Dyson-Schwinger approach to the muon g-2 and the structure of the LbL amplitude

Gernot Eichmann

University of Giessen, Germany

Hadronic Contributions to New Physics Searches (HC2NP)
September 29
Puerto de la Cruz, Tenerife, Spain

Introduction

- Muon anomalous magnetic moment: total SM prediction deviates from exp. by $\sim 3 \sigma$

- QED corrections: overwhelming part, electroweak and QCD corrections very small:

$a_{\mu}\left[10^{-10}\right]$	Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)	
Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
•LBL	$\mathbf{1 0 . 5}$	$\mathbf{(2 . 6)}$
SM:	11659182.8	(4.9)
Diff:	26.1	(8.0)

- Theory uncertainty dominated by QCD: Is QCD contribution under control?

Hadronic vacuum polarization

Hadronic light-by-light scattering

Introduction

Dyson-Schwinger / Bethe-Salpeter approach:

- ab-initio, but (systematically improvable) truncations
- symmetries are exact: Poincaré invariance, chiral symmetry, electromagnetic gauge invariance
- successful applications in other systems: QCD's n-point functions, meson \& baryon spectra, elastic \& transition FFs, tetraquarks, QCD phase diagram, . . .

Outline:

- Hadronic vacuum polarization:
basic ideas \& results from DSEs \& BSEs
Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 1606.09602, PPNP 91 (2016)
- LbL scattering:
microscopic decomposition, quark loop, gauge invariance
Mini-review: GE, Fischer, Heupel, Williams, 1411.7876, AIP Conf. Proc. 1701 (2016)
- Structure of the LbL amplitude:
permutation group S4, kinematic phase space, tensor decomposition
GE, Fischer, Heupel, 1505.06336, PRD 92 (2015)

Hadronic vacuum polarization

Vector current correlator from lattice QCD:

$$
\Pi^{\mu \nu}(x-y)=\langle 0| T \underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](y)}_{j^{\nu}(y)}|0\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(y)
$$

- Spectral decomposition:

$$
\sum_{\lambda}|\lambda\rangle\langle\lambda| \quad \rightarrow \quad \sum_{\lambda} \frac{\cdots}{P^{2}+m_{i}^{2}}
$$

- Pole in momentum space \Rightarrow exp. decay in Euclidean time

$$
\Pi(x-y) \rightarrow e^{-m \tau}
$$

Hadronic vacuum polarization

Vector current correlator from lattice QCD:

$$
\begin{aligned}
\Pi^{\mu \nu}(x-y) & =\langle 0| T \underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](y)}_{j^{\nu}(y)}|0\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(y) \\
& =\lim _{\substack{x_{i} \rightarrow x \\
y_{i} \rightarrow y}} \gamma_{\alpha \beta}^{\mu} \gamma_{\rho \sigma}^{\nu}\langle 0| T \bar{\psi}_{\alpha}\left(x_{1}\right) \psi_{\beta}\left(x_{2}\right) \bar{\psi}_{\rho}\left(y_{1}\right) \psi_{\sigma}\left(y_{2}\right)|0\rangle
\end{aligned}
$$

Timelike side determined by $e^{+} e^{-} \rightarrow$ hadrons \Rightarrow spacelike correlator from dispersion relations:

Hadronic vacuum polarization

Microscopic decomposition:

$$
\begin{aligned}
\Pi^{\mu \nu}(x-y) & =\langle 0| T \underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](y)}_{j^{\nu}(y)}|0\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(y) \\
& =\lim _{\substack{x_{i} \rightarrow x \\
y_{i} \rightarrow y}} \gamma_{\alpha \beta}^{\mu} \gamma_{\rho \sigma}^{\nu}\langle 0| T \bar{\psi}_{\alpha}\left(x_{1}\right) \psi_{\beta}\left(x_{2}\right) \bar{\psi}_{\rho}\left(y_{1}\right) \psi_{\sigma}\left(y_{2}\right)|0\rangle
\end{aligned}
$$

exact!

Need to know dressed quark propagator and quark-photon vertex:

Bethe-Salpeter

- Bethe-Salpeter equation for quark-photon vertex:

- Analogous for bound states:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

infinitely many coupled equations, in practice truncations: model / neglect higher n-point functions to obtain closed system

QCD's n-point functions

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

- Gluon propagator

$$
\frac{D\left(p^{2}\right)}{p^{2}}\left(\delta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \quad \cdots \cdots \cdots \cdots
$$

- Three-gluon vertex

$$
\begin{aligned}
& F_{1}\left[\delta^{\mu \nu}\left(p_{1}-p_{2}\right)^{\rho}+\delta^{\nu \rho}\left(p_{2}-p_{3}\right)^{\mu} \quad\right. \text { O. } \\
& \left.\quad+\delta^{\rho \mu}\left(p_{3}-p_{1}\right)^{\nu}\right]+\ldots \quad \text { rooゐか }
\end{aligned}
$$

Agreement between lattice, DSE \& FRG within reach
$(\rightarrow$ see e.g. Confinement 2016 talks: Sternbeck, Williams, Huber, Blum, Mitter, Cyrol, Campagnari, ...)

- Quark-gluon vertex

Bethe-Salpeter

- Bethe-Salpeter equation for quark-photon vertex:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion
\qquad - -1

morem $^{-1}=$ rommen $^{-1}$

登
- Kernel can be derived systematically (nonperturbative!):

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Bethe-Salpeter

- Bethe-Salpeter equation for quark-photon vertex:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion
\qquad - -1

$\operatorname{morOran}^{-1}=\operatorname{mormon}^{-1}$

- Kernel can be derived systematically (nonperturbative!):

Rainbow-ladder: effective gluon exchange $\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k^{2} \Lambda^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)$
adjust scale Λ to observable, keep width η as parameter
Maris, Tandy, PRC 60 (1999)

- Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Bethe-Salpeter

- Bethe-Salpeter equation for quark-photon vertex:

- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion
\qquad
$]^{-1}$ \qquad -1

$\operatorname{rrorOrO}^{-1}=\operatorname{rombron}^{-1}$
登
- Kernel can be derived systematically (nonperturbative!):

Rainbow-ladder:
effective gluon exchange

$$
\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(\frac{k^{2}}{\Lambda^{2}}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)
$$

adjust scale Λ to observable, keep width η as parameter
Maris, Tandy, PRC 60 (1999)

- Quark propagator

Calculated in complex plane: singularities pose restrictions (no physical threshold!)

