The muon magnetic moment in new physics

Hyejung Stöckinger-Kim

TU Dresden

29. Sept. HC2NP, Tenerife, 2016

Motivation

The latest $(g-2)_{\mu}$ experimental result at BNL:

 $a_{\mu}^{{\sf E821}} = (11659208.9 \pm 6.3) imes 10^{(-10)}$ [Bennett et al. '06]

$$\Delta a_{\mu}^{(\mathsf{E821-SM})} = \begin{cases} (28.7 \pm 8.0) \times 10^{-10} \,_{\text{[Davier et al.]}} \\ (26.1 \pm 8.0) \times 10^{-10} \,_{\text{[Hagiwara et al.]}} \end{cases}$$

 $3\sim 4\sigma$ \Rightarrow New physics

New experiment at Fermilab(E969): ~ 0.14 ppm Current accuracy of a_{μ}^{SM} : 0.42 ppm [Davier et al. 10]

need to improve the accuracy of all aspects of the theory prediction: *higher order loop corrections required.* 2HDM contributions

- 2 MSSM contributions
- 8 Radiative muon mass generation

Why 2HDM and MSSM?

- Question of the possibility of enlarged scalar sector
- Extension in EWSB sector
- 2HDM: the simplest extension to the SM, compatible with current experimental results
- MSSM: still best motivated, the discoverd Higgs boson with $M_h=125~{\rm GeV}$ in agreement with SUSY prediction
- explains the anomalous magnetic moment of muon
- suggest solutions for other physical problems, e.g. Dark Matter

$$a_{\mu}^{\rm NP}=C_{\rm NP}\frac{m_{\mu}^2}{M_{\rm NP}^2}\text{, }C_{\rm NP}\text{:}$$
 model dependent

2HDM	MSSM	Radiative m_{μ} generation	
•2 Higgs doublets	 Supersymmetry 	• $v_d \rightarrow 0$, $\tan \beta \rightarrow \infty$	
$\bullet h, H, A, H^\pm$	•Sparticles: $ ilde{\chi}^{0/\pm}$, $ ilde{\mu}$, $ ilde{ u}_{\mu}$	$ullet m_\mu = \delta m_\mu (ilde\chi^{0/\pm}, ilde\mu, ilde u_\mu)$	
• α^2 correction	• α^1 correction	• α^0 correction	
$\bullet M_{\rm NP} < 100~{\rm GeV}$	$\bullet M_{\rm NP} \sim 5 \times 10^2 {\rm GeV}$	$\bullet M_{ m NP} \sim 10^3~{ m GeV}$	

2HDM

2HDM

Two Higgs doublets with same hypercharge: $\phi_1, \phi_2, v^2 = v_1^2 + v_2^2, v = 246 \text{ GeV}$ $\Phi_v = \left(\begin{smallmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+S_1+iG^0) \end{smallmatrix} \right), \Phi_\perp = \left(\begin{smallmatrix} H^+ \\ \frac{1}{\sqrt{2}}(S_2+iA) \end{smallmatrix} \right)$ $\left(\begin{smallmatrix} H \\ h \end{smallmatrix} \right) = \left(\begin{smallmatrix} \cos(\beta-\alpha) & -\sin(\beta-\alpha) \\ \sin(\beta-\alpha) & \cos(\beta-\alpha) \end{smallmatrix} \right) \left(\begin{smallmatrix} S_1 \\ S_2 \end{smallmatrix} \right), \tan \beta \equiv \frac{v_2}{v_1}$ h and H CP-even mass eigenstates

[Craig, Galloway, Thomas '13][Haber '13]

$$\begin{split} V(\phi_{1},\phi_{2}) &= m_{11}^{2} \phi_{1}^{\dagger} \phi_{1} + m_{22}^{2} \phi_{2}^{\dagger} \phi_{2} \\ &- m_{12}^{2} (\phi_{1}^{\dagger} \phi_{2} + \phi_{2}^{\dagger} \phi_{1}) \\ &+ \frac{\lambda_{1}}{2} (\phi_{1}^{\dagger} \phi_{1})^{2} + \frac{\lambda_{2}}{2} (\phi_{2}^{\dagger} \phi_{2}^{2})^{2} \\ &+ \lambda_{3} \phi_{1}^{\dagger} \phi_{1} \phi_{2}^{\dagger} \phi_{2} + \lambda_{4} \phi_{1}^{\dagger} \phi_{2} \phi_{2}^{\dagger} \phi_{1} \\ &+ \frac{\lambda_{5}}{2} \{ (\phi_{1}^{\dagger} \phi_{2})^{2} + (\phi_{2}^{\dagger} \phi_{1})^{2} \} \end{split}$$

