Long-range hadronic effects and precision tests of SM

Misha Gorshteyn

Marc Vanderhaghen, Hubert Spiesberger, Carl E. Carlson, Chuck Horowitz, Michael Ramsey-Musolf Xavi Roca Maza

Outline

- Context: precise tests of SM with electron scattering
- Long-range effects from 2γ-box
- Charge radius and beam normal spin asymmetry
- Long-range effects from PV2 2 -box
- Superconvergence relation in ChPT
- Estimates for the PV2r correction
- Conclusions

Test of SM with running of weak mixing angle

Weak mixing angle: very central role in the EW sector

$$
\binom{\gamma}{Z^{0}}=\left(\begin{array}{cc}
\cos \theta_{W} & \sin \theta_{W} \\
-\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{B^{0}}{W^{0}}
$$

Tree level: fixed by boson masses and $\operatorname{SU}(2) / \mathrm{U}(1)$ couplings

$$
\sin ^{2} \theta_{w}=1-M w^{2} / M z^{2}=g^{\prime 2} /\left(g^{2}+g^{\prime 2}\right)
$$

Upon renormalization: weak mixing angle is scale-dependent

$$
\sin ^{2} \theta_{w} \rightarrow \sin ^{2} \theta_{e f f}(Q)
$$

The running is a unique prediction of the SM;
A theory with a different content will predict a different running; WMA - a good way to test the SM and New Physics

Test of SM with running of weak mixing angle

 SM running: confirmed qualitatively (not yet quantitatively)Existing and planned measurements

- Atomic PV (Cs)

- Neutrino scattering
- LEP and SLC (Z-pole)
- Moller scattering
- Qweak (under analysis)
- ATLAS (under analysis)
- MOLLER (planned)
- MESA P2 (planned)
- MESA C12 (proposed)
- DIS SOLID (planned)
- APV with Yb, Dy (planned)
- Future colliders

A theory with a different content will predict different running

Weak Charge of the Proton from PVES

- Elastic e-p scattering with polarized e^{-}beam

$$
\frac{e^{2}}{Q^{2}}\left[1-\left\{R_{p}^{2}, \mu_{p}\right\} Q^{2}+O\left(Q^{4}\right)\right]
$$

Talk by Keith

$$
\longrightarrow-\frac{G_{F}}{2 \sqrt{2}}\left[Q_{W}^{p}+\left\{R_{p, n}^{2}, \mu_{p, n}, G_{E, M}^{s}, G_{A}\right\} Q^{2}+O\left(Q^{4}\right)\right]
$$

$$
A^{P V}\left(\epsilon, Q^{2}\right)=-\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\left[Q_{W}^{p}+B\left(Q^{2}\right) Q^{2}\right]
$$

Talk by Ross

WMA determination with MESA/P2

- $\mathrm{E}=155 \mathrm{MeV}, 150 \mu \mathrm{~A}$
- Scattering angle $20^{\circ} \pm 10^{\circ}$
- $Q^{2}=0.0045 \mathrm{GeV}^{2}$
- Polarization (85 ± 0.5)\%
- Pol. flip few 1000/sec

Requirements to the beam:

1-2 o.o.m. improvement w.r.t. MAMI

Beam Quantity	Achieved at MAMI	Contribution to $\delta\left(A_{P V}\right)$	Required for MESA
Energy	0.04 eV	$<0.1 \mathrm{ppb}$	fulfilled
Position	3 nm	5 ppb	0.13 nm
Angle	0.5 nrad	3 ppb	0.06 nrad
Intensity	14 ppb	4 ppb	0.36 ppb

Timeline: Accelerator commissioning: 2018 Data taking: 2020

Impact of MESA (H and C12) on SM tests

A more general approach for extensions of the Standard Model:
model independent coupling constants, effective low-energy 4-fermion interaction
$C_{1 f}: A_{e} \otimes V_{f}, C_{2 f}: V_{e} \otimes A_{f}$
SM prediction (black star):
$C_{1 f}=-I_{f}+2 Q_{f} \sin ^{2} \theta_{W}$
$\left(C_{1 u}-C_{1 d}=-1+2 \sin ^{2} \theta_{W}\right.$,
$\left.C_{1 u}+C_{1 d}=\frac{2}{3} \sin ^{2} \theta_{W}\right)$
$Q_{W}(p)=-2\left(2 C_{1 u}+C_{1 d}\right)$
Mainz P2: $\Delta Q_{W}(p)= \pm 0.0097(2.1 \%)$
MESA C12: $\Delta \mathrm{Qw}(\mathrm{C} 12)=18 \Delta\left(\mathrm{C}_{1 \mathrm{u}}+\mathrm{C}_{1 \mathrm{~d}}\right)= \pm 0.0086(0.3 \%)$

