Q-weak and searches of new physics in parity-violating e-p scattering

Ross Young
University of Adelaide

Hadronic contributions to new physics searches (HC2NP) 25-30 September, 2016
Puerto de la Cruz, Tenerife, Spain

Acknowledgements

- R. Carlini (JLab), J. Roche (Ohio) \& the Q-weak Collaboration
- N. Hall (Adelaide \rightarrow Manitoba \rightarrow ?), A. Thomas (Adelaide), W. Melnitchouk (JLab), P. Blunden (Manitoba)

Acknowledgements

- R. Carlini (JLab), J. Roche (Ohi
- N. Hall (Adelaide \rightarrow Manitoba \rightarrow P. Blunden (Manitoba)

live South Australia loses power as wild weather lashes state

All of South Australia is without power as a massive storm front hits the state, SA Power Networks says. Follow our blog for live updates.

State in darkness as power network fails

All of South Australia is without power and could be so until the early hours of tomorrow morning after a network failure.

Outline

- Hadron Contributions
- Strangeness FFs
- 2 New Physics Searches
- Proton weak charge
- Radiative corrections
- Current status of the Q-weak experiment

Hadron contributions: Strange-quark form factors

Electromagnetic currents of the nucleon

- Electromagnetic form factors characterise the charge a magnetisation distribution in the nucleon

$$
G_{E}\left(Q^{2}\right) \quad G_{M}\left(Q^{2}\right)
$$

- Measure total response from all quarks

$$
G_{E, M}^{p}=+\frac{2}{3} G_{E, M}^{u}-\frac{1}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{s}
$$

Proton

- Charge symmetry: proton and neutron the "same": $u \leftrightarrow d$

Neutron

$$
G_{E, M}^{n}=-\frac{1}{3} G_{E, M}^{u}+\frac{2}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{s}
$$

2 Equations - 3 Unkowns!

Weak neutral form factor

$$
G_{E, M}^{p, Z}=2\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{u}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{d}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{s}
$$

- Electroweak couplings differ from usual charges
- Weak mixing angle: $\sin ^{2} \theta_{W}$

Weak neutral form factor

$$
G_{E, M}^{p, Z}=2\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{u}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{d}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E, M}^{s}
$$

- Electroweak couplings differ from usual charges
- Weak mixing angle: $\sin ^{2} \theta_{W}$

$$
\begin{aligned}
& G_{E, M}^{p}=+\frac{2}{3} G_{E, M}^{u}-\frac{1}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{s} \\
& G_{E, M}^{n}=-\frac{1}{3} G_{E, M}^{u}+\frac{2}{3} G_{E, M}^{d}-\frac{1}{3} G_{E, M}^{s}
\end{aligned}
$$

3 Equations - 3 Unknowns
Can isolate strangeness!

Weak neutral charge

- Q-weak

$$
\begin{aligned}
& G_{E}^{p, Z}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W} G_{E}^{u}\right)\left(-1+\frac{4}{3} \sin ^{2} \theta_{W} G_{E}^{d}-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) \\
& Q^{2} \rightarrow 0 \quad 2 \\
& 1 \\
& 0
\end{aligned}
$$

$G_{E}^{p, Z}\left(Q^{2} \rightarrow 0\right)=1-4 \sin ^{2} \theta_{W}$
[tree level]

Parity-violating electron scattering

- Asymmetry between right- and left-hand polarised electrons

- Measure of interference between γ and Z^{0} exchange

Proton target

$$
A^{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=\left[\frac{-G_{F} Q^{2}}{\pi \alpha \sqrt{2}}\right] \frac{\left.\varepsilon G_{E}^{p y}\left(G_{E}^{D 2}\right)+\tau G_{M}^{p y} G_{M}^{p \mathcal{P}}\right)-\frac{1}{2}\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime} G_{M}^{p y} \tilde{G}_{A}^{p}}{\varepsilon\left(G_{E}^{p Y}\right)^{2}+\tau\left(G_{M}^{p \gamma}\right)^{2}}
$$

Neutral-weak form factors
Assume charge symmetry:

$$
G_{E, M}^{p Z}=\underset{\text { Proton weak charge }}{\left(1-4 \sin ^{2} \theta_{W}\right)} G_{E, M}^{p \gamma}-G_{E, M}^{n \gamma}-\underset{\text { Strangeness level) }}{G_{E, M}^{s}}
$$

For extraction of strangeness, assume Standard Model!

