

Experimental Inputs for the Hadronic Calculations of $(g-2)_{\mu}$

Yuping Guo

INSTITUT FÜR KERNPHYSIK JOHANNES GUTENBERG-UNIVERSITÄT MAINZ

HC₂NP

25th Sept.~30th Sept. 2016 Tenerife

Hadronic Vacuum Polarization

Hadronic Light-by-Light

692.3 ± 4.2

[Davier et. al. (2011)]

[Jegerlehner, Nyffler (2009)]

 11.6 ± 4.0

10.5 ± 2.6 [Prades et al. (2009)]

Hadronic Vacuum Polarization

Hadronic Light-by-Light

Dispersion integral

$$a_{\mu,LO}^{\rm HVP} = \frac{1}{4\pi^3} \int_{m_{\pi^0}}^{\infty} ds \ K(s) \ \sigma_{\rm had}(s)$$

Hadronic Vacuum Polarization

Transition form factors Helicity amplitute

Hadronic Light-by-Light

- Only model calculations so far
- Data-driven approach been developed

[Colangelo et al '14; Pauk, Vanderhaeghen '14]

Hadronic Vacuum Polarization

Hadronic Light-by-Light

Hadronic Cross Section $\sigma_{had} (e^+e^- \rightarrow hadrons)$

Hadronic Cross Section

- Energy Scan:
 - CMD & SND at VEPP-2M & VEPP-2000 in Novosibirsk
 - BESIII at BEPCII in Beijing

Hadronic Cross Section

- Energy Scan:
 - CMD & SND at VEPP-2M & VEPP-2000 in Novosibirsk
 - BESIII at BEPCII in Beijing

Initial State Radiation:

- KLOE at DAφNE in Frascati
- BABAR at PEP-II in Stanford
- BESIII at BEPCII in Beijing

- Needs no systematic variation of beam energy
- High statistics thanks to high integrated luminosities

Hadronic Cross Section

Energy Scan:

- CMD & SND at VE
- **BESIII** at **BEPCII** i
- Initial State Radia
 - KLOE at DA_{\$\$}NE i
 - **BABAR at PEP-II**
 - **BESIII** at **BEPCII** i

 J/ψ

BESIII

 $\psi(2S)$

10

-2 10

-3 10

-5

-6 10

-7 10

KLOE

1

10

10

10

 $\sigma[mb]$

10 2

Most Relevant Channel: $e^+e^- \rightarrow \pi^+\pi^-$

- KLOE and BABAR dominate the world average
- Both with uncertainties smaller than 1%
- Relatively large systematic differences, especially above ρ peak
- Knowledge of a_{μ}^{had} dramatically limited due to this difference

Beijing Electron Positron Collider-II

Storage Ring

tector

BEPCII: τ-charm factory Beam energy: 1-2.3 GeV Design luminosity: 1×10³³ cm⁻²s⁻¹ (April 2016) Data taking from 2009 to present

inear Acceler

Beijing Electron Positron Collider-II

MUC: 9/8 layer RPC, $\sigma_{R\Phi}$: 2 cm Magnet yoke TOF: (σ_T) 80 ps / 110 ps Beam pipe MDC: σ_p/p : 0.5% at 1GeV/c dE/dx: 6% $\Delta E/E$: 2.5% / 5.0% at 1 GeV; σ_T : 0.6 cm/ \sqrt{E}

BEPCII: τ-charm factory Beam energy: 1-2.3 GeV Design luminosity: 1×10³³ cm⁻²s⁻¹ (April 2016) Data taking from 2009 to present

$e^+e^- \rightarrow \gamma_{ISR} \pi^+\pi^- at BESIII$

Event yield after preliminary selection

[Phys. Lett. B753 (2016) 629]

$e^+e^- \rightarrow \gamma_{ISR} \pi^+\pi^- at BESIII$

Event yield after preliminary selection

[[]Phys. Lett. B753 (2016) 629]

