





# Q-weak and searches of new physics in parity-violating *e*-*p* scattering

Ross Young University of Adelaide

Hadronic contributions to new physics searches (HC2NP) 25–30 September, 2016 Puerto de la Cruz, Tenerife, Spain

## Acknowledgements

- R. Carlini (JLab), J. Roche (Ohio) & the Q-weak Collaboration
- N. Hall (Adelaide→Manitoba→?), A. Thomas (Adelaide), W. Melnitchouk (JLab), P. Blunden (Manitoba)

## Acknowledgements

- R. Carlini (JLab), J. Roche (Ohi
- N. Hall (Adelaide→Manitoba→
   P. Blunden (Manitoba)



NEWS M

#### LIVE South Australia loses power as wild weather lashes state

All of South Australia is without power as a massive storm front hits the state, SA Power Networks says. Follow our blog for live updates.

#### State in darkness as power network fails



All of South Australia is without power and could be so until the early hours of tomorrow morning after a network failure. ),

## Outline

- Hadron Contributions
  - Strangeness FFs
- 2 New Physics Searches
  - Proton weak charge
  - Radiative corrections
- Current status of the Q-weak experiment





## Hadron contributions: Strange-quark form factors

## Electromagnetic currents of the nucleon

- Electromagnetic form factors characterise the charge a magnetisation distribution in the nucleon
- $G_E(Q^2) \qquad G_M(Q^2)$  Measure total response from all quarks  $G_E^p_{E,M} = +\frac{2}{3}G_{E,M}^u \frac{1}{3}G_{E,M}^d \frac{1}{3}G_{E,M}^d$  Charge symmetry: proton and neutron the "same":  $u \leftrightarrow d$

Neutron 
$$G_{E,M}^n = -\frac{1}{3}G_{E,M}^u + \frac{2}{3}G_{E,M}^d - \frac{1}{3}G_{E,M}^s$$

2 Equations — 3 Unkowns!

## Weak neutral form factor

$$G_{E,M}^{p,Z} = 2\left(1 - \frac{8}{3}\sin^2\theta_W\right)G_{E,M}^u + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^d + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^s$$

- Electroweak couplings differ from usual charges
  - Weak mixing angle:  $\sin^2 \theta_W$

#### Weak neutral form factor

$$G_{E,M}^{p,Z} = 2\left(1 - \frac{8}{3}\sin^2\theta_W\right)G_{E,M}^u + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^d + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^s$$

- Electroweak couplings differ from usual charges
  - Weak mixing angle:  $\sin^2 \theta_W$

$$G_{E,M}^{p} = +\frac{2}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{s}$$
$$G_{E,M}^{n} = -\frac{1}{3}G_{E,M}^{u} + \frac{2}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{s}$$

3 Equations — 3 Unknowns Can isolate strangeness!

## Weak neutral charge

• Q-weak

$$G_E^{p,Z} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_E^u + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_E^d + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_E^s$$

$$Q^2 \to 0 \qquad 2 \qquad 1 \qquad 0$$

$$G_E^{p,Z}(Q^2 \to 0) = 1 - 4\sin^2\theta_W$$

[tree level]

## Parity-violating electron scattering

Asymmetry between right- and left-hand polarised electrons



• Measure of interference between  $\gamma$  and  $Z^0$  exchange

#### Proton target

$$A^{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \begin{bmatrix} -G_F Q^2 \\ \pi \alpha \sqrt{2} \end{bmatrix} \underbrace{\epsilon G_E^{p\gamma} G_E^{pZ}}_{E} + \tau G_M^{p\gamma} G_M^{pZ} - \frac{1}{2} (1 - 4 \sin^2 \theta_W) \epsilon' G_M^{p\gamma} \tilde{G}_A^p}_{E}$$
  
Neutral-weak form factors

Assume charge symmetry:

$$G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^s$$
Proton weak charge Strangeness (tree level)

For extraction of strangeness, assume Standard Model!



Strangeness measurements



## Global analysis

- Explore sensitivity to Q2 cut
- Fit "Effective axial charge" (includes anapole)
  - Assume dipole form

$$\tilde{G}_A^N = \tilde{g}_A^N (1 + Q^2 / \Lambda^2)^{-2}$$

Parameterise strangeness

• Taylor expansion:  

$$G_E^s = \begin{bmatrix} \rho^s Q^2 + \rho_2^s Q^4 + \dots \\ \mu^s + \mu_2^s Q^2 + \dots \end{bmatrix}$$

"leading-order polynomial" "second-order polynomial"

$$\begin{split} G^s_E &= \rho^s Q^2 \left(\frac{1}{1+Q^2/\Lambda^2}\right)^2\\ G^s_M &= \mu^s \left(\frac{1}{1+Q^2/\Lambda^2}\right)^2 \end{split}$$









Green, Meinel et al. PRD(2015)

## Lattice QCD advances

Fantastic increase in precision in direct calculation!

