

Hadronic Light-by-Light corrections to $(g-2)_{\mu}$

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

Marc Vanderhaeghen

HC2NP 2016, September 26 - 30, 2016, Puerto de la Cruz, Tenerife

Thursday, September 29, 16

$(g-2)_{\mu}$: theory vs experiment

$$a_{\mu}^{exp} - a_{\mu}^{SM} =$$

(26.1 ± 5.0 th ± 6.3 exp) x 10⁻¹⁰
Hagiwara et al. (2011)

3 - 4 σ deviation from SM value !

Errors or new physics ?

New FNAL, J-PARC experiments

 $\delta a_{\mu}^{FNAL} = 1.6 \times 10^{-10}$ M. Lancaster

factor 4 improvement in exp. error

-> Improve theory !

$(g-2)_{\mu}$: history of relevant corrections

hadronic vacuum polarization (HVP)

Teubner et al. (2011)

strong contributions to $(g-2)_{\mu}$

hadronic light-by-light scattering (HLbL)

New FNAL and J-Parc (g-2)_µ expt. : $\delta a_{\mu}^{exp} = 1.6 \times 10^{-10}$

HVP determined by cross section measurements of e⁺e⁻ -> hadrons

measurements of meson transition form factors required as input to reduce uncertainty

HVP corrections to $(g-2)_{\mu}$

hadronic LbL corrections to $(g-2)_{\mu}$

experimental input: meson transition FFs, $\gamma^* \gamma^* \rightarrow$ multi-meson states, meson Dalitz decays

Thursday, September 29, 16

hadronic LbL corrections to $(g-2)_{\mu}$: relevant contributions

what is known about hadronic LbL scattering ?

Theory: sum rules for LbL scattering (I)

sum rules for LbL scattering (II)

W

Unitarity: link to $\gamma^* \gamma^* \rightarrow X$ cross sections

$$\begin{split} F_{++,++} + W_{+-,+-} &\equiv 2\sqrt{X} \ (\sigma_0 + \sigma_2) = 2\sqrt{X} \ (\sigma_{\parallel} + \sigma_{\perp}) \equiv 4\sqrt{X} \ \sigma_{TT}, \\ W_{++,++} - W_{+-,+-} &\equiv 2\sqrt{X} \ (\sigma_0 - \sigma_2) \equiv 4\sqrt{X} \ \tau_{TT}^a, \\ W_{++,--} &\equiv 2\sqrt{X} \ (\sigma_{\parallel} - \sigma_{\perp}) \equiv 2\sqrt{X} \ \tau_{TT}, \\ W_{00,00} &\equiv 2\sqrt{X} \ \sigma_{LL}, \\ W_{+0,+0} &\equiv 2\sqrt{X} \ \sigma_{LL}, \\ W_{+0,+0} &\equiv 2\sqrt{X} \ \sigma_{LT}, \\ W_{0+,0+} &\equiv 2\sqrt{X} \ \sigma_{LT}, \\ W_{++,00} + W_{0+,-0} &\equiv 4\sqrt{X} \ \tau_{TL}^a, \\ W_{++,00} - W_{0+,-0} &\equiv 4\sqrt{X} \ \tau_{TL}^a. \end{split}$$

$$X \equiv \nu^2 - Q_1^2 Q_2^2$$

Experiment: $e^- e^+ \rightarrow e^- e^+ X$ cross sections

sum rules for LbL scattering (III)

sum rules for LbL scattering (IV)

+ 6 new LECs at next order

sum rules for LbL scattering (V)

sum rules have been tested in perturbative QFT both at tree-level and 1-loop level

scalar QED

$$\int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} [\sigma_0 - \sigma_2]_{Q_2^2 = 0}$$

meson production in $\gamma\gamma$ collisions (I)

- two-photon state: produced meson has C=+1

- both photons are real: J=1 final state is forbidden

(Landau-Yang theorem);

the main contribution comes from

J=0: 0⁻⁺ (pseudoscalar) and 0⁺⁺ (scalar)

and J=2: 2⁺⁺ (tensor)

 the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states

- input for the absorptive part of the SRs: $\gamma\gamma$ -hadrons response functions, can be expressed in terms of $\gamma\gamma \rightarrow M$ transition form factors

$$\sigma_{\Lambda}^{\gamma\gamma \to M}(s) \approx (2J+1)16\pi^2 \frac{\Gamma_{\gamma\gamma}}{m_M} \delta(s-m_M^2)$$
$$\Gamma_{\gamma\gamma}(\mathcal{P}) = \frac{\pi\alpha^2}{4} m^3 |F_{\mathcal{M}\gamma^*\gamma^*}(0,0)|^2$$

meson contribution to the cross-section in the narrow-resonance approximation

two-photons decay rate for the meson

meson production in $\gamma\gamma$ collisions (II)