Theory uncertainties

$$
A^{P V}\left(\epsilon, Q^{2}\right)=-\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\left[Q_{W}^{p}+B\left(Q^{2}\right) Q^{2}\right]
$$

- $\mathrm{B}\left(\mathrm{Q}^{2}\right)$ - take from somewhere else (PVES, lattice, ...)

Young, Carlini, Thomas, Roche, PRL 2007; Androic et al. [Qweak Coll.], PRL 2013

- Rationale: go to the lowest Q^{2} - asymmetry directly measures the weak charge
How is this picture modified by the radiative corrections?

1-loop radiative corrections to Z-exchange

Marciano \& Sirlin; Erler, Kurylov, Ramsey-Musolf; MG \& Horowitz

In presence of 1-loop RC's the Z-exchange amplitude is not modified essentially as function of Q^{2} (at low Q^{2}); γ Z-box shifts the apparent value of the weak charge.

1-loop radiative corrections to γ-exchange

$2 y$-exchange: inclusive off-shell hadronic states, arbitrary kinematics

$$
T_{2 \gamma}=\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\ell_{\mu \nu} W^{\mu \nu}}{q^{2} q^{\prime 2}\left[(k-q)^{2}-m_{e}^{2}\right]} \quad W^{\mu \nu}=\int d x e^{i q x}\left\langle N^{\prime}\right| T\left[J^{\nu}(x) J^{\mu}(0)\right]|N\rangle
$$

Two current correlator: can't calculate from first principles in QCD
Elastic box: IR divergent, UV finite,

$$
W_{e l}^{\mu \nu} \sim\left\langle N^{\prime}\right| J^{\nu}|N\rangle\langle N| J^{\mu}|N\rangle
$$ calculable with known form factors

a long history in the literature:
Mo, Tsai; Maximon, Tjon; Feshbach, McKinley; Blunden, Melnitchouk, Tjon; Kobushkin, Borysiuk;Tomalak, Vanderhaeghen; ...

Elastic box correction $\delta_{R C^{e l}}$ is subtracted at the observables level

Inelastic $2 y$-exchange

Cannot calculate in arbitrary kinematics!
In forward kinematics: optical theorem + dispersion relation

$$
W^{\mu \nu} \sim 2 M \omega \sigma_{\gamma p}^{t o t}(\omega) g^{\mu \nu}+\ldots
$$

Collinear \log enhancement

$$
\frac{e^{2}}{Q^{2}}\left[1-\left\{R_{p}^{2}, \mu_{p}\right\} Q^{2}+\delta_{R C}^{\text {elastic }}+\frac{\alpha}{\pi} Q^{2} C_{2 \gamma}(E) \ln \frac{4 E^{2}}{Q^{2}}+O\left(Q^{2}\right)\right],
$$

Sum rule for the coeff. $C_{2 \gamma} \quad C_{2 \gamma}(E)=\frac{1}{4 \pi^{2} \alpha} \int_{\nu_{\pi}}^{\infty} \frac{d \omega}{\omega} \sigma_{\gamma p}^{\text {tot }}(\omega) f(\omega, E)$ generates a long-range potential (shorter than Coulomb): essentially modifies the low- Q^{2} asymptotics!

