Madrees Crivelin

FNSNF

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

New Physics Explenations of the Flavour Anomalies

Outline:

Introduction: Flavour anomalies

- $b \to s \mu^+ \mu^ B \to D^{(*)} \tau \nu$
- $h \rightarrow \tau \mu$
- a_µ
- Possible New Physics Explanations
 - Z'
 - New scalars and fermions
 - Extended Higgs sector
 - Leptoquarks

Simultaneous Explanations of Anomalies

Conclusions

Flavour Anomalies

"Missing Energy" Decays

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERNCOURER

VOLUME 55 NUMBER 9 NOVEMBER 2015

SCIE	NTIF	C		Sign In Register 📜 1				
AME	RICA	\mathbf{N}^{M}		Search ScientificAmeric	an.com	Q		
Subscribe	News & Features	Topics	Blogs	Videos & Podcasts	Education	Citizen Scien		
The Sciences » No	ews			- 13	:: 🖂 Email	:: 🔒 Print		

2 Accelerators Find Particles That May Break Known Laws of Physics

The LHC and the Belle experiment have found particle decay patterns that violate the Standard Model of particle physics, confirming earlier observations at the BaBar facility

Jobs 🖾

Subscribe

By Clara Moskowitz | September 9, 2015 | Véalo en español

Democracy suffers a blow—in particle physics

Three independent B-meson experiments suggest that the charged leptons may not be so equal after all.

Steven K. Blau 17 September 2015

New Physics in b→sµµ

More details in Ben Grinstein's talk

Global analysis give a very good fit to data

W. Altmannshofer, D. M. Straub, arXiv:1503.06199. T. Hurth, F. Mahmoudi, and S. Neshatpour, 1410.4545. Descotes-Genon et al. 1501.04239

Symmetry based solutions give a very good fit to data:

• C_9 • $C_9 = -C_{10}$ • $C_9 = -C'_9$ $O_9 = \overline{s} \gamma^{\mu} P_L b \overline{\ell} \gamma_{\mu} \ell$ $O_{10} = \overline{s} \gamma^{\mu} P_L b \overline{\ell} \gamma_{\mu} \gamma^5 \ell$ Fit is 4-5 σ better than in the SM

Tauonic B decays

Tree-level decays in the SM via W-boson $R(D^{(*)}) = B \rightarrow D^{(*)}\tau v/B \rightarrow D^{(*)}\ell v$

Combined ≈4 σ deviation

$h \rightarrow \tau \mu$

- Can be explained in the effective field theory approach by
 R. Harnik, J. Kopp, and J. Zupan, 1209.1397.
 - G. Blankenburg, J. Ellis, and G. Isidori, 1202.5704.

 $Q_{e\phi}^{fi} = \ell_f \phi e_i \phi^{\dagger} \phi$

S. Davidson and P. Verdier, 1211.1248.

No dominant contribution from vector-like fermions

A. Falkowski, D. M. Straub, and A. Vicente, 1312.5329

J. Heeck et al. 1412.3671 A. Greljo et al. arXiv:1502.07784 A. C. et al. arXiv:1501.00993

.....

• • • • • •

$$\tau \rightarrow \mu \nu \nu \text{ and } a_{\mu}$$
• Tau decays

$$Br[\tau \rightarrow \mu \nu \nu]_{exp} = (17.41 \pm 0.04)\%$$

$$\Delta_{\tau \rightarrow \mu \nu \nu} = \frac{Br[\tau \rightarrow \mu \nu \nu]_{exp}}{Br[\tau \rightarrow \mu \nu \nu]_{sM}} - 1 = (0.69 \pm 0.29)\%$$
• Anomalous magnetic moment of the muon

$$\Delta a_{\mu} = (236 \pm 87) \times 10^{-11}$$
• 2 - 3 \sigma deviations in the lepton sector
Much more in the g-2 session...
NP in \varepsilon' / \varepsilon Andrzej Buras' talk

Explanations of the Anomalies

Z' explanations $b \rightarrow s \mu^+ \mu^ \mathcal{U}$ b 6 \mathcal{L} S 5 $C_{9}^{\mu\mu} \propto \Gamma_{23}^{dL} g'^2 / m_{Z'}^2$ m_Z/g' [TeV 4 $B_s - \overline{B}_s$ mixing 3 h b2 23 S $\frac{\Delta M_{12}}{M_{12}^{\rm SM}} \propto \left(\Gamma_{23}^{dL}\right)^2 g'^2 / m_{Z'}^2$

U. Haisch et al. 1308.1959 Buras et al. 1311.6729 W. Altmannshofer et al. 1403.1269 AC. et al. 1501.00993

- Only weak constraints from other flavour observables (loop compared to tree)
- Possible effect in the anomalous magnetic moment of the muon
- Large production cross section at the LHC

R(D) Explanations

Leptoquark (scalar or vector)

