

Dyson-Schwinger approach to the muon g-2 and the structure of the LbL amplitude

Gernot Eichmann

University of Giessen, Germany

Hadronic Contributions to New Physics Searches (HC2NP) September 29 Puerto de la Cruz, Tenerife, Spain

1/26

Introduction

- Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p'}^{q} = ie \, \bar{u}(p') \left[F_1(q^2) \gamma^{\mu} - F_2(q^2) \frac{\sigma^{\mu\nu} q_{\nu}}{2m} \right] u(p)$$

$$F_2(0) = \underbrace{\frac{\alpha_{\text{QED}}}{2\pi}}_{\text{QED}} + \mathcal{O}(\alpha_{\text{QED}}^2) \approx 1 \%_0$$
Schwinger 1948

- QED corrections: overwhelming part, electroweak and QCD corrections very small: 10^{-12} for electron, 10^{-8} for muon
- Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

$a_{\mu} \ [10^{-10}]$		Jegerlehne Phys. Rept.	r, Nyffeler, 477 (2009)	
Exp:	11	659 208.9	(6.3)	_
QED:	11	658 471.9	(0.0)	
EW:		15.3	(0.2)	
Hadronic:				
• VP (LO+F	IO)	685.1	(4.3)	
• LBL		10.5	(2.6)	?
SM:	11	659 182.8	(4.9)	-
Diff:		26.1	(8.0)	

Introduction

Dyson-Schwinger / Bethe-Salpeter approach:

- ab-initio, but (systematically improvable) truncations
- symmetries are exact: Poincaré invariance, chiral symmetry, electromagnetic gauge invariance
- successful applications in other systems: QCD's n-point functions, meson & baryon spectra, elastic & transition FFs, tetraquarks, QCD phase diagram, ...

Outline:

 Hadronic vacuum polarization: basic ideas & results from DSEs & BSEs Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 1606.09602, PPNP 91 (2016)

• LbL scattering:

microscopic decomposition, quark loop, gauge invariance Mini-review: GE, Fischer, Heupel, Williams, 1411.7876, AIP Conf. Proc. 1701 (2016)

• Structure of the LbL amplitude:

permutation group S4, kinematic phase space, tensor decomposition GE, Fischer, Heupel, 1505.06336, PRD 92 (2015)

Vector current correlator from lattice QCD:

 $\Pi^{\mu\nu}(x-y) = \langle 0 | T \underbrace{[\bar{\psi} \gamma^{\mu} \psi](x)}_{j^{\mu}(x)} \underbrace{[\bar{\psi} \gamma^{\nu} \psi](y)}_{j^{\nu}(y)} | 0 \rangle = \int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(y)$

• Spectral decomposition:

 $\sum_{\lambda} |\lambda\rangle \langle \lambda | \quad \rightarrow \quad \sum_{\lambda} \frac{\cdots}{P^2 + m_i^2}$

 Pole in momentum space ⇒ exp. decay in Euclidean time

 $\Pi(x-y) \rightarrow e^{-m\tau}$

Vector current correlator from lattice QCD:

$$\Pi^{\mu\nu}(x-y) = \langle 0 | T [\overline{\psi} \gamma^{\mu} \psi](x) [\overline{\psi} \gamma^{\nu} \psi](y) | 0 \rangle = \int \mathcal{D}[\psi, \overline{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(y)$$

$$= \lim_{\substack{x_i \to x \\ y_i \to y}} \gamma^{\mu}_{\alpha\beta} \gamma^{\nu}_{\rho\sigma} \left[\langle 0 | T \overline{\psi}_{\alpha}(x_1) \psi_{\beta}(x_2) \overline{\psi}_{\rho}(y_1) \psi_{\sigma}(y_2) | 0 \rangle \right]$$

$$= x \checkmark \qquad G \qquad y_i$$

$$= x \checkmark \qquad G \qquad y_i = \sum_{\substack{x_i \to x \\ y_i \to y}} x \checkmark \qquad y_i$$

$$= x \checkmark \qquad G \qquad y_i = \sum_{\substack{x_i \to x \\ y_i \to y}} x \checkmark \qquad y_i$$

$$= x \checkmark \qquad G \qquad y_i = \sum_{\substack{x_i \to x \\ y_i \to y}} x \checkmark \qquad y_i$$