Numerical impact for charge radius extraction

$$
\sigma_{R}-\delta \sigma_{R C}^{e l}=1-Q^{2} R_{p}^{2} / 3+(\alpha / \pi) Q^{2} C_{2 \gamma}(E) \ln \left(4 E^{2} / Q^{2}\right)+\ldots
$$

A1@MAMI: $R_{p}=0.879(8) \mathrm{fm}$

$$
\frac{\sigma_{R}-1}{Q^{2}}=-\frac{R_{p}^{2}}{3}\left(1 \pm 2 \frac{\delta R_{p}}{R_{p}}\right)=-6.61(12) \mathrm{GeV}^{-2}
$$

PRad@JLab: higher E, lower Q^{2}, R_{p} below 1%

$$
\frac{\sigma_{R}-1}{Q^{2}}=-\frac{R_{p}^{2}}{3}\left(1 \pm 2 \frac{\delta R_{p}}{R_{p}}\right)=-6.61(9) \mathrm{GeV}^{-2}
$$

Log Q^{2} dependence affects the extraction of the radius: But the log term is exactly calculable!

2γ-exchange correction to the weak charge

2 y -box $\sim 1-3 \%$ of the charge radius; does it matter for the $Q^{p} w$?

$$
Q_{W}^{p} \rightarrow Q_{W}^{p}+Q_{W}^{p} \frac{\alpha}{\pi} Q^{2} C_{2 \gamma}(E) \ln \frac{4 E^{2}}{Q^{2}}
$$

part of the $B\left(Q^{2}\right)$ term!

What if the 2 v -box contributed to the PV amplitude?
"Long-range parity-nonconserving interactions", Flambaum 1992 "PV-odd van der Waals forces", Khriplovich, Zhizhimov, 1982

$$
-\frac{G_{F}}{2 \sqrt{2}}\left[Q_{W}^{p}+\ldots\right]+\frac{e^{2}}{Q^{2}} \frac{\alpha}{\pi} Q^{2} C_{2 \gamma}^{P V} \ln \frac{4 E^{2}}{Q^{2}}
$$

Dangerous for the weak charge definition!

$$
Q_{W}^{p} \rightarrow Q_{W}^{p}+\frac{4 \sqrt{2} \alpha^{2}}{G_{F}} C_{2 \gamma}^{P V}(E) \ln \frac{4 E^{2}}{Q^{2}}
$$

Two questions to ask:

1. are these collinear log calculations reliable?
2. is this catastrophic scenario for the weak charge realized?

How well do we understand these collinear logarithms?

Beam normal spin asymmetry: collinear logs are measurable and dominate

$T\left(S_{n}, \vec{k}, \vec{k}^{\prime}\right) \rightarrow \eta_{1} T^{*}\left(-S_{n},-\vec{k},-\overrightarrow{k^{\prime}}\right) \rightarrow \eta_{1} \eta_{2} T^{*}\left(-S_{n}, \vec{k}, \vec{k}^{\prime}\right)$

Mismatch between time-reversed states is due to imaginary part of the amplitude (in absence of CP- and CPT-violation)

Elastic e-p scattering in presence of two-photon exchange

$$
T_{e p}=T_{1 \gamma}+T_{2 \gamma}+\ldots
$$

$$
B_{n}=\frac{T_{1 \gamma}^{*} 2 \operatorname{Im} T_{2 \gamma}}{\left|T_{1 \gamma}\right|^{2}}
$$

Bn in forward kinematics

$\operatorname{Im} T_{2 \gamma}=e^{4} \int \frac{d^{3} \vec{k}_{1}}{2 E_{1}(2 \pi)^{3}} \frac{\bar{u}\left(k^{\prime}\right) \gamma_{\nu}\left(k_{1}+m_{e}\right) \gamma_{\mu} u(k)}{Q_{1}^{2} Q_{2}^{2}} \operatorname{Im} W^{\mu \nu}\left(W^{2}, Q_{1}^{2}, Q_{2}^{2}, t\right)$

Forward spin-independent Compton tensor - from Optical Theorem

$$
W^{\mu \nu}=2 \pi\left[-g^{\mu \nu} F_{1}^{\gamma \gamma}+\frac{P^{\mu} P^{\nu}}{\left(P \cdot q_{1}\right)} F_{2}^{\gamma \gamma}\right]
$$

Bn features a large collinear $\log -\ln \left(Q^{2} / m_{e}{ }^{2}\right)$

$$
B_{n} \approx-\frac{1}{4 \pi^{2}} \frac{m_{e} \sqrt{Q^{2}}}{E^{2}} \ln \left(\frac{Q^{2}}{m_{e}^{2}}\right) \frac{e^{-B Q^{2}}}{F_{C}\left(Q^{2}\right)} \int_{\omega_{\pi}}^{E} d \omega \omega \sigma_{\gamma N}^{t o t}(\omega)
$$