Spectroscopy

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)

- Pion is Goldstone boson: $m_{\pi}{ }^{2} \sim m_{q}$
- Light meson spectrum beyond rainbow-ladder: Williams, Fischer, Heupel, PRD 93 (2016)

- Baryons from three-body BSE:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011), Sanchis-Alepuz, Fischer, PRD 90 (2014), ...

Spectroscopy

- Baryon excitation spectrum: quark-diquark structure GE, Fischer, Sanchis-Alepuz, 1607.05748

- Electromagnetic, axial, transition form factors

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)

- Light scalar mesons as tetraquarks GE, Fischer, Heupel, PLB 753 (2016)

Quark-photon vertex

Ball-Chiu vertex, determined by WTI, depends only on quark propagator Ball, Chiu, PRD 22 (1980)

Transverse part, contains dynamics: VM poles \& cuts
Kizilersu et al, PRD 92 (1995), GE, Fischer, PRD 87 (2013)

$$
\begin{array}{rlrl}
\tau_{1}^{\mu} & =t_{Q Q}^{\mu \nu} \gamma^{\nu} & & \text { vector } \\
\tau_{2}^{\mu} & =t_{Q Q}^{\mu \nu} k \cdot Q \frac{i}{2}\left[\gamma^{\nu}, k\right] & & \\
\tau_{3}^{\mu} & =\frac{i}{2}\left[\gamma^{\mu}, \not Q\right] & & \text { scalar AMM } \\
\tau_{4}^{\mu} & =\frac{1}{6}\left[\gamma^{\mu}, k, \not \subset\right] & & \text { vector AMM } \\
\tau_{5}^{\mu} & =t_{Q Q}^{\mu \nu} i k^{\nu} & & \text { scalar } \\
\tau_{6}^{\mu} & =t_{Q Q}^{\mu \nu} k^{\nu} \not k & \\
\tau_{7}^{\mu} & =t_{Q k}^{\mu \nu} k \cdot Q \gamma^{\nu} & \\
\tau_{8}^{\mu} & =t_{Q k}^{\mu \nu} \frac{i}{2}\left[\gamma^{\nu}, k\right] & t_{a b}^{\mu \nu}:=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu} \\
\text { GE, Acta Phys. Polon. Supp. 7 (2014) }
\end{array}
$$

Hadronic vacuum polarization

Adler function:

DSE: Goecke, Fischer, Williams, PLB 704 (2011)
DR: Eidelman, Jegerlehner, Kataev, Veretin, PLB 454 (1999)
$D\left(Q^{2}\right)=-Q^{2} d \Pi\left(Q^{2}\right) / d Q^{2}$

- Dispersion relations and DSEs (almost) identical on spacelike side, although timelike structure different: in rainbow-ladder, bound states without widths

- Similar in hadronic form factors: spacelike properties + hadronic poles reproduced, but missing meson-baryon interactions
- Separation into Ball-Chiu + transverse part in any electromagnetic process!

Hadronic vacuum polarization

Adler function:

DSE: Goecke, Fischer, Williams, PLB 704 (2011)
DR: Eidelman, Jegerlehner, Kataev, Veretin, PLB 454 (1999)

$$
D\left(Q^{2}\right)=-Q^{2} d \Pi\left(Q^{2}\right) / d Q^{2}
$$

- Dispersion relations and DSEs (almost) identical on spacelike side, although timelike structure different: in rainbow-ladder, bound states without widths

- e.g. Pion em. form factor:
Maris \& Tandy, PRC 61 (2000), Krassnigg, Schladming 2010
- $\pi \rightarrow \gamma \gamma$ transition:

Maris \& Tandy, PRC 65 (2002)

Light-by-light scattering

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

$=$

2
$+$

8 ... 11

scalar exchange
-1

axialvector exchange

2

π, K loop
-2
$\left(\times 10^{-10}\right)$

Light-by-light scattering

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

Exact expression:
GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Light-by-light scattering

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

$=$

Quark loop
2

pseudoscalar exchange
8 ... 11
$+$

scalar exchange
-1
$+$

axialvector exchange
π, K loop
-2
$\left(\times 10^{-10}\right)$

Exact expression:
GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Light-by-light scattering

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

$=$

Quark loop
2
$+$

8... 11

scalar exchange
-1

$+$
axialvector exchange

π, K loop
2

$$
-2
$$

$$
\left(\times 10^{-10}\right)
$$

Exact expression:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Light-by-light scattering

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

$=$

Quark loop
2

8... 11
$+$

exchange
-1

axialvector exchange
2
$+$

$$
\pi, K \text { loop }
$$

-2

$$
\left(\times 10^{-10}\right)
$$

How important is the quark loop?

- Constituent quark loop known analytically: 6 ... 8

- ENJL: VM poles by summing up
 quark bubbles
Bijnens 1995
$\gamma^{\mu}-\frac{1}{Q^{2}+m_{V}^{2}} t_{Q Q}^{\mu \nu} \gamma^{\nu}$
Large reduction: 2

Light-by-light scattering

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

How important is the quark loop?