Strangeness measurements

G0 Experiment Broad Q2 coverage

Global analysis

- Explore sensitivity to Q2 cut
- Fit "Effective axial charge" (includes anapole)
- Assume dipole form

$$
\tilde{G}_{A}^{N}=\tilde{g}_{A}^{N}\left(1+Q^{2} / \Lambda^{2}\right)^{-2}
$$

- Parameterise strangeness
- Taylor expansion:

$$
\begin{gathered}
G_{E}^{s}=\rho^{s} Q^{2}+\rho_{2}^{s} Q^{4}+\ldots \\
G_{M}^{s}=\mu^{s}+\mu_{2}^{s} Q^{2}+\ldots \quad \text { "leading-order polynomial" } \\
\text { "second-order polynomial" }
\end{gathered}
$$

- Dipole:

$$
\begin{aligned}
G_{E}^{s} & =\rho^{s} Q^{2}\left(\frac{1}{1+Q^{2} / \Lambda^{2}}\right)^{2} \\
G_{M}^{s} & =\mu^{s}\left(\frac{1}{1+Q^{2} / \Lambda^{2}}\right)^{2}
\end{aligned}
$$

GMs-GEs
Leading-order Taylor
$Q_{\max }^{2}=0.3 \mathrm{GeV}^{2}$

HAPPEX (2006)
New measurement after global analysis

RDY et al. PRL(2007)
Combined global analysis

For latest global analysis,
see e.g.
González-Jiménez et al. PRD(2014)

Green, Meinel et al. PRD(2015)

Fantastic increase in precision in direct calculation!

2 New Physics Searches:
Weak charge of the proton

2 New Physics Searches:
Weak charge of the proton

PV electron-quark couplings

Constrained by lowenergy data!

$$
\mathcal{L}_{\mathrm{SM}}^{\mathrm{PV}}=-\frac{G_{F}}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} C_{1 q}^{\mathrm{SM}} \bar{q} \gamma^{\mu} q
$$

C1q quark-vector (electron axial) couplings c. 2006

Proton PV asymmetry

$$
A^{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=\left[\frac{-G_{F} Q^{2}}{\pi \alpha \sqrt{2}}\right] \frac{\varepsilon G_{E}^{p \gamma}\left(G_{E}^{p z}\right)+\tau G_{M}^{p \gamma}\left(G_{M}^{p z}\right)-\frac{1}{2}\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime} G_{M}^{p \gamma} \tilde{G}_{A}^{p}}{\varepsilon\left(G_{E}^{p \gamma}\right)^{2}+\tau\left(G_{M}^{p \gamma}\right)^{2}}
$$

Neutral-weak form factors
Assume charge symmetry:

$$
\begin{gathered}
4 G_{E, M}^{p Z}=\underset{\text { Proton weak charge }}{\left(1-4 \sin ^{2} \theta_{W}\right)} G_{E, M}^{p \gamma}-G_{E, M}^{n \gamma}-\underset{E, M}{G_{\text {Geak }}^{s}} \quad \text { Strangeness } \\
Q_{\text {weak }}^{p}=-2\left(2 C_{1 u}+C_{1 d}\right)
\end{gathered}
$$

Proton PV asymmetry

$$
A^{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=\left[\frac{-G_{F} Q^{2}}{\pi \alpha \sqrt{2}}\right] \frac{\varepsilon G_{E}^{p \gamma}\left(G_{E}^{p z}\right)+\tau G_{M}^{p \gamma}\left(G_{M}^{p z}\right)-\frac{1}{2}\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime} G_{M}^{p \gamma} \tilde{G}_{A}^{p}}{\varepsilon\left(G_{E}^{p \gamma}\right)^{2}+\tau\left(G_{M}^{p \gamma}\right)^{2}}
$$

Neutral-weak form factors
Assume charge symmetry:

$$
\begin{gathered}
4 G_{E, M}^{p Z}=\underset{\text { Proton weak charge }}{\left(1-4 \sin ^{2} \theta_{W}\right)} G_{E, M}^{p \gamma}-G_{E, M}^{n \gamma}-\underline{G_{E, M}^{s}} \\
Q_{\text {weak }}^{p}=-2\left(2 C_{1 u}+C_{1 d}\right)
\end{gathered}
$$