$e^+e^- \rightarrow \gamma_{ISR} \pi^+\pi^- at BESIII$

Event yield after preliminary selection events / 20 MeV 50000 50000 ψ(3770) data only (2.9 fb⁻¹) **π⁺π⁻γ MC** μ+μγ ΜC Tag ISR photon - data No dedicated background subtraction 15000 Competitive limit • $e^+e^- \rightarrow \gamma \pi^+\pi^-$: large statistics 10000 for Dark Photon search • $e^+e^- \rightarrow \gamma \mu^+ \mu^-$: dominate background 5000 Data - MC differences visible 0 0.5 2.5 3.5 1!5 2 3 1 m_{2π} [GeV] ← World's best measurement Initial publication 600 – 900 MeV of $\Gamma_{\rho\rho}$ of J/ ψ [Phys. Lett. B753 (2016) 629]

e⁺e⁻ → $\gamma_{ISR} \pi^{+}\pi^{-}$: π-μ separation

TMVA method (Neural Network):

- Trained using $\gamma\mu\mu$ and $\gamma\pi\pi$ MC events
- Information based on track level
- Efficiency matrix (p,Θ) for data, MC
- Correct for data MC differences
- Cross checked for different TMVA methods

e⁺e⁻ $\rightarrow \gamma_{ISR} \pi^{+}\pi^{-}$: π-μ separation

QED Test: $e^+e^- \rightarrow \gamma \mu^+ \mu^-$

Event yield $\gamma\mu\mu$ after π - μ separation and all efficiency corrections

- Background from γππ small
- PHOKHARA uncertainty < 0.5%</p>
- Luminosity measurement based on Bhabha events, 1.0% accuracy

 Δ (MC/QED-data) -1 = (1.0 ± 0.3_{stat} ± 0.9_{syst}) %

- Excellent agreement with QED
- Accuracy on 1% level as needed to be competitive !

$e^+e^- \rightarrow \pi^+\pi^-$ Cross section

2 normalization methods:

Normalization to L_{int} (obtained from Bhabha events)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \frac{N_{\pi\pi\gamma}}{L_{int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1 + \delta_{FSR})}$$

Normalization to γµµ events, i.e. R ratio (γππ/γµµ)

 L_{int} , H_{rad} , δ_{vac} cancel in ratio

Good agreement between two methods

luminosity / R ratio -1 = (0.85 ± 1.68) %

limited by low $\gamma\mu\mu$ statistics

Compare with Existing Data

Pion Form Factor F_{\pi}

- Gounaris and Sakurai parameterization
- 0.9 % accuracy (dominated by theory)
- Normalization to luminosity × radiator function

Impact on a_{μ}^{HVP}

Deviation on $(g-2)_{\mu}$ between experimental and SM: 3-4 sigma

Impact on a_{μ}^{HVP}

Deviation on $(g-2)_{\mu}$ between experimental and SM: 3-4 sigma

Study of $\pi^+\pi^-\pi^0$ and $\pi^+\pi^-\pi^0\pi^0$ processes undergoing at BESIII

Energy Scan from 2.0 to 4.6 GeV

World's best measurement from BES/BESII with 5% ~ 8% total uncertainty (statistical uncertainty: 3% ~ 5%)

BESIII: aim at systematic accuracy: 3.0%

151 energy points >10⁵ hadronic events each \rightarrow statistical error negligible

Energy region	Energy points	Note
2.400~3.400	4	Mini-scan
3.800~4.590	104	Fine-scan heavy charm resonant
2.000~3.080	21	R&QCD-scan
3.050~3.120	16	J/ψ-scan
3.542~3.600	5	τ-scan
3.650,3.671	2	ψ(3686)-scan

Reducing the uncertainty of $\alpha_{em}(M_Z^2)$

 \rightarrow A new quantity of electroweak precision fits

Meson Transition Form Factor |F(Q²)|

Spacelike Transition FFs

Untag:

- Only tag the hadron products, P_t-balance
- Q_i²~0 GeV^{2,} quasi-real photon

Single tag:

- Tag the hadron products
- Tag only one lepton, missing momentum direction
- $Q_1^2 \sim 0 \text{ GeV}^2$, $Q_1^2 = -q_2^2 \text{ GeV}^2$; highly virtual photon

Double tag:

- Tag the hadron products
- Tag both leptons
- Both photons are virtual

Input for data-driven approach

Existing Data on Spacelike TFFs

 $e^+e^- \rightarrow e^+e^- \pi^0$

[CELLO: Z. Phys. C 49 401 (1991)] [CLEO: Phys. Rev. D57 33 (1998)] [BaBar: Phys. Rev. D80 052002 (2009)] [Belle: Phys. Rev. D86 092007 (2012)]

- Recent results from BABAR and BELLE:
 Q² > 4 GeV²
- CLEO: Q² > 1.5 GeV²
- CELLO: Q² < 1.5 GeV², very poor accuracy

Low Q² range not covered/precise

Relevant Q² Region

[M. Knecht and A. Nyffeler: Phys. Rev. D 65, 073034 (2002)]

$e^+e^- \rightarrow e^+e^- \pi^0$ at BESIII

MC only, part of full statistics

Event Selection:

do/dQ²

- Exactly one lepton candidate
- At least two, max four photons
- Helicity angle $\cos \theta_{\rm H} > 0.8$
- Kinematic cuts to reject ISR background
- Cut on angle of missing momentum

Spacelike transition FFs: π^0

MC only, red error bars corresponding to BESIII statistics

Extract TFF for:

 $0.3 \leq Q^2 [GeV^2] \leq 3.1$

Significantly improves and extends data set below Q² = 1.5 GeV²

Input for $(g-2)_{\mu}!$

Spacelike transition FFs: η / η'

MC only, red error bars corresponding to BESIII statistics

- Results competitive to previous measurement
- More data and more decay modes → order of magnitude improvement

Timelike transition FFs

η and η' timelike TFF

• <Q²>: 18.5 GeV², 5.3 fb⁻¹ from 4.0-4.6 GeV

<Q²>: 14.2 GeV², 2.9 fb⁻¹ at 3.773 GeV

Position: arbitrary Error: Corresponding to statistics

Timelike transition FFs

- <Q²>: 18.5 GeV², 5.3 fb⁻¹ from 4.0-4.6 GeV
- <Q²>: 14.2 GeV², 2.9 fb⁻¹ at 3.773 GeV

$\gamma \gamma^* \rightarrow \pi^+ \pi^- at BESIII$

- Previous measurements:
 - All in two real photon case: $\gamma\gamma \rightarrow \pi^+\pi^-$
 - In low mass region, only measurement come from MarkII

$\gamma \gamma^* \rightarrow \pi^+ \pi^- at BESIII$

Background dominated by $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ events:

- 1. Cross section about 6 times larger the signal process
- 2. μ/π ID needed

$\gamma \gamma^* \rightarrow \pi^+ \pi^- at BESIII$

- First single tag measurement of $\pi^+\pi^-$ channel
- Q²: 0.1-3 GeV²
- W: threshold-1.5 GeV/c²
 - Obvious f₂(1270) resonance
 - Can measure from threshold
- First complete coverage of the helicity angle of pion system

Spacelike transition FFs

Exploratory first double tag measurement: $\gamma^* \gamma^* \rightarrow \pi^0$

- Preliminary study shows feasible in most of the parameter space
- Further background suppression using multivariate analysis tool

Conclusion and Outlook

- Important results (to be expected) from BESIII for SM prediction of (g-2)_μ
 - HVP: precision inclusive and exclusive measurements
 - $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, and $\pi^+\pi^-\pi^0\pi^0$ cross section
 - Inclusive hadronic cross section
 - HLbL: spacelike form factors measurement in relevant region
 - Form factors at low Q² region
 - First measurement of single tag $\gamma\gamma \rightarrow \pi^+\pi^-$
 - Doubly off-shell form factor
- Reduction of factor of 2 of the uncertainty of a^{had} in reach

Conclusion and Outlook

- Important results (to be expected) from BESIII for SM prediction of (g-2)_µ
 - HVP: precision inclusive and exclusive measurements
 - $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, and $\pi^+\pi^-\pi^0\pi^0$ cross section
 - Inclusive hadronic cross section
 - HLbL: spacelike form factors measurement in relevant region
 - Form factors at low Q² region
 - First measurement of single tag $\gamma\gamma \rightarrow \pi^+\pi^-$
 - Doubly off-shell form factor
- Reduction of factor of 2 of the uncertainty of a^{had} in reach

THANK YOU FOR YOUR ATTENTION!