- Quark mass is not a constant:

$$
\stackrel{p}{\square} \quad S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}
$$

- Quark-photon vertex is not bare:

- DSE result for quark loop: $a_{\mu}=10.7 \times 10^{-10}$

$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	γ^{μ}	Γ_{T}^{μ}	$a_{\mu}\left[10^{-10}\right]$
1	0.2 GeV	1	0	10
1	$M\left(p^{2}\right)$	1	0	10
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	1	0	5
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	0	10
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	$k=0$	4
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	Full	10

Goecke, Fischer, Williams, PRD 87 (2013) but full Ball-Chiu vertex problematic

Light-by-light scattering

Goal: calculate LbL amplitude directly

Two strategies:

- Calculate quark loop, approximate T-matrix by meson exchanges
\rightarrow calculate two-photon currents: $a_{\mu}^{\text {PS }}=8.1(1.2) \times 10^{-10}$ Goecke, Fischer, Williams, PRD 83 (2011)
Problem: only sum (without approximations!) is gauge invariant; how to deal with gauge artifacts?
- Calculate quark loop + T-matrix explicitly: gauge invariant, but more difficult

Either way, we first need to understand structure of LbL amplitude!

Light-by-light scattering

Goal: calculate LbL amplitude directly

Quark Compton vertex, enters in Compton scattering GE, Fischer, PRD 87 (2013)

Similar: $\pi \pi$ scattering
Bicudo et al., PRD 65 (2002),
Cotanch, Maris, PRD 66 (2002)

\square Universal band

- ChPT tree, 1 loop, 2 loops
- ChPT + dispersion theory (2001)
I. DIRAC (2005)

123 NA48 K $->3 \pi$ (2005)
E865 isospin corrected
NA48 isospin-corrected
\equiv MILC (2004)
U/II NPLQCD (2005)
Niv Del Debbio (2007)

- ETM (2007)
-

DSE (rainbow-ladder)

LbL amplitude

$$
\begin{array}{ll}
3 \text { independent } & p=p_{2}+p_{3} \\
\text { momenta: } & q=p_{3}+p_{1} \\
& k=p_{1}+p_{2}
\end{array}
$$

\Rightarrow Calculating LbL amplitude means determining 136 FFs which depend on 6 variables ...

$$
\Gamma^{\mu \nu \rho \sigma}(p, q, k)=\sum_{i=1}^{136} f_{i}(\ldots) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k)
$$

$$
p^{2}, \quad q^{2}, \quad k^{2}, \quad p \cdot q, \quad p \cdot k, \quad q \cdot k
$$

Any constraints?

- Amplitude is Bose-symmetric. With symmetric tensor basis:
\Rightarrow FFs only depend on symmetric combinations of variables
- Amplitude is gauge invariant \Rightarrow transverse to $p_{1}{ }^{\mu}, p_{2}{ }^{\nu}, p_{3}{ }^{\rho}$ and $p_{4}{ }^{\sigma}$.

$$
\Rightarrow \quad \Gamma \quad \Gamma \quad \Gamma^{\text {should be separated into }} \quad=\quad \begin{aligned}
& \text { physical, } \\
& \text { transverse part } \\
& (41 \text { tensors })
\end{aligned} \quad+\quad \Gamma_{G} \begin{aligned}
& \text { vanishes } \\
& \text { by gauge } \\
& \text { invariance }
\end{aligned}
$$

\Rightarrow With 'minimal' tensor basis free of kinematic singularities:
FFs free of kinematic singularities and zeros, only singularities are physical poles and cuts \Rightarrow 'simple'

- But this is not automatic \Rightarrow choice of basis matters!

Only physical poles and cuts?

Example: $\gamma N \rightarrow N^{\star}(1535)$ helicity amplitudes:
CLAS data: Aznauryan et al., PRC 80 (2009)

Helicity amplitudes
in $\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$

Form factors:
no kinematic constraints

Only physical poles and cuts?

Example: $\gamma N \rightarrow N^{\star}(1535)$ helicity amplitudes:
CLAS data: Aznauryan et al., PRC 80 (2009)

Helicity amplitudes
in $\left[10^{-3} \mathrm{GeV}^{-1 / 2}\right]$
kinematic zeros at $Q^{2}=-\left(m_{R} \pm m\right)^{2}$

Form factors:

no kinematic constraints

Toy parametrization with " ρ bump"

GE, 1602.03462
Ramalho \& Tsushima, PRD 84 (2011)

Gauge invariance

Simplest example: hadronic vacuum polarization

$$
\Pi^{\mu \nu}(Q)=\int d^{4} x e^{i Q \cdot x}\langle 0| \mathrm{T} j^{\mu}(x) j^{\nu}(0)|0\rangle=a\left(Q^{2}\right) \delta^{\mu \nu}+b\left(Q^{2}\right) Q^{\mu} Q^{\nu}
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (intermediate massless particle, but $\Pi^{\mu \nu}=1 \mathrm{PI}$)
- Transversality \Rightarrow Ward identity: $Q^{\mu} \Pi^{\mu \nu}(Q)=0 \Rightarrow a=-b Q^{2} \quad$ (not $b=-a / Q^{2}$!!!)
$\Rightarrow \Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu}$

$$
t_{Q Q}^{\mu \nu}=Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}
$$

transverse
part

Gauge invariance

Simplest example: hadronic vacuum polarization

$$
\Pi^{\mu \nu}(Q)=\int d^{4} x e^{i Q \cdot x}\langle 0| \mathrm{T} j^{\mu}(x) j^{\nu}(0)|0\rangle=a\left(Q^{2}\right) \delta^{\mu \nu}+b\left(Q^{2}\right) Q^{\mu} Q^{\nu}
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (intermediate massless particle, but $\Pi^{\mu \nu}=1 \mathrm{PI}$)
- Transversality \Rightarrow Ward identity: $Q^{\mu} \Pi^{\mu \nu}(Q)=0 \Rightarrow a=-b Q^{2} \quad$ (not $b=-a / Q^{2}$!!!)
$\Rightarrow \Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu}+\widetilde{\Pi}\left(Q^{2}\right) \delta^{\mu \nu}$
transverse
part
"gauge part":
vanishes due to gauge invariance

What if calculation breaks gauge invariance?