Good quality data on selected nuclei - HAPPEX \& PREX

Excellent description for light nuclei and very forward angles

Fails for lead two photons is not enough

Abrahamyan et al. [HAPPEX and PREx], 2012

Work in progress with Xavi Roca Maza

Collinear logs are under control at forward angles for light nuclei

To summarize:

forward collinear logs are a well-established feature; measured and confirmed for B_{n}
(where two-photon exchange dominates over h.o. effects); modify the low- Q^{2} asymptotics of observables;

Need to be assessed more accurately for PVES!

Calculate the coefficient $C_{2 \gamma}{ }^{P V}(E)$ in the forward regime

PV2r dispersive contribution to forward PVES

MG, H. Spieberger, arXiv: 1608.07484
$\operatorname{Im} T_{\gamma \gamma}^{P V}=e^{4} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} 2 \pi \delta\left(k_{1}^{2}-m_{e}^{2}\right) \frac{2 \pi \tilde{W}_{\gamma \gamma}^{\mu \nu} \ell_{\mu \nu}^{\gamma}}{Q^{4}}$
Proton spin-independent case

$$
\tilde{W}_{\gamma \gamma}^{\mu \nu}=\frac{i \varepsilon^{\mu \nu \alpha \beta} p_{\alpha} q_{\beta}}{2(p q)} F_{3}^{\gamma \gamma}
$$

Identify the sought for coefficient:

$$
C_{2 \gamma}^{P V}(E)=\frac{1}{M} \int_{E_{\pi}}^{\infty} \frac{d \omega}{\omega^{2}} F_{3}^{\gamma \gamma}(\omega)\left[\frac{\omega}{2 E} \ln \left|\frac{E+\omega}{E-\omega}\right|+\frac{\omega^{2}}{4 E^{2}} \ln \left|1-\frac{E^{2}}{\omega^{2}}\right|\right],
$$

Does not vanish for $E=0$??? $\quad C_{2 \gamma}^{P V}(0)=\frac{3}{4 M} \int_{\omega_{\pi}}^{\infty} \frac{d \omega}{\omega^{2}} F_{3}^{\gamma \gamma}(\omega)$ Compare to the PC case: $C_{2 \gamma}(0)=0$

Formal definition of the Q_{W} to remove $\square_{\gamma Z}(E)$ - not viable??

$$
-\lim _{E, Q^{2} \rightarrow 0} \frac{4 \pi \alpha \sqrt{2}}{G_{F} Q^{2}} A_{e x p}^{P V}\left(E, Q^{2}\right)=Q_{W}^{p, 1-l o o p}-\frac{4 \sqrt{2} \alpha^{2}}{G_{F}} C_{2 \gamma}^{P V}(0) \ln \frac{4 E^{2}}{Q^{2}}
$$

General properties of the PV Compton amplitude

Low-energy expansion + high energy behavior -> superconvergence relation (SCR)

Lukaszuk, arXiv: nucl-th/0207038;
Kurek, Lukaszuk, arXiv: hep-ph/0402297

$$
\int_{E_{\pi}}^{\infty} \frac{d \omega}{\omega^{2}} F_{3}^{\gamma \gamma}(\omega)=0
$$

SM: shown to hold for $\gamma+e \rightarrow Z+e, \gamma+e \rightarrow W+v$ Altarelli, Cabibbo, Maiani 1972, ...
Check the SCR in ChPT
PV pion-nucleon coupling $\quad \mathcal{L}_{\pi N}^{P V}=\frac{h_{\pi}^{1}}{\sqrt{2}} \bar{N}[\vec{\tau} \times \vec{\pi}]^{3} N$
Donoghue, Desplanques, Holstein; Savage, Kaplan; ...
Heavy Baryon ChPT calculation of PV Compton amplitude Cohen et al, arXiv: nucl-th/0009031

Result used by Kurek\&Lukaszuk to check SCR: failed!

SCR important for the definition of Qw^{p} - recheck!