W'??? A. Greljo, G. Isidori and D. Marzocca 1506.01705

2.6 σ difference from zero

New Scalars and Fermions in b→sµµ

B. Gripaios, M. Nardecchia, S. Renner, arXiv:1509.05020

Possible representations

SU(2)	Φ_Q, Ψ_Q	Φ_ℓ, Ψ_ℓ	Ψ, Φ				
Ι	2	2	1	SU(3)	Φ_Q, Ψ_Q	Φ_ℓ, Ψ_ℓ	Ψ, Φ
II	1	1	2	A	3	1	1
III	3	3	2	B	1	$\overline{3}$	3
IV	2	2	3	C	3	8	8
V	3	1	2	D	8	$\overline{3}$	3
VI	1	3	2		1		

P. Arnan, L. Hofer, F.Mescia, AC, arXiv:1608.07832

Constraints from B_s mixing

Constructive interference, but current data and lattice results prefers destructive interference MILC, 1602.03560

Majorana representations: cancellations

Effect in B_s mixing

Representation I-A can explain $b \rightarrow s \mu \mu a t$ 3σ 2σ 1σ

Models for Simultaneous Explanations of Anomalies

2HDM with gauged Vectorial U(1) gauge group: $Q(e) = 0, Q(\mu) = 1, Q(\tau) = -1$ b-s couplings generated with vector-like quarks Two Higgs doublets $Q_{L_{\mu}-L_{\tau}}(\Psi_{2}) = 0$ $Q_{L_{\mu}-L_{\tau}}(\Psi_{1}) = 2$ Yukawa couplings $\mathcal{L}_{Y} \supset -\overline{\ell}_{f} Y_{i}^{\ell} \delta_{fi} \Psi_{2} e_{i} - \overline{\xi_{\tau u}} \overline{\ell}_{3} \Psi_{1} e_{2}$ μ, au μ, au $-\overline{Q}_{f}Y_{fi}^{u}\widetilde{\Psi}_{2}u_{i}-\overline{Q}_{f}Y_{fi}^{d}\Psi_{2}d_{i}+\text{h.c.}$ Θ_{P} diagonalizes the τ - μ block of the mass matrix

2HDM with gauged L_µ-

Horizontal charges: LHC limits

Leptoquark Explanations of $b \rightarrow s \mu \mu$ and $B \rightarrow D^{(*)} \tau v$

- Tree-level contribution to $b \to c\tau v$ but loop effect in $b \to s \mu^+ \mu^-$
 - can explain a_{μ}
 - Anarchic flavor structure
- M. Bauer, M. Neubert arXiv:1511.01900
- Tree-level contribution to $b \rightarrow s \mu^+ \mu^$ and $b \rightarrow c \tau \nu$

Hierarchical flavor structure, large third generations couplings, small first and second ones.
 R. Alonso, B. Grinstein, J. Camalich, 1505.05164
 R. Barbieri et al. 1512.01560

Tree-level Leptoquark Explanation

Misalignment between interaction and mass basis

 $\boldsymbol{\alpha}$

L. Calibbi, A.C. and T. Ota, PRL, arXiv:1506.02661

2HDM of type X See Talk of Eung Jin Chun
One Higgs doublet couples only to quarks the other Higgs doublet to leptons.

• Additional free parameters: $\tan \beta = v_1 / v_2$

 $\boldsymbol{\mathcal{E}}_{fi}^{u,\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \boldsymbol{\mathcal{E}}_{22}^{u,\ell} & \boldsymbol{\mathcal{E}}_{22}^{u,\ell} \end{pmatrix}$

$$m_{H}, m_{A^{0}}, m_{H^{\pm}}, m_{H^{0}}$$

$$\begin{array}{cccc} H_{2} \\ q_{i} & Y^{q_{i}} & q_{f} \\ H_{1} \\ \ell_{i} & Y^{\ell_{i}} & \ell_{f} \end{array}$$

Couplings to leptons are tan(β) enhanced

AC, Julian Heeck, Peter Stoffer. arXiv:1507.07567. PRL 2016

Prediction: $t \rightarrow Hc$

Branching ratio can even reach the percent level

AC, Julian Heeck, Peter Stoffer. arXiv:1507.07567. PRL 2016

L_µ-L_T model for a_{μ} and $h \rightarrow \tau \mu$ W. Altmannshofer, M. Carena, AC, 1604.08221 L_µ-L_T flavour symmetry Flavon mixes with the Higgs $\tau \rightarrow \mu \gamma$ is protected a_{μ} is not protected Effects in $h \rightarrow \mu \mu$

$L_{\mu}-L_{\tau}$ model for a_{μ} and $h \rightarrow \tau \mu$

• Can also explain $b \rightarrow s \mu \mu$ without violating $\tau \rightarrow 3 \mu$ bound

 10^{-6}