Use data to constrain the parameters of the electroweak theory

Proton weak 0.4

$$
\begin{aligned}
Q_{W}^{p}(\mathrm{PVES}) & =0.057 \pm 0.017 \\
Q_{W}^{p}(\mathrm{SM}) & =0.0710 \pm 0.0007
\end{aligned}
$$

Proton extrapolation Weak charge: $\sim 24 \%$

Update on C1q couplings
"Strangeness" measurements constraint electroweak interaction

Update on C1q couplings
"Strangeness" measurements constraint electroweak interaction

Update on C1q couplings
"Strangeness" measurements constraint electroweak interaction

Bounds on NP contact interaction

$$
\mathcal{L}_{\mathrm{SM}}^{\mathrm{PV}}=-\frac{G_{F}}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} C_{1 q}^{\mathrm{SM}} \bar{q} \gamma^{\mu} q
$$

Erler et al., PRD68(2003)
$\mathcal{L}_{\mathrm{NP}}^{\mathrm{PV}}=\frac{g^{2}}{4 \Lambda^{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} h_{V}^{q} \bar{q} \gamma^{\mu} q$

Bounds on NP contact interaction

$\mathcal{L}_{\mathrm{SM}}^{\mathrm{PV}}=-\frac{G_{F}}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} C_{1 q}^{\mathrm{SM}} \bar{q} \gamma^{\mu} q$
Erler et al., PRD68(2003)
$\mathcal{L}_{\mathrm{NP}}^{\mathrm{PV}}=\frac{g^{2}}{4 \Lambda^{2}} \bar{e} \gamma_{\mu} \gamma_{5} e \sum_{q} h_{V}^{q} \bar{q} \gamma^{\mu} q$
Full isospin coverage for limits on new physics!

$$
h_{V}^{u}=\cos \theta_{h} \quad h_{V}^{d}=\sin \theta_{h}
$$

Data sets limits on $\frac{g^{2}}{\Lambda^{2}}$
"Isospin" dependence of NP bounds

"Isospin" dependence of NP bounds

New physics scale $>0.9 \mathrm{TeV}$! (from 0.4 TeV)

Q-weak Experiment

Q-weak: precision measurement @ low Q²

HAPPEX: previous most precise measurement

Q-weak: precision measurement @ low Q ${ }^{2}$

HAPPEX: previous most precise measurement

Q-weak: precision measurement @ low Q2

$$
A_{\mathrm{PV}} \sim-270 \mathrm{ppb} \pm 2.5 \% \quad \Rightarrow \Delta Q_{W}^{p} \sim 4 \%
$$

Turn on Q-weak and wait!

Turn on Q-weak and wait!

Radiative corrections: γZ box

- Significant energy-dependent correction from inelastic hadronic states identified by Gorchtein \& Horowitz PRL(2009)
- Forward scattering limit evaluated through dispersion relation

Q-weak experimentalist reaction!

Q-weak experimentalist reaction!

gamma-Z box

- Forward dispersion relation:

$$
\Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)
$$

- Imaginary part given by:

$$
\begin{array}{r}
\Im m \square_{\gamma Z}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \\
\times\left(F_{1}^{\gamma Z}+F_{2}^{\gamma Z} \frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}\right)
\end{array}
$$

gamma-Z box

- Forward dispersion relation:

$$
\Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)
$$

- Imaginary part given by:

$$
\begin{array}{r}
\Im m \square_{\gamma Z}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}} \\
\times F_{1}^{\gamma Z}+F_{2}^{\gamma Z} \frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}
\end{array}
$$

γZ interference structure functions

Boundary matching: $\gamma \gamma$ structure functions

$F^{\gamma Z}$ from $F^{\gamma \gamma} ?$

- Region III (Scaling):

$$
\begin{aligned}
F_{2}^{\gamma} & =\sum_{q} e_{q}^{2} x(q+\bar{q}) \\
F_{2}^{\gamma Z} & =\sum_{q} 2 e_{q} g_{V}^{q} x(q+\bar{q})
\end{aligned}
$$

- Region I (Resonances):
- Bosted-Christy empirical parameterisation

$$
\sigma_{T, L}=\sigma_{T, L}(r e s)+\sigma_{T, L}(b g)
$$

- Resonances: Use PDG p and n helicity amplitudes to determine electroweak couplings