CP conserving: real
$$m_{12}^2$$
 and λ_5
 $m_{11}^2, m_{22}^2, m_{12}^2, \lambda_1 \cdots \lambda_5$
 \downarrow
 $M_h, M_H, M_A, M_{H^{\pm}}$ β, α v λ_1

Small deviation from the SM-limit: $\beta - \alpha = \frac{\pi}{2} - \eta.$

allowed from LHC, $\sin(\beta-\alpha)\sim 0.7$

2HDM: Yukawa interaction in the Aligned 2HDM

[Pich, Tuzón '09]

$\mathcal{L}_Y = \sqrt{2}H^+ (\bar{u}[V_{CKM} \boldsymbol{y}_d^A P_{R} + \boldsymbol{y}_u^A V_{CKM} P_{L}]d$
$+ar{ u} y_l^A P_{R} l)$
$-\sum_{\mathcal{S},f}\mathcal{S}ar{f} \boldsymbol{y}^{\mathcal{S}}_{f}P_{R}f{+}h.c$

$$\begin{split} y_{f}^{\mathcal{S}} &= \frac{Y_{f}^{\mathcal{S}}}{v} M_{f}, \ \mathcal{S} \in h, H, A\\ M_{f} &= 3 \times 3 \text{ mass matrix}, \\ f &= u, d, l \end{split}$$

Туре	I	II	Х	Y		
u	Φ_2	Φ_2	Φ_2	Φ_2		
d	Φ_2	Φ_1	Φ_2	Φ_1		
l	Φ_2	Φ_1	Φ_1	Φ_2		
ζ_u	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$		
ζ_d	$\cot \beta$	$-\tan\beta$	$\cot \beta$	$-\tan\beta$		
ζ_l	$\cot \beta$	$-\tan\beta$	$-\tan\beta$	$\cot eta$		
Type II: MSSM-like						
Type 2	K: lep	ton-specifi	с Туре	Y: flippe		

$$\begin{split} Y_f^h &= \sin(\beta - \alpha) + \cos(\beta - \alpha)\zeta_f = 1 + \eta\zeta_f, \\ Y_f^H &= \cos(\beta - \alpha) - \sin(\beta - \alpha)\zeta_f = -\zeta_f + \eta, \\ Y_f^A &= -\Theta_f^A\zeta_f, \Theta_{d,l}^A = 1, \Theta_u^A = -1 \end{split}$$
 $(\beta - \alpha = \frac{\pi}{2} - \eta)$

2HDM: One-loop contribution

$$\begin{split} a_{\mu}^{\text{2HDM},1} &\simeq \left(\frac{\zeta_{I}}{100}\right)^{2} \times 10^{-10} \left\{ \frac{3.3 + 0.5 \ln(\hat{x}_{H})}{\hat{x}_{H}^{2}} - \frac{3.1 + 0.5 \ln(\hat{x}_{A})}{\hat{x}_{A}^{2}} - \frac{0.04}{\hat{x}_{H\pm}^{2}} \right\}, \ \hat{x}_{S} \equiv \frac{M_{S}}{100 \text{ GeV}} \\ \\ a_{\mu}^{\text{2HDM},1} &\approx 0.13 \times 10^{-10} \text{ for } M_{H} = M_{A} = M_{H^{\pm}} = 100 \text{ GeV} \\ a_{\mu}^{\text{2HDM},1} &\approx 0.03 \times 10^{-10} \text{ for } M_{H} = M_{A} = M_{H^{\pm}} = 200 \text{ GeV} \end{split}$$

2-loop Feynman diagrams without Yukawa couplings or with only one Yukawa coupling provide terms $\propto m_{\mu}^2 \Rightarrow a_{\mu}^{2\text{HDM},2} > a_{\mu}^{2\text{HDM},1}$