Timelike side determined by $e^+e^- \rightarrow$ hadrons \Rightarrow spacelike correlator from **dispersion relations**:

Microscopic decomposition:

$$\Pi^{\mu\nu}(x-y) = \langle 0 | T [\overline{\psi} \gamma^{\mu} \psi](x) [\overline{\psi} \gamma^{\nu} \psi](y) | 0 \rangle = \int \mathcal{D}[\psi, \overline{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(y)$$

$$= \lim_{\substack{x_i \to x \\ y_i \to y}} \gamma^{\mu}_{\alpha\beta} \gamma^{\nu}_{\rho\sigma} \left[\langle 0 | T \overline{\psi}_{\alpha}(x_1) \psi_{\beta}(x_2) \overline{\psi}_{\rho}(y_1) \psi_{\sigma}(y_2) | 0 \rangle \right]$$

$$= x \sqrt{G} \qquad \text{exact!}$$

Need to know dressed quark propagator and quark-photon vertex:

$$G \qquad \qquad = \qquad G \qquad \qquad = \qquad \langle 0 | T \, \bar{\psi}_{\alpha}(x_1) \, \psi_{\beta}(x_2) \, j^{\nu}(y) \, | \, 0 \rangle$$

- Bethe-Salpeter equation for quark-photon vertex:
- Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

infinitely many coupled equations, in practice truncations: model / neglect higher n-point functions to obtain closed system

• Analogous for bound states:

QCD's n-point functions

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

Gluon propagator

• Three-gluon vertex

 $\begin{array}{c} F_1 \left[\ \delta^{\mu\nu} (p_1 - p_2)^{\rho} + \delta^{\nu\rho} (p_2 - p_3)^{\mu} \\ + \ \delta^{\rho\mu} (p_3 - p_1)^{\nu} \right] + \dots \end{array}$

Agreement between lattice, DSE & FRG within reach

(-> see e.g. **Confinement 2016** talks: Sternbeck, Williams, Huber, Blum, Mitter, Cyrol, Campagnari, . . .)

· Quark-gluon vertex

• Bethe-Salpeter equation for quark-photon vertex:

 Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

• Kernel can be derived systematically (nonperturbative!):

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

• Bethe-Salpeter equation for quark-photon vertex:

 Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

• Kernel can be derived systematically (nonperturbative!):

Rainbow-ladder: effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter Maris, Tandy, PRC 60 (1999)

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

· Bethe-Salpeter equation for quark-photon vertex:

 Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

• Kernel can be derived systematically (nonperturbative!):

 $\mathbf{\hat{n}} = \begin{bmatrix} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix} = \begin{bmatrix} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix} = \begin{bmatrix} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix} = \begin{bmatrix} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix} = \begin{bmatrix} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{bmatrix}$

Rainbow-ladder: effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter Maris, Tandy, PRC 60 (1999)

Quark propagator

Calculated in **complex plane:** singularities pose restrictions (no physical threshold!)

Spectroscopy

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)

 Pion is Goldstone boson: m_π² ~ m_q

 Light meson spectrum beyond rainbow-ladder: Williams, Fischer, Heupel, PRD 93 (2016)

• Baryons from three-body BSE:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011), Sanchis-Alepuz, Fischer, PRD 90 (2014), . . .

Spectroscopy

• Baryon excitation spectrum: quark-diquark structure GE, Fischer, Sanchis-Alepuz, 1607.05748

• Electromagnetic, axial, transition form factors GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)

$$\textcircled{\begin{times}{0.5cm} \begin{times}{0.5cm} \begi$$

• Light scalar mesons as tetraquarks GE, Fischer, Heupel, PLB 753 (2016)

Quark-photon vertex

 $\Gamma^{\mu}(k,Q)$

=
$$\left[i\gamma^{\mu}\Sigma_{A} + 2k^{\mu}(ik\Delta_{A} + \Delta_{B})\right]$$

Ball-Chiu vertex, determined by WTI, depends only on quark propagator Ball, Chiu, PRD 22 (1980) $+ \quad \left[i\sum_{j=1}^8 f_j\,\tau_j^\mu(k,Q)\right]$