- 1-loop in dim. reg: $\widetilde{\Pi}\left(Q^{2}\right)=0$
- 1-loop with cutoff: $\widetilde{\Pi}\left(Q^{2}\right) \sim \Lambda^{2} \neq 0$ quadratic divergence, but only in gauge part!

Gauge invariance

Simplest example: hadronic vacuum polarization

$$
\Pi^{\mu \nu}(Q)=\int d^{4} x e^{i Q \cdot x}\langle 0| \mathrm{T} j^{\mu}(x) j^{\nu}(0)|0\rangle=a\left(Q^{2}\right) \delta^{\mu \nu}+b\left(Q^{2}\right) Q^{\mu} Q^{\nu}
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (intermediate massless particle, but $\Pi^{\mu \nu}=1 \mathrm{PI}$)
- Transversality \Rightarrow Ward identity: $Q^{\mu} \Pi^{\mu \nu}(Q)=0 \Rightarrow a=-b Q^{2} \quad$ (not $b=-a / Q^{2}$!!!)
$\Rightarrow \Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu}+\widetilde{\Pi}\left(Q^{2}\right) \delta^{\mu \nu} \quad$ What if calculation breaks gauge invariance?

- 1-loop in dim. reg: $\widetilde{\Pi}\left(Q^{2}\right)=0$
- 1-loop with cutoff: $\widetilde{\Pi}\left(Q^{2}\right) \sim \Lambda^{2} \neq 0$ quadratic divergence, but only in gauge part!
- Different basis?

$$
=\left[\Pi\left(Q^{2}\right)+\frac{\tilde{\Pi}\left(Q^{2}\right)}{Q^{2}}\right] t_{Q Q}^{\mu \nu}+\frac{\tilde{\Pi}\left(Q^{2}\right)}{Q^{2}} Q^{\mu} Q^{\nu} \quad \Rightarrow \text { bad: kinematic singularities }
$$

- Must project onto full transverse + gauge basis, subtract gauge part. Also necessary if gauge invariance is violated by more than cutoff (e.g., incomplete calculation)!

Compton scattering

Tensor decomposition for CS amplitude:
GE \& Fischer, PRD 87 (2013), GE \& Ramalho, in preparation

Tarrach's construction: Tarrach, Nuovo Cim. A28 (1975)
write down all possible tensors (\# = 32),
apply transversality constraints,
divide and subtract poles $\Rightarrow 18$ transverse tensors

	$\# Q$		$\# Q$		$\# Q$		$\# Q$
T_{1}	$\mathbf{2}$	T_{7}	$\mathbf{3}$	T_{13}	$\mathbf{7}$	T_{19}	$\mathbf{4}$
T_{2}	$\mathbf{4}$	T_{8}	$\mathbf{3}$	T_{14}	$\mathbf{5}$	T_{20}	5
T_{3}	$\mathbf{2}$	T_{9}	$\mathbf{5}$	T_{15}	$\mathbf{7}$	T_{21}	3
T_{4}	$\mathbf{4}$	T_{10}	$\mathbf{3}$	T_{16}	$\mathbf{5}$		
T_{5}	$\mathbf{6}$	T_{11}	$\mathbf{5}$	T_{17}	$\mathbf{3}$		
T_{6}	$\mathbf{5}$	T_{12}	$\mathbf{5}$	T_{18}	$\mathbf{3}$		

\Rightarrow minimal basis: $\quad \begin{aligned} & \text { - transverse } \\ & \text { - no kinematic singularities } \\ & \text { - permutation-group } \\ & \text { singlets } \\ & \text { - minimal powers } \\ & \text { in photon momenta }\end{aligned}$

Compton scattering

Tensor decomposition for CS amplitude:
GE \& Fischer, PRD 87 (2013), GE \& Ramalho, in preparation

Transverse Compton FFs depend on 4 variables, but in T+G basis they scale with single variable!

GE, FBS 57 (2016)

At hadronic level: Born terms alone not gauge invariant

$+$

$\Gamma^{\mu \nu}=$

$+\Gamma_{\mathrm{WTI}}^{\mu \nu}+\Gamma_{\perp}^{\mu \nu}$
gauge invariant GE \& Fischer, PRD 87 (2013)
Use offshell nucleon-photon vertex, project onto G+T basis \Rightarrow violation of gauge invariance mostly affects gauge part, transverse CFFs only weakly sensitive, still good prediction!

Quark-photon vertex

Ball-Chiu vertex, determined by WTI, depends only on quark propagator Ball, Chiu, PRD 22 (1980)

Transverse part, contains dynamics: VM poles \& cuts
Kizilersu et al, PRD 92 (1995), GE, Fischer, PRD 87 (2013)

$$
\begin{array}{rlrl}
\tau_{1}^{\mu} & =t_{Q Q}^{\mu \nu} \gamma^{\nu} & & \text { vector } \\
\tau_{2}^{\mu} & =t_{Q Q}^{\mu \nu} k \cdot Q \frac{i}{2}\left[\gamma^{\nu}, k\right] & & \\
\tau_{3}^{\mu} & =\frac{i}{2}\left[\gamma^{\mu}, \not Q\right] & & \text { scalar AMM } \\
\tau_{4}^{\mu} & =\frac{1}{6}\left[\gamma^{\mu}, k, \not \subset\right] & & \text { vector AMM } \\
\tau_{5}^{\mu} & =t_{Q Q}^{\mu \nu} i k^{\nu} & & \text { scalar } \\
\tau_{6}^{\mu} & =t_{Q Q}^{\mu \nu} k^{\nu} k & \\
\tau_{7}^{\mu} & =t_{Q k}^{\mu \nu} k \cdot Q \gamma^{\nu} & & t_{a b}^{\mu \nu}:=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu} \\
\tau_{8}^{\mu} & =t_{Q k}^{\mu \nu} \frac{i}{2}\left[\gamma^{\nu}, k\right] & \\
\text { GE, Acta Phys. Polon. Supp. 7 (2014) }
\end{array}
$$