$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} [\sigma_0 - \sigma_2]_{Q_2^2 = 0}$					
the I=0 channel SR for $Q_1^2 = 0$					
	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	<i>c</i> ₁	C2		
	[nb]	$[10^{-4} \text{GeV}^{-4}]$	$[10^{-4} { m GeV}^{-4}]$		
η	-191 ± 10	0	0.65 ± 0.03		
η'	-300 ± 10	0	0.33 ± 0.01		
<i>f</i> ₀ (980)	-19 ± 5	0.020 ± 0.005	0		
<i>f</i> ₀ (1370)	-91 ± 36	0.049 ± 0.019	0		
<i>f</i> ₂ (1270)	449±52	0.141 ± 0.016	0.141 ± 0.016		
f'_(1525)	7±1	0.002 ± 0.000	0.002 ± 0.000		
$f_2(1565)$	56±11	0.012 ± 0.002	0.012 ± 0.002		
Sum	-89 ± 66	0.22±0.03	1.14 ± 0.04		

dominant contribution to c_2 comes from η , η' and $f_2(1270)$ dominant contribution to c_1 comes from $f_2(1270)$

Pascalutsa, Pauk, Vdh (2012)

$\gamma^* \gamma^* \rightarrow$ M processes: meson transition form factors (TFFs)

theory: - dispersive analyses (Bonn/Jülich groups)

- Padé fit analyses P. Sanchez Puertas

experiment: new data 0.3 GeV² < Q^2 < 3 GeV² from BES-III under analysis Y. Guo

heavier meson TFFs

- one photon is virtual Q_1^2 , second is quasi-real $Q_2^2 \simeq 0$:
- axial-vector mesons 1⁺⁺ are allowed
- f₁(1285), f₁(1420) transition FFs constrained from LEP (L3) data

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s+Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}$$

	m _M	Γ _{γγ}	$\int \frac{ds}{s^2} \sigma_{\parallel}(s)$	$\int ds \left[\frac{1}{s} \frac{\tau_{TL}^a}{Q_1 Q_2}\right]_{Q_i^2 = 0}$	$\int ds \left[\frac{1}{s^2} \sigma_{\parallel} + \frac{1}{s} \frac{\tau_{TL}^a}{Q_1 Q_2} \right]_{Q_i^2 = 0}$	for $\Omega_1^2 = 0$
	[MeV]	[keV]	$[\mathrm{nb} \ / \ \mathrm{GeV^2}]$	$[nb / GeV^2]$	$[nb / GeV^2]$	
<i>f</i> ₁ (1285)	1281.8 ± 0.6	3.5 ± 0.8	0	-93 ± 21	-93 ± 21	
$f_1(1420)$	1426.4 ± 0.9	3.2 ± 0.9	0	-50 ± 14	-50 ± 14	
<i>f</i> ₀ (980)	980 ± 10	0.29 ± 0.07	20±5	0	20±5	
$f_0'(1370)$	1200 – 1500	3.8 ± 1.5	48 ± 19	0	48 ± 19	
$f_2(1270)$	1275.1 ± 1.2	3.03 ± 0.35	138 ± 16	≳0	138 ± 16	
<i>f</i> ₂ (1525)	1525 ± 5	0.081 ± 0.009	1.5 ± 0.2	≳ 0	(1.5 ± 0.2)	
$f_2(1565)$	1562 ± 13	0.70 ± 0.14	12 ± 2	≳ 0	12 ± 2	
Sum					76 ± 36	
	$f_1(1285) \\ f_1(1420) \\ f_0(980) \\ f'_0(1370) \\ f_2(1270) \\ f'_2(1525) \\ f_2(1565) \\ \\ Sum$	$\begin{array}{c c} & m_{\mathcal{M}} \\ & [MeV] \\ \hline f_1(1285) & 1281.8 \pm 0.6 \\ f_1(1420) & 1426.4 \pm 0.9 \\ \hline f_0(980) & 980 \pm 10 \\ f_0'(1370) & 1200 - 1500 \\ \hline f_2(1270) & 1275.1 \pm 1.2 \\ f_2'(1525) & 1525 \pm 5 \\ f_2(1565) & 1562 \pm 13 \\ \hline \text{Sum} \end{array}$	m_M $\Gamma_{\gamma\gamma}$ [MeV][keV] $f_1(1285)$ 1281.8 ± 0.6 3.5 ± 0.8 $f_1(1420)$ 1426.4 ± 0.9 3.2 ± 0.9 $f_0(980)$ 980 ± 10 0.29 ± 0.07 $f_0(1370)$ $1200 - 1500$ 3.8 ± 1.5 $f_2(1270)$ 1275.1 ± 1.2 3.03 ± 0.35 $f_2'(1525)$ 1525 ± 5 0.081 ± 0.009 $f_2(1565)$ 1562 ± 13 0.70 ± 0.14 Sum N N	m_M $\Gamma_{\gamma\gamma}$ $\int \frac{ds}{s^2} \sigma_{\parallel}(s)$ [MeV][keV][nb / GeV^2] $f_1(1285)$ 1281.8 ± 0.6 3.5 ± 0.8 0 $f_1(1420)$ 1426.4 ± 0.9 3.2 ± 0.9 0 $f_0(980)$ 980 ± 10 0.29 ± 0.07 20 ± 5 $f_0(1370)$ $1200 - 1500$ 3.8 ± 1.5 48 ± 19 $f_2(1270)$ 1275.1 ± 1.2 3.03 ± 0.35 138 ± 16 $f_2'(1525)$ 1525 ± 5 0.081 ± 0.009 1.5 ± 0.2 $f_2(1565)$ 1562 ± 13 0.70 ± 0.14 12 ± 2 Sum </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Pascalutsa, Pauk, Vdh (2012)