Transverse part, contains dynamics: VM poles & cuts Kizilersu et al, PRD 92 (1995), GE, Fischer, PRD 87 (2013)

τ_1^{μ}	$= t^{\mu\nu}_{QQ}\gamma^\nu$	vector	
τ_2^{μ}	$= t^{\mu\nu}_{QQ}k\!\cdot\!Q\;\tfrac{i}{2}[\gamma^\nu,\not\!\!k]$		
τ_3^{μ}	$=rac{i}{2}\left[\gamma^{\mu},Q ight]$	scalar AMM	
τ_4^{μ}	$= \tfrac{1}{6} \left[\gamma^{\mu}, \not\!\!\! k, \not\!\! Q \right]$	vector AMM	
τ^{μ}_{5}	$=t^{\mu\nu}_{QQ}ik^\nu$	scalar	
τ_6^μ	$= t^{\mu\nu}_{QQ} k^\nu k\!\!\!/$		
τ_7^μ	$= t^{\mu\nu}_{Qk}k\!\cdot\!Q\gamma^\nu$	$t^{\mu\nu} := a \cdot b \delta^{\mu\nu} -$	$b^{\mu}a^{\nu}$
τ_8^μ	$=t_{Qk}^{\mu\nu}\tfrac{i}{2}[\gamma^{\nu},k]$	ab . a oo	o u

GE, Acta Phys. Polon. Supp. 7 (2014)

Adler function:

DSE: Goecke, Fischer, Williams, PLB 704 (2011) DR: Eidelman, Jegerlehner, Kataev, Veretin, PLB 454 (1999) $D(Q^2) = -Q^2 \, d\Pi(Q^2)/dQ^2$

 Dispersion relations and DSEs (almost) identical on spacelike side, although timelike structure different: in rainbow-ladder, bound states without widths

- Similar in hadronic form factors: spacelike properties + hadronic poles reproduced, but missing meson-baryon interactions
- Separation into Ball-Chiu + transverse part in **any electromagnetic process!**

Adler function:

DSE: Goecke, Fischer, Williams, PLB 704 (2011) DR: Eidelman, Jegerlehner, Kataev, Veretin, PLB 454 (1999)

 Dispersion relations and DSEs (almost) identical on spacelike side, although timelike structure different: in rainbow-ladder, bound states without widths

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

• • • •

_____ + _{_}

 Quark loop
 pseudoscalar
 scalar
 axialvector
 π, K loop

 2
 8...11
 -1
 2
 -2
 $(\times 10^{-10})$

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

Exact expression:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

 $(\times 10^{-10})$

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

Exact expression: GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

π. *K* loop $(\times 10^{-10})$ 8 ... 11 -1 2 -2

Exact expression:

GE, Eischer, PRD 85 (2012), Goecke, Eischer, Williams, PRD 87 (2013)

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

Quark loop 2

8 11

+ axialvector scalar exchange

2

π. *K* loop -2

 $(\times 10^{-10})$

How important is the quark loop?

· Constituent quark loop known analytically: 6 ... 8

• ENJL: VM poles by summing up guark bubbles Bijnens 1995

-1

$$\gamma^\mu - rac{1}{Q^2 + m_V^2} \; t^{\mu
u}_{QQ} \, \gamma^
u$$

Large reduction: 2

イロト イポト イヨト イヨト

LbL amplitude: model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, ...

2

2

-2

pseudoscalar exchange 8 11

exchange exchange -1

π. *K* loop $(\times 10^{-10})$

How important is the quark loop?