2HDM: Fermionic contribution

- Neutral and charged Higgs contributions with fermion inner loops
- $y_{\mu}y_f \longrightarrow \zeta_l \zeta_f$
- $a_{\mu}^{2 {\rm HDM, \ F}} \propto lpha^2 \left(rac{m_{\mu}^2}{M_S^2}
 ight) m_f^2 \zeta_l \zeta_f$
- Constraint, $\zeta_u \simeq 1 \Rightarrow \zeta_l^2$ term with τ -loop is dominant.
- 50 GeV < M_A < 100 GeV, $\zeta_l = 100$, $a_{\mu}^{\text{2HDM, F}} = (15 \cdots 30) \times 10^{-10}$

2HDM: Bosonic contribution

- Yukawa interaction, $y_\mu \propto m_\mu \zeta_l$
- Higgs-gauge coupling
- $\propto \sin(\beta \alpha)$ for h
- $\propto \cos(\beta \alpha)$ for *H*
 - \blacktriangle including Triple Higgs coupling $(\tan \beta)$

Diagrams with $(\bullet \times \bullet)$: independent of ζ_l *H*-terms are suppressed by $\cos(\beta - \alpha)^2 = \eta^2$ Diagrams with $(\bullet \times \blacktriangle)$: $\propto \zeta_l$, enhanced by $\tan \beta$.

2HDM: Bosonic contribution

$$a_{\mu}^{\rm B} = a_{\mu}^{\rm EW \; add.} + a_{\mu}^{\rm non-Yuk} + a_{\mu}^{\rm Yuk}$$

 $a_{\mu}^{\rm non-Yuk}$

$$S = H, A,$$

 $S^{\pm} = H^{\pm}$
no dependence on $\tan \beta$
 M_A -dependency

 $\mathcal{S} = H$

 $S = h, H, A, S^{\pm} = H^{\pm}$ triple Higgs couplings \Rightarrow dependence on $\tan \beta$

 $\begin{aligned} \mathcal{S} &= h \\ a_{\mu}^{\mathrm{EW} \; \mathrm{add.}} &= 2.3 \times 10^{-11} \eta \zeta_l \end{aligned}$

2HDM: Numerical analysis

 $\eta = -0.1$

125 GeV<
 $M_{H}\!<\!500$ GeV, $M_{A}\!<\!500$ GeV, 80 GeV
 $\!M_{H}\!\pm\!<\!500$ GeV

 $1{<}{\tan\beta}{<}100,\,|\eta|{<}0.1,\,0{<}\lambda_1{<}4\pi,\,|\zeta_u|{<}1.2,\,|\zeta_d|{<}50,\!|\zeta_l|{<}100$

blue/red points before/after applytin constraints: Vacuum stability, Global minimum Perturbativity, EW and experimental constraints

 $a^{\mathsf{B}}_{\mu} = (2 \cdots 4) \times 10^{-10}$: reduces the uncertainty

[Cherchiglia, Kneschke, Stöckinger, S-K '16]

2HDM: Numerical analysis

$$\eta = -0.1$$

Benchmark points: $M_A = 50 \text{ GeV}, M_H = M_{H^{\pm}} = 200 \text{ GeV},$ $\zeta_l = -100, \zeta_u = \zeta_d = 0.01.$ (compatible with $\tan \beta = 100$ for Type X) $\checkmark \tan \beta = 2, \lambda_1 = 4\pi$

$$\forall \tan \beta = 2, \ \lambda_1 = 2\pi$$

$$\perp \tan \beta = 100$$

2HDM: Numerical analysis

red:
$$\eta = 0$$

blue: $\eta = 0.1$
green: $\eta = -0.1$

$$\begin{split} M_A &= 50 \; {\rm GeV}, \; M_{H^\pm} = 200 \; {\rm GeV}, \\ \zeta_l &= -100, \; \zeta_u = \zeta_d = 0.01 \\ \tan\beta &= 100, \; \lambda_1 = 4\pi \end{split}$$

$$\begin{split} a^{\mathsf{B}}_{\mu}|_{\eta=0} &\approx -6.3 \times 10^{-7} M_{H}^{2} \zeta_{l} \tan \beta \\ &\times \mathcal{F}(M_{H}, M_{H^{\pm}}) \end{split}$$

$$\begin{split} \mathcal{F}(M_H, M_{H^\pm}) \propto \frac{1}{M_{H^\pm}^2} \\ \propto \frac{M_H^2}{2} \text{ from } m_{12}^2 \\ \text{From EW constraint:} \\ \text{Small splitting between } M_H \text{ and } M_{H^\pm}\text{:} \\ \text{all values allowed for } M_A \\ \text{Large splitting between } M_H \text{ and } M_{H^\pm}\text{:} \\ M_A \text{ almost degenerate with } M_{H^\pm} \end{split}$$

