of the
unitarity triangle. Clearly the unitarity triangle as such is gone once the
additional d = 4 operators are included.

U = K + GK

where G is a combination of the N matrices. Since G is not
antihermitian, U is not unitary in a perturbative sense.

However, these deviations of unitarity due to radiative corrections shall
be small.
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Conclusions

Unitarity is a powerful constraint on scattering amplitudes. Its
validity is well tested. Even in the presence of a light Higgs, it helps
constrain “anomalous” couplings by helping predict heavier
resonances.

An extended EWSBS would typically have such resonances even in
the presence of a light ’Higgs’. However their properties are
radically different from the ‘naive expectations’

Current LHC searches do not yet probe the IAM resonances: at
least 10× statistics is required. X-sections are too smalls to explain
‘resonances’.

Direct coupling of the resonances to quarks (Drell-Yan) probe the
“anomalous” fermionin operators. They can be extended to the
flavour sector non-trivially

NP (if present at all) seems to be hidden in small LEC (of order
10−3 or perhaps less).

An extended fermionic sector would lead to a wealth of new
phenomena in flavour physics: new CP violating phases,
non-unitarity of (measured) CKM.
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THANK YOU!
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