Quark mass is not a constant:

· Quark-photon vertex is not bare:

• **DSE result** for quark loop: $a_{\mu} = 10.7 \times 10^{-10}$ but full Ball-Chiu vertex problematic

$A(p^2)$	$M(p^2)$	γ^{μ}	Γ^{μ}_{T}	$a_{\mu} \left[10^{-10} \right]$
1	0.2 GeV	1	0	10
1	$M(p^2)$	1	0	10
$A(p^2)$	$M(p^2)$	1	0	5
$A(p^2)$	$M(p^2)$	Σ_A	0	10
$A(p^2)$	$M(p^2)$	Σ_A	k = 0	4
$A(p^2)$	$M(p^2)$	Σ_A	Full	10

イロト イポト イヨト イヨト

Goecke, Fischer, Williams, PRD 87 (2013)

Goal: calculate LbL amplitude directly

Quark Compton vertex, enters in **Compton scattering** GE, Fischer, PRD 87 (2013)

Two strategies:

• Calculate quark loop, approximate T-matrix by meson exchanges \rightarrow calculate two-photon currents: $a_{\mu}^{PS} = 8.1 (1.2) \times 10^{-10}$ Goecke, Fischer, Williams, PRD 83 (2011)

Problem: only sum (without approximations!) is gauge invariant; how to deal with gauge artifacts?

 Calculate quark loop + T-matrix explicitly: gauge invariant, but more difficult

Either way, we first need to understand structure of LbL amplitude!

イロト イポト イヨト イヨト

Goal: calculate LbL amplitude directly

Quark Compton vertex, enters in **Compton scattering** GE, Fischer, PRD 87 (2013)

 $\pi\pi$ scattering

PRD 65 (2002), Cotanch, Maris, PRD 66 (2002)

Similar:

LbL amplitude

3 independent $p = p_2 + p_3$ momenta: $q = p_3 + p_1$ $k = p_1 + p_2$ 6 Lorentz invariants: p^2 , q^2 , k^2 , $p \cdot q$, $p \cdot k$, $q \cdot k$ ⇒ Calculating LbL amplitude means determining 136 FFs which depend on 6 variables . . .

イロト イポト イヨト イヨト

$$\Gamma^{\mu\nu\rho\sigma}(p,q,k) = \sum_{i=1}^{136} f_i(\dots) \ \tau_i^{\mu\nu\rho\sigma}(p,q,k)$$

Any constraints?

- Amplitude is **Bose-symmetric**. With symmetric tensor basis: ⇒ FFs only depend on symmetric combinations of variables
- Amplitude is **gauge invariant** \Rightarrow transverse to p_1^{μ} , p_2^{ν} , p_3^{ρ} and p_4^{σ} .

- ⇒ With 'minimal' tensor basis free of kinematic singularities: FFs free of kinematic singularities and zeros, only singularities are physical poles and cuts ⇒ 'simple'
- But this is not automatic ⇒ choice of basis matters!

Only physical poles and cuts?

Example: $\gamma N \rightarrow N^*(1535)$ helicity amplitudes:

CLAS data: Aznauryan et al., PRC 80 (2009)

Only physical poles and cuts?

Example: $\gamma N \rightarrow N^*(1535)$ helicity amplitudes:

CLAS data: Aznauryan et al., PRC 80 (2009)

Gauge invariance

Simplest example: hadronic vacuum polarization

 $\Pi^{\mu\nu}(Q) = \int d^4x \,\, e^{iQ\cdot x} \left< 0 \right| \mathsf{T} j^{\mu}(x) j^{\nu}(0) \left| 0 \right> = \mathbf{a}(Q^2) \, \delta^{\mu\nu} + \mathbf{b}(Q^2) \, Q^{\mu} Q^{\nu}$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^2 = 0$ (intermediate massless particle, but $\Pi^{\mu\nu} = 1$ PI)
- Transversality \Rightarrow Ward identity: $Q^{\mu}\Pi^{\mu\nu}(Q) = 0 \Rightarrow a = -b Q^2$ (not $b = -a/Q^2$!!!)