MSSM

$$\mathcal{L}_{\text{int}} = \tilde{\nu}^{\dagger} \overline{\chi^{-}} (c_{\text{L}}^{*} P_{\text{L}} + c_{\text{R}} P_{\text{R}}) \mu + \tilde{\mu}^{\dagger} \overline{\chi^{0}} (n_{\text{L}}^{*} P_{\text{L}} - n_{\text{R}} P_{\text{R}}) \mu + \text{h.c}$$

One-loop contribution

[Fayet '80]...[Moroi '96]

Parameter dependence: μ , M_1 , M_2 , M_E , M_L , $\tan \beta$ One-loop correction dominant: $\mathcal{O}(\alpha)$ enhanced by $\tan \beta$, dependent on sign(μ)

MSSM: One-loop corrections

One-loop contribution

$$\begin{split} a_{\mu}^{\text{SUSY},1\text{L}} \propto \alpha \frac{m_{\mu}^2}{M_{\text{SUSY}}^2} \tan\beta \text{sign}(\mu) \\ \downarrow \\ a_{\mu}^{\text{SUSY},1\text{L}} \approx 13 \times 10^{-10} \tan\beta \text{sign}(\mu) \left(\frac{100 \text{ GeV}}{M_{\text{SUSY}}}\right)^2 \end{split}$$

 $a_{\mu}^{\rm SUSY,1L} \approx 26 \times 10^{-10}$, for $\tan \beta = 50$ and $M_{\rm SUSY} = 500$ GeV.

MSSM: Two-loop corrections

SUSY two-loop corrections to SM 1L diagrams: $\sim 10^{-10}$

[Chen, Geng '01], [Arhib, Baek '02], [Heinemeyer, Stöckinger,

Weiglein '03, '04]

Photonic corrections to SUSY 1L diagrams:

[v. Weitershausen, Schäfer, Stöckinger, S-K '10] $\mu, M_1, M_2, M_E, M_L, aneta$

 $a_{\mu}^{2\mathsf{L},(\gamma)} \approx rac{4lpha}{\pi} \log rac{m_{\mu}}{M_{\mathsf{SUSY}}} a_{\mu}^{\mathsf{SUSY, 1}}$,

 $-(7\cdots 9)\%$ corrections

for $100 < M_{SUSY} < 1000 \text{ GeV}$

fermion/sfermion two-loop corrections

[Fargnoli, Gnendiger, PaBehr, Stöckinger, S-K, '13] $M_{Q_i}, M_{U_i}, M_{D_i}, M_{L_i}, M_{E_i}, i \in \{1,2,3\}$ non-decoupling behavior: term $\propto \ln(\frac{m_{f}^2}{m_{\tilde{\nu}_{\mu}}^2})$, when large splitting between $m_{\tilde{f}}$ and $m_{\tilde{\nu}_{\mu}}$.

MSSM: Non-decoupling behavior of $f\tilde{f}$ -loop corrections

- $M_2, m_{\tilde{\mu}_{\mathsf{L}}} >> M_1, m_{\tilde{\mu}_{\mathsf{R}}}$
- $M_1 = 140 \text{ GeV}$
- $m_{\tilde{\mu}_{\mathsf{R}}} = 200 \text{ GeV}$
- $M_2 = m_{\tilde{\mu}_{L}} = 2000 \text{ GeV}$

•
$$\mu = -160$$
, $\tan \beta = 40$

•
$$\mathcal{O}(10\cdots 30\%)$$

Radiative muon mass generation

$$v_d \rightarrow 0$$
, $\tan \beta \equiv \frac{v_u}{v_d} \rightarrow \infty$, $m_{\mu}^{\text{tree}} = y_{\mu} v_d \Rightarrow 0$

•
$$m_{\mu}$$
 generated via coupling to v_u

[Dobrescu, Fox '10][Altmannshofer, Straub '10]

•
$$m_{\mu} \equiv \frac{y_{\mu}v_d}{y_{\mu}v_d} + y_{\mu}v_{\mu}\Delta_{\mu}^{\mathrm{red}}$$

• y_{μ} obtained from one-loop self energy.