- dominant features: f₁(1285), f₁(1420), f₂(1270)
- sum rules allow to constrain so far unmeasured contributions, e.g. $\gamma^* \gamma^* \rightarrow$ tensor TFFs

comparison for f₂(1270) TFFs with new Belle data

f₂(1270) helicity-2 TFF from LbL sum rules

f₂(1270) helicity-2 TFF from data

Thursday, September 29, 16

multi-meson production in $\gamma^* \gamma^*$ collisions


```
dispersive analyses for \gamma \gamma \rightarrow \pi \pi, \gamma^* \gamma \rightarrow \pi \pi
```

Dai, Pennington (2014); Moussallam (2013); ...

related approaches:

- Roy Steiner Hoferichter, Phillips, Schat (2011)
- unitarized ChPT Oller, Roca (2008);...
- coupled channel Danilkin, Lutz, Leupold, Terschlusen (2013);...

new BES-III under analysis, first comparison with theory Y. Guo

lattice calculation of forward $\gamma^* \gamma^*$ scattering

Green, Gryniuk, von Hippel, Meyer, Pascalutsa (2015)

Euclidean correlator for LbL scattering

$$\Pi^{E}_{\mu_{1}\mu_{2}\mu_{3}\mu_{4}}(P_{4};P_{1},P_{2}) \equiv \int d^{4}X_{1} d^{4}X_{2} d^{4}X_{4} e^{-i\sum_{a}P_{a}\cdot X_{a}} \langle J_{\mu_{1}}(X_{1})J_{\mu_{2}}(X_{2})J_{\mu_{3}}(0)J_{\mu_{4}}(X_{4})\rangle_{\mathrm{E}}$$

forward amplitude for two transverse (T) γ^{*}

0.0

0.5

1.0

1.5

2.0

 Q_2^2 (GeV²)

2.5

3.0

3.5

4.0

4.5

next steps: disconnected, lattice evaluation of a_{μ} from Π^{E}

how to estimate the HLbL contribution to a_{μ} ?

single meson contributions to a_{μ} (I)

single meson contributions to a_{μ} (II)

axial-vector meson re-evaluation was reported in 2 works

- implementation of Landau-Yang theorem constraint leads to difference with previous results

tensor mesons evaluated for first time

	•		1011
a	In	units	: 1()-++
Mμ	••••	Ginco	-------------

		pseudo-scalars	axial-vectors	scalars	tensors
	BPP	85 ± 13	2.5 ± 1.0	-7 ± 2	-
	HKS	82.7 ± 6.4	1.7 ± 1.7	-	-
	MV	114 ± 10	22 ± 5	-	-
	KN	83 ± 12	-	-	-
Jegerlehner	J	93.9 ± 12.4	~ 7	-6.0 ± 1.2	-
Pauk, Vdh	this work	-	6.4 ± 2.0	$-(0.9\sim 3.1)\pm 0.8$	1.1 ± 0.1
(2013)					

HLbL to a_{μ} : present status and outlook

- dispersive analyses for $\pi\pi$ loop contribution to a_{μ} Colangelo, Hoferichter, Procura, Stoffer (2014,2015) Colangelo
- dispersive analysis for a_{μ} Pauk, Vdh (2014)

dispersive analysis for a_{μ} (I)

 $\Pi_{\lambda_1\lambda_2\lambda_3\lambda_4}(q_1, q_2, q_3) = \epsilon^{\mu}(q_1, \lambda_1)\epsilon^{\nu}(q_2, \lambda_2)\epsilon^{\lambda}(q_3, \lambda_3)\epsilon^{\rho}(q_4, \lambda_4)\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_3)$

dispersive analysis for a_{μ} (II)

dispersive analysis for a_{μ} (III)

dispersive analysis for a_{μ} (IV)

Summary and outlook

HLbL: new model independent theoretical tools for $\gamma^* \gamma^* \rightarrow X$

- sum rules, dispersive frameworks for meson transition FFs:
 -> allow to include experimental constraints (new data from Belle, BESIII)
- new evaluation of **heavier meson contributions**
 - -> $a_{\mu} = \sim 7 \times 10^{-11}$ (factor 3 smaller than previous estimates)
- pioneering new lattice QCD calculations for HLbL:
 - -> promising agreement with sum rule estimates found

new dispersion relation frameworks for **HLbL** to a_{μ} : -> require close collaboration with experiment (spacelike, timelike, meson decays)

data driven approach also in HLbL

goal: realistic error estimate on a_{μ} / reduce to 20 x 10⁻¹¹ (20 % of HLbL)