$$t^{\mu\nu}_{QQ}~=~Q^2\,\delta^{\mu\nu}-Q^\mu Q^\nu$$

Gauge invariance

Simplest example: hadronic vacuum polarization

 $\Pi^{\mu\nu}(Q) = \int d^4x \,\, e^{iQ\cdot x} \left< 0 \right| \mathsf{T} j^{\mu}(x) j^{\nu}(0) \left| 0 \right> \\ = \mathbf{a}(Q^2) \, \delta^{\mu\nu} + \mathbf{b}(Q^2) \, Q^{\mu} Q^{\nu}$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^2 = 0$ (intermediate massless particle, but $\Pi^{\mu\nu} = 1$ PI)
- Transversality \Rightarrow Ward identity: $Q^{\mu}\Pi^{\mu\nu}(Q) = 0 \Rightarrow a = -bQ^2$ (not $b = -a/Q^2 \parallel \parallel$)

$$\Rightarrow \Pi^{\mu\nu}(Q) = \underbrace{\Pi(Q^2) t^{\mu\nu}_{QQ}}_{\text{transverse}} + \underbrace{\widetilde{\Pi}(Q^2) \delta^{\mu\nu}}_{\text{gauge part": vanishes due to gauge invariance}}$$

What if calculation breaks gauge invariance?

- 1-loop in dim. reg: $\widetilde{\Pi}(Q^2)=0$
- 1-loop with cutoff: $\widetilde{\Pi}(Q^2) \sim \Lambda^2 \neq 0$ quadratic divergence, but only in gauge part!

Gauge invariance

Simplest example: hadronic vacuum polarization

 $\Pi^{\mu\nu}(Q) = \int d^4x \,\, e^{iQ\cdot x} \left< 0 \right| \mathsf{T} j^{\mu}(x) j^{\nu}(0) \left| 0 \right> \\ = a(Q^2) \, \delta^{\mu\nu} + b(Q^2) \, Q^{\mu} Q^{\nu}$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^2 = 0$ (intermediate massless particle, but $\Pi^{\mu\nu} = 1$ PI)
- Transversality \Rightarrow Ward identity: $Q^{\mu}\Pi^{\mu\nu}(Q) = 0 \Rightarrow a = -bQ^2$ (not $b = -a/Q^2 \parallel \parallel$)

$$\Rightarrow \Pi^{\mu\nu}(Q) = \underbrace{\Pi(Q^2) t^{\mu\nu}_{QQ}}_{\text{transverse}} + \underbrace{\widetilde{\Pi}(Q^2) \delta^{\mu\nu}}_{\text{agauge part": vanishes due to gauge invariance}}$$

· Different basis?

$$= \left[\Pi(Q^2) + \frac{\tilde{\Pi}(Q^2)}{Q^2} \right] t^{\mu\nu}_{QQ} \ + \ \frac{\tilde{\Pi}(Q^2)}{Q^2} \ Q^{\mu}Q^{\nu}$$

What if calculation breaks gauge invariance?

- 1-loop in dim. reg: $\widetilde{\Pi}(Q^2)=0$
- 1-loop with cutoff: $\widetilde{\Pi}(Q^2) \sim \Lambda^2 \neq 0$ quadratic divergence, but only in gauge part!

 \Rightarrow bad: kinematic singularities

 Must project onto full transverse + gauge basis, subtract gauge part. Also necessary if gauge invariance is violated by more than cutoff (e.g., incomplete calculation)!

Compton scattering

Tensor decomposition for CS amplitude:

GE & Fischer, PRD 87 (2013), GE & Ramalho, in preparation

18 tensors

Tarrach's construction: Tarrach, Nuovo Cim. A28 (1975)

write down all possible tensors (# = 32), apply transversality constraints, divide and subtract poles \Rightarrow 18 transverse tensors

	#Q		#Q	#Q		#Q
Τ1	2	T_7	3	T ₁₃ 7	T 19	4
T_2	4	T_{8}	3	T ₁₄ 5	T 20	5
T_3	2	T_{9}	5	T ₁₅ 7	T 21	3
T_4	4	T_{10}	3	T ₁₆ 5		
T_5	6	T_{11}	5	T ₁₇ 3		
T_6	5	T_{12}	5	T ₁₈ 3		

- \Rightarrow minimal basis:
 - transverse
 - · no kinematic singularities
 - permutation-group singlets
 - minimal powers in photon momenta

Compton scattering

Tensor decomposition for CS amplitude:

GE & Fischer, PRD 87 (2013), GE & Ramalho, in preparation

transverse part, 18 tensors

gauge part, 14 tensors

Transverse **Compton FFs** depend on 4 variables, but in T+G basis they scale with **single variable**!