•
$$a_{\mu}^{\text{SUSY}} = \frac{y_{\mu}v_{u}}{m_{\mu}}a_{\mu}^{\text{red}}$$

• $a_{\mu}^{\text{SUSY}} \propto y_{\mu}$ and $m_{\mu} \propto y_{\mu}$

$$\Rightarrow a_{\mu}^{\text{SUSY}} = \frac{a_{\mu}^{\text{red}}}{\Delta_{\mu}^{\text{red}}}$$
[1504.05500][Bach, Park, Stöckinger,S-K

$a_{\mu}^{\text{red}} = \Delta_{\mu}^{\text{red}} =$	$a_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu}) + \Delta_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu}) +$	$a_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\mu}_{L}) + \Delta_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\mu}_{L}) +$	$a_{\mu}^{\text{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{L}) + \Delta_{\mu}^{\text{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{L}) +$	$a_{\mu}^{\text{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{R}) + \Delta_{\mu}^{\text{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{R}) +$	$a_{\mu}^{\text{red}}(\tilde{B}\tilde{\mu}_{L}\tilde{\mu}_{R})$ $\Delta_{\mu}^{\text{red}}(\tilde{B}\tilde{\mu}_{L}\tilde{\mu}_{R})$
· ·	10 T 10 T	,	<i>r</i> · · ·	, · · ·	, · · ·

- $a_{\mu}^{\rm MSSM}$ sign depends on the mass ratios.
- $\operatorname{sgn}(\mu)$ and $\tan\beta$ dependence disappears.
- α^0 order correction
- $a_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu})$ and $\Delta_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu})$ have opposite signs.
- For the equal mass case, $a_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu}) \text{ and } \Delta_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu}) \text{ dominate}$ \implies negative a_{μ}^{MSSM}

$$\begin{split} a^{\text{MSSM}}_{\mu} &= \frac{a^{\text{red}}_{\mu}}{\Delta^{\text{red}}_{\mu}} \\ \text{equal mass case} \\ &\approx \frac{g^2_1 + 5g^2_2}{3(g^2_1 - 3g^2_2)} \frac{m^2_{\mu}}{M^2_{\text{SUSY}}} \\ &\approx -72 \times 10^{-10} \left(\frac{1\text{TeV}}{M_{\text{SUSY}}}\right)^2 \end{split}$$

white: positive for $M_2 > 0$, $M_2 < 0$ red: negative for $M_2 > 0$ blue: negative for $M_2 < 0$ μ_{R} -dominance: top middle $\tilde{B}\tilde{H}\tilde{\mu}_{\mathrm{R}}$ dominant

At the center, the equal mass case, $a_{\mu}^{\rm MSSM}\approx -72\times 10^{-10}\left(\frac{1\,{\rm TeV}}{M_{\rm SUSY}}\right)^2$

Large μ -limit: right end $\tilde{B}\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm R}$ dominant

What can be the $C\text{-value}/a_{\mu}^{\mathrm{MSSM}}\text{for the given parameter ratio space?}$

Radiative muon mass generation

$$a_{\mu}\approx -72\times 10^{-10} \left(\begin{array}{c} 1 {\rm Tev} \\ M_{\rm SUSY} \end{array} \right)^2$$

$$\begin{split} |\mu| \gg |M_1| = m_{\mathsf{L}} = m_{\mathsf{R}} \equiv M_{\mathsf{SUSY}} \\ m_{\mathsf{L}} \gg |\mu| = |M_1| = m_{\mathsf{R}} \equiv M_{\mathsf{SUSY}} \\ a_\mu \approx 37 \times 10^{-10} \left(\frac{1 \text{TeV}}{M_{\mathsf{SUSY}}}\right)^2 \end{split}$$

https://gm2calc.hepforge.org/

[Athron et. al. '15]

$$a_{\mu}^{\text{SUSY}} = \left(a_{\mu}^{1\text{L}} + a_{\mu}^{2\text{L}(\text{a})} + a_{\mu}^{2\text{L, photonic}} + a_{\mu}^{2\text{L, }f\tilde{f}}\right)_{\tan\beta\text{-resummed}}$$

- A stand alone program to evaluate $(g-2)_{\mu}$ in MSSM.
- includes all known loop corrections, particularily $\tilde{f}f$ 2-loop.
- allows $\tan \beta \to \infty$.
- computing in on-shell scheme: no error caused by $m_{\tilde{f}}$ like in $\overline{\text{DR}}$ mass.
- in standard SLHA input

Summary

2HDM

Radiative m_{μ} generation