LbL amplitude

Minimal T+G basis:

$$
\Gamma=\Gamma_{\perp}^{\substack{\text { physical, } \\
\text { trasserverse part } \\
(41 \text { tensors) }}}+\Gamma_{\mathrm{G}} \begin{gathered}
\text { vanishes } \\
\text { by gauge } \\
\text { invariance }
\end{gathered}
$$

- transverse
- no kinematic singularities
- permutation-group singlets
- minimal powers in photon momenta
\Rightarrow FFs have no kinematic singularities or zeros, only physical poles and cuts
\Rightarrow effectively scale with single variable: simple
\Rightarrow broken gauge invariance affects G , not T : even incomplete calculations are predictive

Existing examples of such bases:
$\triangleright 1$ vector boson: scalar or fermion vertex (nucleon-photon, quark-photon, quark-gluon, ...)
$\triangleright 2$ vector bosons: HVP, 2-photon currents, Compton scattering
$\triangleright 3$ vector bosons: three-gluon vertex
$\triangleright 4$ vector bosons: LbL, four-gluon vertex??

Structure of the LbL amplitude

3 independent momenta:

$$
\begin{aligned}
& p=p_{2}+p_{3} \\
& q=p_{3}+p_{1} \\
& k=p_{1}+p_{2}
\end{aligned}
$$

6 Lorentz invariants:

$$
p^{2}, \quad q^{2}, \quad k^{2}, \quad p \cdot q, \quad p \cdot k, \quad q \cdot k
$$

Bose symmetry:

$$
\begin{aligned}
\Gamma^{\mu \nu \rho \sigma}(p, q, k) & =\sum_{i=1}^{136} f_{i}(\ldots) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k) \\
& \stackrel{!}{=} \text { symmetric }
\end{aligned}
$$

- Arrange the 24 permutations of ψ_{1234} into multiplets:

Singlet	Triplets	Doublets	Antitriplets	Antising
\mathcal{S}	$\mathcal{T}_{i}^{+}=\left[\begin{array}{l}\bullet \\ \bullet \\ \bullet\end{array}\right]$	$\mathcal{D}_{j}=\left[\begin{array}{l}\bullet \\ \bullet\end{array}\right]$	$\mathcal{T}_{i}^{-}=\left[\begin{array}{l}\bullet \\ \bullet \\ \bullet\end{array}\right]$	\mathcal{A}
$\square \square \square$	\square	\square	\square	\square
		\square	\square	

- 6 Lorentz invariants form singlet \mathcal{S}_{0}, doublet \mathcal{D}, triplet \mathcal{T}^{+}

Phase space

- Singlet: symmetric variable, carries overall scale:
$\mathcal{S}_{0}=\frac{p^{2}+q^{2}+k^{2}}{4}=\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}}{4}$
- Doublet: $\mathcal{D}=\left[\begin{array}{l}a \\ s\end{array}\right]$

Mandelstam triangle, 2-photon poles (pion, scalar, axialvector, ...)

GE, Fischer, Heupel, PRD 92 (2015)

- Triplet: $\mathcal{T}=\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$
tetrahedron bounded by $p_{i}^{2}=0$, vector-meson poles

Phase space

Fixed doublet variables \Rightarrow complicated geometric object inside tetrahedron:

Phase space

Example: three-gluon vertex from its DSE

GE, Williams, Alkofer, Vujinovic, PRD 89 (2014)

0.001780 -0.001468
-0.001176
$-8.800 \mathrm{E}-4$
-5.520E-.4
-3.000E-94
-8.000E.56
2000E-04

8.8000^{-04}
a.0011

- four tensor structures
- 3 variables:

1 singlet, 1 doublet

- Variation in doublet almost negligible, all four "form factors" scale with singlet

Tensor basis

- construct all possible multiplets from generic seed elements: 138 elements, but only 136 independent

n	Seed	\#	Multiplet type
0	$\delta^{\mu \nu} \delta^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
2	$\delta^{\mu \nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$
	$\delta^{\mu \nu} p^{\rho} p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}$
	$\delta^{\mu \nu} p^{\rho} q^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$\delta^{\mu \nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
	$p^{\mu} p^{\nu} q^{\rho} q^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{-}$
	$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S},\left(\mathcal{D}_{1},\right) \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}$
	$p^{\mu} q^{\nu} k^{\rho} k^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
	$p^{\mu} p^{\nu} q^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$

Tensor basis

- construct all possible multiplets from generic seed elements:
138 elements, but only 136 independent

$$
\begin{array}{ll}
\delta^{\mu \nu} \delta^{\rho \sigma} & \Rightarrow 3 \text { permutations } \\
\delta^{\mu \nu} q_{i}^{\rho} q_{j}^{\sigma} & \Rightarrow 3^{2} \times 6=54 \text { permutations } \\
q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\rho} q_{l}^{\sigma} & \Rightarrow 3^{4}=81 \text { permutations }
\end{array}
$$