Similar to the GDH sum rule proof to order $O\left(g_{\pi N N^{2}}\right)$
Holstein, Vanderhaeghen, Pascalutsa, 2005

Anomalous m.m.
Inelastic scattering of polarized photon on polarized proton w. helicities parallel (antiparallel)

1-loop level

Scales as $g_{\pi N N^{2}}$

Holds in relativistic ChPT, but not in heavy-baryon ChPT!

$$
\left.\int_{E_{\pi}}^{\infty} d \omega \frac{\sigma_{\gamma p}^{3 / 2}(\omega)-\sigma_{\gamma p}^{1 / 2}(\omega)}{\omega}\right|_{\text {tree level }}=0
$$

Prove SCR for PV Compton to order $\mathrm{O}\left(\mathrm{g}_{\pi N N} \mathrm{~h}_{\pi}^{1}\right)$

Electromagnetic vertex

$$
\begin{aligned}
& \mathcal{L}_{\pi N}^{P C}=\frac{g_{A}}{2 f_{\pi}} \bar{N} \tau^{a} \not \partial \pi^{a} \gamma_{5} N=-g_{\pi N N} \bar{N} \tau^{a} \gamma_{5} N \pi^{a} \\
& \mathcal{L}_{\pi N}^{P V}=\frac{h_{\pi}^{1}}{\sqrt{2}} \bar{N}[\vec{\tau} \times \vec{\pi}]^{3} N=-i h_{\pi}^{1}\left(\bar{n} \pi^{+} p-\bar{p} \pi^{-} n\right)
\end{aligned}
$$

$$
\begin{aligned}
F_{3}^{\gamma \gamma}(\omega)= & -\frac{g_{\pi N N} h_{\pi}^{1} q_{\pi}}{2 \sqrt{2} \pi^{2} \sqrt{s}}\left\{\mu^{p}\left[\frac{E^{\prime}}{\sqrt{s}}-\frac{E_{\pi}}{q}+\frac{m_{\pi}^{2}}{2 q q_{\pi}} \ln \frac{E_{\pi}+q_{\pi}}{E_{\pi}-q_{\pi}}\right]\right. \\
& -\mu^{n}\left[-\frac{E}{q}+\frac{m_{\pi}^{2}}{2 q q_{\pi}} \ln \frac{E_{\pi}+q_{\pi}}{E_{\pi}-q_{\pi}}+\frac{M^{2}}{2 q q_{\pi}} \ln \frac{E^{\prime}+q_{\pi}}{E^{\prime}-q_{\pi}}\right] \\
& \left.-\frac{q E^{\prime}}{2 M^{2}} \kappa^{V} \kappa^{S}+\left(\mu^{n}\right)^{2} \frac{s-M^{2}}{4 M^{2}}\left[-\frac{E^{\prime}}{q}+\frac{M^{2}}{2 q q_{\pi}} \ln \frac{E^{\prime}+q_{\pi}}{E^{\prime}-q_{\pi}}\right]\right\},
\end{aligned}
$$

Terms $O\left(\kappa^{2}\right)$ - too many derivatives, SCR diverges; not surprising: at tree level $O\left(g^{5} \pi \mathbb{N N} h^{1} \pi\right)$ incomplete

SCR - check numerically up to terms linear in a.m.m. Change variables $\quad x=E_{\pi} / \omega$

$$
\int_{0}^{1} d x F_{3}^{\gamma \gamma}\left(E_{\pi} / x\right)=0
$$

Superconvergence relation for $\mathrm{F}_{3} \gamma$:
checked for the first time in relativistic field theory;
must be used as a basis for any reasonable estimate of the PV2r correction to the weak charge

SCR ensures that the \log term vanishes at $E=0$

$$
C_{2 \gamma}^{P V}(0)=\frac{3}{4 M} \int_{\omega_{\pi}}^{\infty} \frac{d \omega}{\omega^{2}} F_{3}^{\gamma \gamma}(\omega)
$$

The definition of the weak charge is still viable

$$
Q_{W}^{p, 1-\text { loop }}=-\lim _{E, Q^{2} \rightarrow 0} \frac{4 \pi \alpha \sqrt{2}}{G_{F} Q^{2}} A_{\text {expp }}^{P V}\left(E, Q^{2}\right)
$$