-0.2

 $\mu^{s}(\mu_{N})$ 

He-

0.0

0.1

-0.1

perturbative chiral quark model [32]

parity-violating elastic scattering [34]

-0.3

dispersion analysis [33]

-0.4

-0.5



## 2 New Physics Searches: Weak charge of the proton



## 2 New Physics Searches: Weak charge of the proton

### PV electron-quark couplings



Constrained by lowenergy data!

$$\mathcal{L}_{\rm SM}^{\rm PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q}^{\rm SM} \bar{q} \gamma^{\mu} q$$



(electron axial) couplings *c*. 2006

#### Proton PV asymmetry

$$A^{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \begin{bmatrix} -G_F Q^2 \\ \pi \alpha \sqrt{2} \end{bmatrix} \underbrace{\epsilon G_E^{p\gamma} G_E^{pZ}}_{\epsilon (G_E^{p\gamma})^2 + \tau (G_M^{p\gamma})^2} + \frac{1}{2} (1 - 4\sin^2 \theta_W) \epsilon' G_M^{p\gamma} \tilde{G}_A^p}_{\epsilon (G_E^{p\gamma})^2 + \tau (G_M^{p\gamma})^2}$$
  
Neutral-weak form factors

Assume charge symmetry:

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^{s}$$
  
Proton weak charge Strangeness  
$$Q_{\text{weak}}^p = -2(2C_{1u} + C_{1d})$$







Update on C1q couplings

"Strangeness" measurements constraint electroweak interaction



Update on C1q couplings

"Strangeness" measurements constraint electroweak interaction



Update on C1q couplings

"Strangeness" measurements constraint electroweak interaction

#### Bounds on NP contact interaction



Erler et al., PRD68(2003)

#### Bounds on NP contact interaction

 $\mathcal{L}_{\rm SM}^{\rm PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q}^{\rm SM} \bar{q} \gamma^{\mu} q$ Erler et al., PRD68(2003)  $\mathcal{L}_{\rm NP}^{\rm PV} = \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$ 

Full isospin coverage for limits on new physics!

$$h_V^u = \cos \theta_h$$
  $h_V^d = \sin \theta_h$   
Data sets limits on  $\frac{g^2}{\Lambda^2}$ 

#### "Isospin" dependence of NP bounds



### "Isospin" dependence of NP bounds



#### Q-weak Experiment





Q-weak: precision measurement @ low Q<sup>2</sup>



Q-weak: precision measurement @ low  $Q^2$ 



## Turn on Q-weak and wait!



## Radiative corrections: $\gamma Z$ box

- Significant energy-dependent correction from inelastic hadronic states identified by Gorchtein & Horowitz PRL(2009)
  - Forward scattering limit evaluated through dispersion relation



## Q-weak experimentalist reaction!



## Q-weak experimentalist reaction!



Theorists: back to work

Cecle

Because as

NR

(h 0)= begin

sa for

Rethaces

(31)

## gamma-Z box

• Forwar  $\mathfrak{Rel}$   $\mathfrak{Sp}_{\gamma Z}^{V}(\mathbf{E})$  relation:  $\int_{0}^{\infty} dE' \frac{1}{E'^2 - E^2} \Im m \mathcal{O}_{\gamma Z}^{V}(E')$ 

 $O_{\gamma Z}^{V}$ 

$$\Re e \prod_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \int_0^\infty dE' \frac{1}{E'^2 - E^2} \,\,\Im m \prod_{\gamma Z}^{V}(E')$$

• Imaginary part given by:

$$\Im m \prod_{\gamma Z}^{V} (E) = \frac{\alpha}{(s - M^2)^2} \int_{W_{\pi}^2}^{s} dW^2 \int_{0}^{Q_{\max}^2} \frac{dQ^2}{1 + Q^2/M_Z^2} \times \left( F_1^{\gamma Z} + F_2^{\gamma Z} \frac{s \left(Q_{\max}^2 - Q^2\right)}{Q^2 (W^2 - M^2 + Q^2)} \right) \times \left( F_1^{\gamma Z} + F_2^{\gamma Z} \frac{s \left(Q_{\max}^2 - Q^2\right)}{Q^2 (W^2 - M^2 + Q^2)} \right) \right)$$

5

## gamma-Z box

• Forwart dit  $\mathcal{O}_{\gamma Z}^{V}(E)$  relation:  $\int_{0}^{\infty} dE' \frac{1}{E'^2 - E^2} \Im m \mathcal{O}_{\gamma Z}^{V}(E')$ 