Orthonormalize momenta: $p, q, k \rightarrow n_{1}, n_{2}, n_{3}$ From three momenta we can define axialvector, must appear in pairs to ensure positive parity:

$$
\begin{aligned}
& v^{\mu}=\varepsilon^{\mu \alpha \beta \gamma} n_{1}^{\alpha} n_{2}^{\beta} n_{3}^{\gamma} \\
& v^{\mu} v^{\nu} v^{\rho} v^{\sigma} \Rightarrow \mathbf{1} \text { permutation } \\
& v^{\mu} v^{\nu} n_{i}^{\rho} n_{j}^{\sigma} \Rightarrow 3^{2} \times 6=54 \text { permutations } \\
& n_{i}^{\mu} n_{j}^{\nu} n_{k}^{\rho} n_{l}^{\sigma} \Rightarrow 3^{4}=81 \text { permutations }
\end{aligned}
$$

n	Seed	$\#$	Multiplet type
0	$\delta^{\mu \nu} \delta^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
2	$\delta^{\mu \nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$
	$\delta^{\mu \nu} p^{\rho} p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}$
	$\delta^{\mu \nu} p^{\rho} q^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$\delta^{\mu \nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
	$p^{\mu} p^{\nu} q^{\rho} q^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{-}$
	$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S},\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}\right.$
	$p^{\mu} q^{\nu} k^{\rho} k^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
	$p^{\mu} p^{\nu} q^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$

$\delta^{\mu \nu} \delta^{\rho \sigma}$ is linearly dependent:

$$
\delta^{\mu \nu}=v^{\mu} v^{\nu}+\sum_{i=1}^{3} n_{i}^{\mu} n_{i}^{\nu}
$$

Tensor basis

- construct all possible multiplets from generic seed elements:
138 elements, but only 136 independent
- transversality not yet implemented, but quark loop projected on this basis already behaves as expected: singlet FFs scale with \mathcal{S}_{0} !

n	Seed	$\#$	Multiplet type
0	$\delta^{\mu \nu} \delta^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
2	$\delta^{\mu \nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$
	$\delta^{\mu \nu} p^{\rho} p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}$
	$\delta^{\mu \nu} p^{\rho} q^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$\delta^{\mu \nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
	$p^{\mu} p^{\nu} q^{\rho} q^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{-}$
	$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S},\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}\right.$
	$p^{\mu} q^{\nu} k^{\rho} k^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
	$p^{\mu} p^{\nu} q^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$

Transverse basis

- Same argument: 43 elements, but only 41 independent
- Need to work out transversality conditions $p_{1}^{\mu} \mathcal{M}^{\mu \nu \rho \sigma}=0, \ldots p_{4}^{\sigma} \mathcal{M}^{\mu \nu \rho \sigma}=0$ without introducing kinematic singularities, then construct singlets with lowest momentum powers: hard (both analytically and symbolically)
- Simpler: find 41 tensors that are transverse, analytic \& have lowest mass dimension:
$\varepsilon_{a b}^{\mu \nu}=\varepsilon^{\mu \nu \alpha \beta} a^{\alpha} b^{\beta}$
$t_{a b}^{\mu \nu}=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu}$$\quad \Rightarrow \quad \begin{aligned} & \varepsilon_{12}^{\mu \nu} \varepsilon_{34}^{\rho \sigma} \\ & t_{12}^{\mu \nu} t_{34}^{\rho \sigma}\end{aligned}$
Dimension 4, 3 permuations each: 1 singlet, 1 doublet

- To construct singlets, combine them with momentum multiplets:

$$
\begin{aligned}
& \mathcal{S}_{1}=\mathcal{S} \\
& \mathcal{S}_{2}=\mathcal{D} \cdot \mathcal{D} \\
& \mathcal{S}_{3}=(\alpha \mathcal{D} * \mathcal{D}+\beta \mathcal{T} * \mathcal{T}) \cdot \mathcal{D}
\end{aligned}
$$

Ambiguity: two doublets with same mass dimension

	$(2,0)$	$(1,1)$	$(0,2)$	$(3,0)$	$(2,1)$	$(1,2)$	$(0,3)$
Singlet	$\mathcal{D} \cdot \mathcal{D}$		$\mathcal{T} \cdot \mathcal{T}$	$\mathcal{D} \cdot(\mathcal{D} * \mathcal{D})$		$\mathcal{D} \cdot(\mathcal{T} * \mathcal{T})$	$\mathcal{T} \cdot(\mathcal{T} \vee \mathcal{T})$
Doublet	$\mathcal{D} * \mathcal{D}$		$\mathcal{T} * \mathcal{T}$			$\mathcal{D} *(\mathcal{T} * \mathcal{T})$ $(\mathcal{T} \cdot \mathcal{T}) \mathcal{D}$	
Triplet		$\mathcal{T} \vee \mathcal{D}$	$\mathcal{T} \vee \mathcal{T}$		$\mathcal{T} \vee(\mathcal{D} * \mathcal{D})$ $(\mathcal{D} \cdot \mathcal{D}) \mathcal{T}$	$\mathcal{T} \vee(\mathcal{T} \vee \mathcal{D})$	$\mathcal{T} \vee(\mathcal{T} \vee \mathcal{T})$
Antitriplet		$\mathcal{T} \wedge \mathcal{D}$			$\mathcal{T} \wedge(\mathcal{D} * \mathcal{D})$	$\mathcal{T} \wedge(\mathcal{T} \vee \mathcal{D})$	$\mathcal{T} \wedge(\mathcal{T} \vee \mathcal{T})$
Antisinglet				$\mathcal{D} \wedge(\mathcal{D} * \mathcal{D})$		$\mathcal{D} \wedge(\mathcal{T} * \mathcal{T})$	

Transverse basis

- In total: 7 seed elements produce 41 singlets with minimal mass dimensions:

GE, Fischer, Heupel, PRD 92 (2015)

n	Seed element	\#	Multiplets	$n=4$	$n=6$	$n=8$	$n=10$	$n=12$
4	$t_{12}^{\mu \nu} t_{34}^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$	1	1	1		
	$\varepsilon_{12}^{\mu \nu} \varepsilon_{34}^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$	1	1	1		
6	$\varepsilon_{1}^{\mu \lambda \alpha} t_{22}^{\alpha \nu} \varepsilon_{3}^{\rho \lambda \beta} t_{44}^{\beta \sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{2}^{+}, \mathcal{T}_{2}^{-}, \mathcal{A}$		1	3	5	3
	$t_{12}^{\mu \nu} t_{33}^{\rho \lambda} t_{44}^{\lambda \sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$		1	2	3	
	$t_{12}^{\mu \nu} t_{31}^{\rho \lambda} t_{24}^{\lambda \sigma}$	7	$\mathcal{S}, \mathcal{T}_{1}^{+}, \mathcal{T}_{1}^{-}$		1	1	3	2
	$\varepsilon_{12}^{\mu \nu} \varepsilon_{31}^{\rho \lambda} t_{24}^{\lambda \sigma}$	7	$\mathcal{D}_{2}, \mathcal{T}_{2}^{+}, \mathcal{T}_{1}^{-}, \mathcal{T}_{2}^{-}$			2	5	
8	$t_{12}^{\mu \nu} t_{31}^{\rho \alpha} t_{12}^{\alpha \beta} t_{24}^{\beta \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$			1	2	
	Total	41		2	5	11	18	5

- 7 equivalent seeds in dispersive approach:

Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015)

$$
\begin{aligned}
& \varepsilon_{12}^{\mu \nu} \varepsilon_{34}^{\rho \sigma} \\
& t_{12}^{\mu \nu} t_{34}^{\rho \sigma} \\
& t_{12}^{\mu \nu} t_{31}^{\rho \lambda} t_{14}^{\lambda \sigma} \\
& t_{12}^{\mu \nu} t_{31}^{\rho \lambda} t_{24}^{\lambda \sigma}
\end{aligned}
$$

- However, to determine quark loop we need gauge part too: only poor constraints here

$$
\begin{aligned}
\Pi^{\mu \nu}(Q) & =\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu}+\widetilde{\Pi}\left(Q^{2}\right) \delta^{\mu \nu} \\
& =\left[\Pi\left(Q^{2}\right)+\frac{\tilde{\Pi}\left(Q^{2}\right)}{Q^{2}}\right] t_{Q Q}^{\mu \nu}+\frac{\widetilde{\Pi}\left(Q^{2}\right)}{Q^{2}} Q^{\mu} Q^{\nu}
\end{aligned}
$$

Quark loop with $m_{q}=$ const

LbL amplitude in NJL model: S_{0} dependence for fixed doublet \& triplet variables

Quark loop from DSE

LbL amplitude from DSE: S_{0} dependence for fixed doublet \& triplet variables

If quark loop breaks gauge invariance, the effects are small!

Summary

- Understanding structure of the LbL amplitude is important for pinning down g-2
- Microscopic decomposition:

\triangleright revisit transversality constraints to derive T+G basis \Rightarrow pin down quark loop
\triangleright calculate sum of both diagrams (gauge invariant), in tandem with Compton scattering
\triangleright calculate two-photon form factors
\Rightarrow missing effects in T-matrix?

Thank you!

- Best DSE values so far:

Mini-review: GE, Fischer, Heupel, Williams, 1411.7876, AIP Conf. Proc. 1701 (2016)

$$
a_{\mu}^{\mathrm{HVP}}=676 \times 10^{-10} \quad a_{\mu}^{\mathrm{QL}}=10.7(2) \times 10^{-10} \quad a_{\mu}^{\mathrm{PS}}=8.1(1.2) \times 10^{-10}
$$

Backup slides

Electron vs. muon g-2

Exp:	11596521.81	
QED:	$\begin{array}{r} 11596521.71 \\ .81 \end{array}$	$\begin{aligned} & (0.09) \\ & (0.08) \end{aligned}$
EW:	0.00	
Hadronic:	c: 0.02	
SM:	11596521.73 .83	$\begin{aligned} & (0.09) \\ & (0.08) \end{aligned}$

$$
a_{\mu}\left[10^{-10}\right]
$$

Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
•LBL	10.5	(2.6)
SM:	11659182.8	(4.9)
Diff:	26.1	(8.0)

Bijnens, Prades, Mod. Phys. Lett. A22 (2007) Jegerlehner, Nyffeler, Phys. Rept. 477 (2009) Hagiwara et al., J. Phys. G 38 (2011)

to Dyson-Schwinger equations

QCD's classical action:

Quantum "effective action":

$\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S}=e^{-\Gamma}$

DSEs = quantum equations of motion: instead of calculating n-point functions directly, derive eqs. of motion for them from path integral

infinitely many coupled eqs., in practice truncations: model / neglect higher n -point functions to obtain closed system

For reviews see:
Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994), Alkofer, von Smekal, Phys. Rept. 353 (2001) Fischer, J. Phys. G32 (2006)

Mesons

- The pion plays special role in hadron physics: quark-antiquark bound state \Leftrightarrow Goldstone boson of spontaneous chiral symmetry breaking

$$
\begin{array}{r}
\substack{\text { most general Dirac-Lorentz structure, } \\
\text { Lorentz-invariant dressing functions: } \\
f_{5}\left(f_{1}+f_{2} \not P+f_{3} \not q+f_{4}[q, \not P]\right) \\
\\
f_{i}=f_{i}\left(q^{2}, q \cdot P, P^{2}=-m^{2}\right)}
\end{array}
$$

\otimes Color
\otimes Flavor

- Eigenvalue spectrum of BS kernel:

Holl, Krassnigg, Roberts, PRC 70 (2004)

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i}, \quad \lambda_{i} \xrightarrow{p^{2} \rightarrow-m_{i}^{2}} 1
$$

Resonances?

Branch cuts \& widths generated by meson-baryon interactions: Roper $\rightarrow N \pi$, etc.

Without them: bound states without widths

Difficult to implement at quark-gluon level: complicated topologies beyond rainbow-ladder

Different phenomenological pictures how this could happen:

- 'pion-cloud effects' affect masses and form factors in light-quark region

- dynamical generation of resonances: start with 'bare' seed, hadronic interactions produce new poles

- Three-quark vs. five-quark / molecular components

So what does it mean?