Background rotation

- VMD model of background contribution

- Use weak isospin rotation on VMD model

$$
\begin{aligned}
& \sigma_{V}^{\gamma Z}= \kappa_{V} \sigma_{V}^{\gamma \gamma} \\
& \kappa_{\rho}=2-4 \sin ^{2} \theta_{W}, \quad \kappa_{\omega}=-4 \sin ^{2} \theta_{W}, \kappa_{\phi}=3-4 \sin ^{2} \theta_{W} \\
& \frac{\sigma^{\gamma Z}}{\sigma^{\gamma \gamma}}= \frac{\kappa_{\rho}+\kappa_{\omega} R_{\omega}+\kappa_{\phi} R_{\phi}+\kappa_{C} R_{C}}{1+R_{\omega}+R_{\phi}+R_{C}} \\
& R_{V}=\frac{\sigma^{\gamma^{*} p \rightarrow V p}}{\sigma^{\gamma^{*} p \rightarrow \rho p}} \quad \text { production cross section ratio } \\
& \text { for vector meson } V \text { to } \rho \text { meson }
\end{aligned}
$$

Background rotation

- VMD model of background contribution

- Use weak isospin rotation on VMD model

$$
\begin{aligned}
\sigma_{V}^{\gamma Z}= & \kappa_{V} \sigma_{V}^{\gamma \gamma} \\
& \kappa_{\rho}=2-4 \sin ^{2} \theta_{W}, \kappa_{\omega}=-4 \sin ^{2} \theta_{W}, \kappa_{\phi}=3-4 \sin ^{2} \theta_{W} \\
\frac{\sigma^{\gamma Z}}{\sigma^{\gamma \gamma}}= & \frac{\kappa_{\rho}+\kappa_{\omega} R_{\omega}+\kappa_{\phi} R_{\phi} \kappa_{C} R_{C}}{1+R_{\omega}+R_{\phi}+R_{C}} \text { continuum parameter } \\
& R_{V}=\frac{\sigma^{\gamma^{*} p \rightarrow V p}}{\sigma^{\gamma^{*} p \rightarrow \rho p}} \quad \begin{array}{l}
\text { production cross section ratio } \\
\text { for vector meson } V \text { to } \rho \text { meson }
\end{array}
\end{aligned}
$$

Matching at boundary

- Unknown continuum "rotation" parameter constrained by matching to boundary with scaling region

Consistent matching at boundaries

Hall et al., PRD(2013)
Final result
AJM: Adelaide-JLab-Manitoba

Comparison

GH (2009)
$\operatorname{SBMT}(2010)\left(4.7_{-0.4}^{+1.1}\right) \times 10^{-3}$ Gorchtein et al.
GHRM (2011) $(5.4 \pm 2.0) \times 10^{-3}$
$\mathrm{RC}(2011)(5.7 \pm 0.9) \nprec 10^{-3}$
AJM (2013) $(5.6 \pm 0.4) \times 10^{-3}$ Rislow \& Carlson

Comparison

GH (2009)
$\operatorname{SBMT}(2010)\left(4.7_{-0.4}^{+1.1}\right) \times 10^{-3}$ Gorchtein et al.
GHRM (2011) $5.4 \pm 2.0) \times 10^{-3}$
RC (2011) $5.7 \pm 0.9) \nprec 10^{-3}$
AJM (2013) $5.6 \pm 0.4) \times 10^{-3}$ Rislow \& Carlson
Good agreement on central value

Comparison

GH (2009)
$\operatorname{SBMT}(2010)\left(4.7_{-0.4}^{+1.1}\right) \times 10^{-3}$ Gorchtein et al.
GHRM (2011) $5.4 \pm 2.0 \times 10^{-3}$
RC (2011) $5.7 \neq 0.9<10^{-3}$
AJM (2013) $5.6 \pm 0.4 \times 10^{-3}$ Rislow \& Carlson

Good agreement on central value

A little debate over uncertainty

Q-weak Experiment:
First 4\% of data collection

Proton asymmetry measurements

- Forward scattering projection

Weak charge
Q-weak, PRL(2013) extrapolation

Weak charges

Conclusions

- New knowledge of the flavour separation of nucleon form factors from precision electroweak measurements
- Tremendous advance in lattice QCD computations
- Can achieve high-precision search for new physics in the environment of the proton!!
- Requires significant control of theoretical constraints
- gamma-Z box was a surprise: important it was caught early
- AJM model, constrained estimate of box contribution: $\sim 0.5 \%$ on Q-weak
- We await full statistics of Q-weak to probe new physics into the multi-TeV region