 $O_{\gamma Z}^{V}$ 

$$\Re e \prod_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \int_0^\infty dE' \frac{1}{E'^2 - E^2} \, \Im m \prod_{\gamma Z}^{V}(E')$$

• Imaginary part given by:

$$\Im m \prod_{\gamma Z}^{V} (E) = \frac{\alpha}{(s - M^2)^2} \int_{W_{\pi}^2}^{s} dW^2 \int_{0}^{Q_{\max}^2} \frac{dQ^2}{1 + Q^2/M_Z^2} \times \left(F_1^{\gamma Z} + F_2^{\gamma Z}\right) \frac{s (Q_{\max}^2 - Q^2)}{Q^2 (W^2 - M^2 + Q^2)} \right) \times \left(F_1^{\gamma Z} + F_2^{\gamma Z} \frac{s (Q_{\max}^2 - Q^2)}{Q^2 (W^2 - M^2 + Q^2)}\right) \times \left(F_1^{\gamma Z} + F_2^{\gamma Z} \frac{s (Q_{\max}^2 - Q^2)}{Q^2 (W^2 - M^2 + Q^2)}\right)$$

5





Boundary matching:  $\gamma\gamma$  structure functions

$$F^{\gamma Z}$$
 from  $F^{\gamma \gamma}$  ?

• Region III (Scaling):

$$F_2^{\gamma} = \sum_q e_q^2 x(q + \bar{q})$$
$$F_2^{\gamma Z} = \sum_q 2e_q g_V^q x(q + \bar{q})$$

 $F_{1 2}^{\gamma Z} = F_{1 2}^{\gamma}$ 

- Region I (Resonances):
  - Bosted-Christy empirical parameterisation

$$\sigma_{T,L} = \sigma_{T,L}(\operatorname{res}) + \sigma_{T,L}(\operatorname{bg}) \\ \sigma_{T,L} = \sigma_{T,L}(\operatorname{res}) + \sigma_{T,L}(\operatorname{bg})$$

 $\sigma_{T,L}(\mathrm{res})$   $\bullet$  Resonances: Use PDG p and n helicity amplitudes to determine electroweak couplings

 $F_3^{\gamma Z}$ 

## BackgGonchteiatienal. background fits

VMD model of background contribution



• Use weak isospin rotation on  $\mathcal{WD}_{Z} \stackrel{\text{podeling}}{=} = (2 - 4\sin^2\theta_W) = 1 + Q_W^p$   $\sigma_V^{\gamma Z} = \kappa_V \sigma_V^{\gamma \gamma}$  $\kappa_\rho = 2 - 4\sin^2\theta_W, \ \kappa_\omega = -4\sin^2\theta_W, \ \kappa_\phi = 3 - 4\sin^2\theta_W$ 

$$\frac{\sigma^{\gamma Z}}{\sigma^{\gamma \gamma}} = \frac{\kappa_{\rho} + \kappa_{\omega} R_{\omega} + \kappa_{\phi} R_{\phi} + \kappa_C R_C}{1 + R_{\omega} + R_{\phi} + R_C}$$
<sup>11</sup>

 $R_V = \frac{\sigma^{\gamma^* p \to V p}}{\sigma^{\gamma^* p \to \rho p}} \quad \begin{array}{l} \text{production cross section ratio} \\ \text{for vector meson } V \text{ to } \rho \text{ meson} \end{array}$ 

## BackgGonchteiatienal. background fits

VMD model of background contribution



## Matching at boundary

• Unknown continuum "rotation" parameter constrained by matching to boundary with scaling region2



 $\kappa_C^T = 0.65 \pm 0.14, \quad \kappa_C^L = -1.3 \pm 1.7$ 



Consistent matching at boundaries



#### Comparison

GH (2009) SBMT (2010)  $(4.7^{+1.1}_{-0.4}) \times 10^{-3}$  Gorchtein *et al.* GHRM (2011)  $(5.4 \pm 2.0) \times 10^{-3}$ RC (2011)  $(5.7 \pm 0.9) \times 10^{-3}$ AJM (2013)  $(5.6 \pm 0.4) \times 10^{-3}$  Rislow & Carlson

## Comparison



## Comparison



Q-weak Experiment: First 4% of data collection

### Proton asymmetry measurements









Excellent agreement with SM

## Conclusions

- New knowledge of the flavour separation of nucleon form factors from precision electroweak measurements
  - Tremendous advance in lattice QCD computations
- Can achieve high-precision search for new physics in the environment of the proton!!
- Requires significant control of theoretical constraints
  - gamma-Z box was a surprise: important it was caught early
  - AJM model, constrained estimate of box contribution: ~0.5% on Q-weak
- We await full statistics of Q-weak to probe new physics into the multi-TeV region