Numerical estimates: Input parameters

Origin: effective PV 4-quark operators

$$
h_{\pi}^{1}=(1.1 \pm 1.0) 10^{-6} \quad \text { De Vries et al, arXiv:1501.01832 }
$$

PV TNN coupling

$$
h_{\pi}^{1}=3.8 \cdot 10^{-7} \quad \text { DDH, } 1979
$$

PV $\gamma \mathrm{N} \Delta$ coupling $\mathrm{d}_{\Delta} \quad \mathcal{L}_{P V}^{\gamma N \Delta}=i \frac{e}{\Lambda_{\chi}}\left[d_{\Delta}^{+} \bar{\Delta}_{\alpha}^{+} \gamma_{\beta} p+d_{\Delta}^{-} \bar{\Delta}_{\alpha}^{-} \gamma_{\beta} n\right] F^{\alpha \beta}$
Early claim: may be 10-100 $\times \mathrm{h}^{1 \pi} \quad$ Zhu et al, arXiv:0106216 Not quite supported by exp. $\left|d_{\Delta}^{-}\right|=(0.31 \pm 0.91) 10^{-6}$

Androic et al [GO], arXiv:1112.1720
$Q_{\text {weak }}$ has taken data that may further constrain d_{Δ}
$\left.F_{3 \Delta}^{\gamma \gamma}(\omega)\right|_{\Gamma_{\Delta} \rightarrow 0}=\sqrt{\frac{2}{3}} \frac{4 M g_{M}(0) d_{\Delta}^{+}}{\Lambda_{\chi}\left(M+M_{\Delta}\right)} \omega_{\Delta}^{2} \delta\left(\omega-\omega_{\Delta}\right)$

\triangle contribution alone does not obey SCR

Supplement by a high energy Regge-like background

$$
F_{3 \mathrm{HE}}^{\gamma \gamma}(\omega)=C_{\lambda}(\Lambda)(\omega / \Lambda)^{\lambda} \Theta(\omega-\Lambda)
$$

With $\Lambda \approx 1 \mathrm{GeV}$ and $\lambda<1$ (SCR integral converges)
Fix HE contribution by imposing SCR $\int_{\omega_{\pi}}^{\infty} \frac{d \omega}{\omega^{2}}\left[F_{3 \Delta}^{\gamma \gamma}(\omega)+F_{3 \mathrm{HE}}^{\gamma \gamma}(\omega)\right]=0$
Normalization depends on $\lambda \quad C_{\lambda}(\Lambda)=-\sqrt{\frac{2}{3}} \frac{4 M g_{M} d_{\Delta}^{+} \Lambda}{\Lambda_{\chi}\left(M+M_{\Delta}\right)}(1-\lambda)$
Explore $-1 / 2<\lambda<1 / 2$

Final ingredient (for completeness)
Anapole moment

$$
\mathcal{L}_{P V}=i e a_{0} \partial_{\mu} F^{\mu \nu} \bar{N} \gamma_{\nu} \gamma_{5} N
$$

Axial charge seen by charged leptons is not ga!

Results for the kinematics of relevant experiments

Object of interest

$$
\delta Q_{W}^{p}\left(E, Q^{2}\right)=-\frac{4 \sqrt{2} \alpha^{2}}{G_{F}} C_{2 \gamma}^{P V}(E) \ln \frac{4 E^{2}}{Q^{2}}
$$