Note: 'bound states without widths' doesn't mean that $\rho \rightarrow \pi \pi, \Delta \rightarrow N \pi, \ldots$ decays are zero!!

Results favor 'mild' scenario:

- spectrum generated by quark-gluon interactions
- meson-baryon effects would merely shift poles into complex plane
- Effects on masses? Scale set by f_{π}, but pion-cloud affects f_{π} too so only 'non-trivial effects' visible
- Will be interesting to study transition form factors

Mader, GE, Blank, Krassnigg, PRD 84 (2011),
GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, 1606.09602

Structure properties

- Current-mass evolution of Roper similar to nucleon. Lattice?
GE, Fischer, Sanchis-Alepuz, 1607.05748

- All signatures of 1 st radial excitation: partial-wave content, zero crossing
- Roper transition form factors in qualitative agreement with experiment

[^0]- $\gamma N \rightarrow \Delta$ transition form factors:

GE, Nicmorus, PRD 85 (2012)

Discrepancies mainly in magnetic dipole (G_{M}^{*}): "Core $+25 \%$ pion cloud"

Electric quadrupole ratio

small \& negative, encodes deformation.
No pion cloud necessary: OAM from \mathbf{p} waves!
First three-body results similar
Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Tetraquarks are resonances

- Light scalar mesons $\sigma, \kappa, a_{0}, f_{0}$ as tetraquarks: solution of four-body equation reproduces mass pattern GE, Fischer, Heupel, PLB 753 (2016)

BSE dynamically generates meson poles in wave function, drive σ mass from 1.5 GeV to $\sim 350 \mathrm{MeV}$

Four quarks rearrange to "meson molecule"

Tetraquarks are "dynamically generated resonances" (but from the quark level!)

- Similar in meson-meson / diquark-antidiquark approximation (analogue of quark-diquark for baryons) Heupel, GE, Fischer, PLB 718 (2012)

Form factors

Sketch of a generic electromagnetic form factor:

> spacelike:
> $e^{-} N \rightarrow e^{-} N$
charge,
magnetic moment,...

0

How can we calculate this from the quark level?
quark-photon vertex

'rainbow-ladder'
\rightarrow

quark propagator

Faddeev amplitude

Form factors

Sketch of a generic electromagnetic form factor:

Microscopic decomposition of current matrix element: satisfies electromagnetic gauge invariance, consistent with baryon's Faddeev equation

Nucleon em. form factors

Three-body results: all ingredients calculated, model dependence shown by bands GE, PRD 84 (2011)

- electric proton form factor: consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q^{2}
- Similar for axial \& ps. FFs, Δ elastic and $N \rightarrow \Delta \gamma$ transition GE, Fischer, EPJ A 48 (2012), Sanchis-Alepuz et al., PRD 87 (2013),
Alkofer et al., Hyp. Int. 234 (2015)
\Rightarrow "quark core without pion-cloud effects"

Nucleon em. form factors

Nucleon charge radii:
isovector (p-n) Dirac (F1) radius

- Pion-cloud effects missing (\Rightarrow divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments: isovector ($p-n$), isoscalar ($p+n$)

- But: pion-cloud cancels in $\kappa^{s} \Leftrightarrow$ quark core Exp: $\quad \kappa^{s}=-0.12$
!!
GE, PRD 84 (2011)

Axial form factors

- looks like magnetic form factors: missing structure at low $Q^{2} \Rightarrow g_{A}$ too small
- Timelike meson poles:
a_{1} in $G_{A}, \pi \& \pi(1300)$ in $G_{P}, G_{\pi N N}$
- Goldberger-Treiman relation reproduced for all quark masses:
$G_{A}(0)=\frac{f_{\pi}}{M_{N}} G_{\pi N N}(0)$

Δ electromagnetic FFs

Almost no experimental information since Δ unstable: $\Delta \rightarrow N \pi$
Magnetic moment $\mu_{\Delta} \sim 3.5$ with large errors (Δ^{+}).
But Ω^{-}(spin $3 / 2$, sss) is stable w.r.t strong interaction, magnetic moment $\left|\mu_{\Omega}\right|=3.6(1)$. Accidental?

$$
J^{\mu, \rho \sigma}(P, Q)=i \mathbb{P}^{\rho \alpha}\left(P_{f}\right)\left[\left(F_{1}^{\star} \gamma^{\mu}-F_{2}^{\star} \frac{\sigma^{\mu \nu} Q^{\nu}}{2 M_{\Delta}}\right) \delta^{\alpha \beta}-\left(F_{3}^{\star} \gamma^{\mu}-F_{4}^{\star} \frac{\sigma^{\mu \nu} Q^{\nu}}{2 M_{\Delta}}\right) \frac{Q^{\alpha} Q^{\beta}}{4 M_{\Delta}^{2}}\right] \mathbb{P}^{\beta \sigma}\left(P_{i}\right)
$$

Form factors at $Q^{2}=0$:

$$
\begin{array}{ll}
G_{E_{0}}(0)=e_{\Delta} & \text { charge } \\
G_{E_{2}}(0)=\mathcal{Q} & \text { electric quadrupole moment } \\
G_{M_{1}}(0)=\mu_{\Delta} & \text { magnetic dipole moment } \\
G_{M_{3}}(0)=\mathcal{O} & \text { magnetic octupole moment }
\end{array}
$$

almost quark-mass independent, match Ω^{-}magnetic moment
Nicmorus, GE, Alkofer, PRD 82 (2010)

Sanchis-Alepuz, Alkofer, Williams, PRD 87 (2013)

$$
m_{\pi}^{2}\left[\mathrm{GeV}^{2}\right]
$$

[^0]: Segovia et al., PRL 115 (2015)