At hadronic level: Born terms alone not gauge invariant

gauge invariant GE & Fischer, PRD 87 (2013)

Use offshell nucleon-photon vertex, project onto G+T basis ⇒ violation of gauge invariance mostly affects gauge part, transverse CFFs only weakly sensitive, still good prediction!

Quark-photon vertex

 $\Gamma^{\mu}(k,Q)$

=
$$\left[i\gamma^{\mu}\Sigma_{A} + 2k^{\mu}(ik\Delta_{A} + \Delta_{B})\right]$$

Ball-Chiu vertex, determined by WTI, depends only on quark propagator Ball, Chiu, PRD 22 (1980) $+ \quad \left[i\sum_{j=1}^8 f_j\,\tau_j^\mu(k,Q)\right]$

Transverse part, contains dynamics: VM poles & cuts Kizilersu et al, PRD 92 (1995), GE, Fischer, PRD 87 (2013)

τ_1^{μ}	$= t^{\mu\nu}_{QQ}\gamma^\nu$	vector	
τ_2^{μ}	$= t^{\mu\nu}_{QQ}k\!\cdot\!Q\;{\textstyle{i\over 2}}[\gamma^\nu,{k\!\!\!/}]$		
τ_3^{μ}	$=rac{i}{2}\left[\gamma^{\mu},Q ight]$	scalar AMM	
τ_4^{μ}	$= \tfrac{1}{6} \left[\gamma^{\mu}, \not\!\!\! k, \not\!\! Q \right]$	vector AMM	
τ^{μ}_{5}	$= t^{\mu\nu}_{QQ}ik^\nu$	scalar	
τ_6^{μ}	$= t^{\mu\nu}_{QQ} k^\nu k\!\!\!/$		
τ_7^{μ}	$= t^{\mu\nu}_{Qk}k\!\cdot\!Q\gamma^\nu$	$t^{\mu\nu} := a \cdot b \delta^{\mu\nu} -$	$b^{\mu}a^{\nu}$
τ_8^μ	$=t_{Qk}^{\mu\nu}\tfrac{i}{2}[\gamma^\nu,k]$	ab . a oo	o u

GE, Acta Phys. Polon. Supp. 7 (2014)

LbL amplitude

Minimal T+G basis:

- transverse
- no kinematic singularities
- permutation-group singlets
- minimal powers in photon momenta

- ⇒ FFs have no kinematic singularities or zeros, only physical poles and cuts
- ⇒ effectively scale with single variable: simple
- ⇒ broken gauge invariance affects G, not T: even incomplete calculations are **predictive**

Existing examples of such bases:

- ▷ 1 vector boson: scalar or fermion vertex (nucleon-photon, quark-photon, quark-gluon, . . .)
- 2 vector bosons: HVP, 2-photon currents, Compton scattering
- 3 vector bosons: three-gluon vertex
- > 4 vector bosons: LbL, four-gluon vertex??

Structure of the LbL amplitude

- Arrange the 24 permutations of ψ_{1234} into **multiplets:**

Phase space

• **Singlet:** symmetric variable, carries overall scale:

$$\mathcal{S}_0 = \frac{p^2 + q^2 + k^2}{4} = \frac{p_1^2 + p_2^2 + p_3^2 + p_4^2}{4}$$

• Doublet: $\mathcal{D} = \begin{bmatrix} a \\ s \end{bmatrix}$

Mandelstam triangle, 2-photon poles (pion, scalar, axialvector, ...)

• **Triplet:** $T = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$

tetrahedron bounded by $p_i^2=0\,\mathrm{,}$ vector-meson poles

Phase space

Fixed doublet variables \Rightarrow complicated geometric object inside tetrahedron:

Phase space

Example: three-gluon vertex from its DSE

GE, Williams, Alkofer, Vujinovic, PRD 89 (2014)

10

1 (SC) 4 (DC)