The SM expectation:
$Q_{W}^{p}=0.0713(8)$

	Contribution	P2@MESA	Qweak	MOLLER
	Elastic	$-(1.0 \pm 2.0) \cdot 10^{-4}$	$-(1.2 \pm 2.2) \cdot 10^{-5}$	$-(3 \pm 5) \cdot 10^{-7}$
	π	$-(2.0 \pm 2.0) \cdot 10^{-5}$	$-(5.5 \pm 5.5) \cdot 10^{-5}$	$-(2.8 \pm 2.8) \cdot 10^{-5}$
δQ_{W}^{p}	$\Delta+\mathrm{HE}(\lambda=0.5)$	$-(0.67 \pm 2.0) \cdot 10^{-4}$	$-(1.3 \pm 3.8) \cdot 10^{-4}$	$-(1.1 \pm 3.3) \cdot 10^{-4}$
	$\Delta+\mathrm{HE}(\lambda=0)$	$-(0.4 \pm 1.2) \cdot 10^{-4}$	$-(1.1 \pm 3.3) \cdot 10^{-4}$	$-(0.5 \pm 1.4) \cdot 10^{-4}$
	$\Delta+\mathrm{HE}(\lambda=-0.5)$	$-(0.32 \pm 0.93) \cdot 10^{-4}$	$-(1.1 \pm 3.3) \cdot 10^{-4}$	$-(0.2 \pm 0.6) \cdot 10^{-4}$
	Total	$-(1.7 \pm 0.3 \pm 2.5) \cdot 10^{-4}$	$-(1.9 \pm 0.1 \pm 3.6) \cdot 10^{-4}$	$-(0.9 \pm 0.5 \pm 1.8) \cdot 10^{-4}$

$$
\delta Q_{W}^{p} \leq 0.3 \% \quad \delta Q_{W}^{p} \leq 0.53 \%
$$

Cs-133 weak charge:

$$
Q_{W}\left({ }^{113} C s\right)=-72.58(29)_{\exp p}(32)_{t h}
$$

$$
\delta Q_{W}\left({ }^{113} C s\right) \sim 113 \delta Q_{W}^{p}(0)=-(2.0 \pm 3.9) \cdot 10^{-2}
$$

Summary

- 2γ-exchange induces a long-rang interaction that modifies the extraction of charge radius and weak charge from electron scattering
- Formal definition of $Q_{w}(p)$ protected by a superconvergence relation;
- The superconvergence relation proved in relativistic ChPT;
$\bullet 0.5 \%$ uncertainties due to $d_{\Delta}-Q$-Weak data may further reduce it!
- High energy part needed to obey SCR - unknown; Very mild sensitivity for Q-Weak, may matter for MOLLER e-p if $\lambda>1 / 2$
- Sensitivity to anapole moment: non-negligible for MESA, but the uncertainty of G_{A} will be reduced W. MESA by a factor of 4
- Further hadronic PV couplings may be also included
- Atomic PV: hadronic 2γ-box purely short-range, small; nuclear resonances may change this behavior - more work needed

Backup slides

Anapole moment $\quad \mathcal{L}_{P V}=$ ie $a_{0} \partial_{\mu} F^{\mu \nu} \bar{N} \gamma_{\nu} \gamma_{5} N$
Axial charge seen by charge leptons is not ga!

Update the axial box: include uncertainty due to anapole

Attn: elastic contribution not enhanced by collinear log: no anapole moment for real photons

Update the axial box: simply use $G_{A}^{e p}$ instead of g_{A}
$\delta\left(Q_{W}^{p}\right)^{e l .}=\frac{\alpha g_{V}^{e} G_{A}^{e p}(0)}{M E} \int_{0}^{\infty} d Q^{2} G_{M}\left(Q^{2}\right) G_{a}\left(Q^{2}\right)\left(\ln \left|\frac{E+E_{Q}}{E-E_{Q}}\right|+\frac{Q^{2}}{2 M E} \ln \left|1-\frac{E^{2}}{E_{Q}^{2}}\right|\right)$
Some caveats here!
Blunden et al. included running of $\sin ^{2} \theta \mathrm{w} \rightarrow \mathrm{g} v^{e}=0.045$;
they used $\mathrm{g}_{\mathrm{A}}=-1.27$;
We use:
full one loop result $\rightarrow \mathrm{gv}^{e}=0.07$, and include RC in $G_{A}^{e p}=-1.04(43)$ More natural from DR side

Central value almost identical; Now can estimate an uncertainty!

WMA determination with MESA/P2

- Strange nucleon FFs: from the lattice
- Axial FF: from an auxiliary backward measurement (will reduce the uncertainty on GA by factor ~4)

Model dependence of the γZ box

Model-dependent
Model-dependent

Definite

spin, flavor states
$M_{\gamma^{*} p \rightarrow H_{S, I}}$

$$
M_{Z^{*} p \rightarrow H_{S, I}}
$$