Tensor basis

	n	Seed	#	Multiplet type
pendent	0	$\delta^{\mu\nu}\delta^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
	2	$\delta^{\mu\nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+$
		$\delta^{\mu\nu}p^{\rho}p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_1^{\pm}, \mathcal{A}$
		$\delta^{\mu\nu}p^{\rho}q^{\sigma}$	12	$\mathcal{S},\mathcal{D}_1,\mathcal{T}_1^+,\mathcal{T}_2^\pm$
		$\delta^{\mu\nu}p^{\rho}k^{\sigma}$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
	4	$p^\mup^\nup^\rhop^\sigma$	3	S, D_1
		$p^\mup^\nuq^\rhoq^\sigma$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^-$
		$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S}, \left(\mathcal{D}_{1}, ight) \mathcal{D}_{2}, \mathcal{T}_{1}^{\pm}, \mathcal{A}$
		$p^\muq^\nuk^\rhok^\sigma$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+, \mathcal{T}_2^\pm$
		$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_1^{\pm}, \mathcal{T}_2^{\pm}, \mathcal{T}_3^{\pm}, \mathcal{A}$
		$p^{\mu} p^{\nu} q^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_1^{\pm}, \mathcal{T}_2^{\pm}, \mathcal{T}_3^{\pm}, \mathcal{A}$

 construct all possible multiplets from generic seed elements: 138 elements, but only 136 independent

Tensor basis

•	construct all possible multiplets
	from generic seed elements:
	138 elements, but only 136 independent

 $\begin{array}{ll} \delta^{\mu\nu} \, \delta^{\rho\sigma} & \Longrightarrow 3 \text{ permutations} \\ \delta^{\mu\nu} \, q_i^{\rho} \, q_j^{\sigma} & \Longrightarrow 3^2 \, \text{x} \, 6 = 54 \text{ permutations} \\ q_i^{\mu} \, q_i^{\nu} \, q_k^{\rho} \, q_i^{\sigma} & \Longrightarrow 3^4 = 81 \text{ permutations} \end{array}$

Orthonormalize momenta: $p, q, k \rightarrow n_1, n_2, n_3$ From three momenta we can define **axialvector**, must appear **in pairs** to ensure positive parity:

 $v^{\mu} = \varepsilon^{\mu\alpha\beta\gamma} \, n_1^{\alpha} \, n_2^{\beta} \, n_3^{\gamma}$

 $\begin{array}{l} v^{\mu} v^{\nu} v^{\rho} v^{\sigma} & \Rightarrow \textbf{1 permutation} \\ v^{\mu} v^{\nu} n_{i}^{\rho} n_{j}^{\sigma} & \Rightarrow 3^{2} \textbf{x} \ \textbf{6} = 54 \ \textbf{permutations} \\ n_{i}^{\mu} n_{j}^{\nu} n_{k}^{\rho} n_{l}^{\sigma} & \Rightarrow 3^{4} = \textbf{81} \ \textbf{permutations} \end{array}$

 $\delta^{\mu\nu} \delta^{\rho\sigma}$ is linearly dependent:

$$\delta^{\mu\nu} = v^{\mu}\,v^{\nu} + \sum\limits_{i=1}^{3} n^{\mu}_{i}\,n^{\nu}_{i}$$

n	Seed	#	Multiplet type
0	$\delta^{\mu u}\delta^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
2	$\delta^{\mu\nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+$
	$\delta^{\mu\nu}p^{\rho}p^{\sigma}$	12	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{A}$
	$\delta^{\mu\nu}p^{\rho}q^{\sigma}$	12	$\mathcal{S},\mathcal{D}_1,\mathcal{T}_1^+,\mathcal{T}_2^\pm$
	$\delta^{\mu\nu}p^{\rho}k^{\sigma}$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
	$p^\mup^\nuq^\rhoq^\sigma$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^-$
	$p^{\mu}p^{\nu}k^{\rho}k^{\sigma}$	10	$\mathcal{S}, \left(\mathcal{D}_{1}, ight) \mathcal{D}_{2}, \mathcal{T}_{1}^{\pm}, \mathcal{A}$
	$p^\muq^\nuk^\rhok^\sigma$	12	$\mathcal{S},\mathcal{D}_1,\mathcal{T}_1^+,\mathcal{T}_2^\pm$
	$p^\mup^\nup^\rhok^\sigma$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
	$p^\mup^\nuq^\rhok^\sigma$	24	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_1^{\pm}, \mathcal{T}_2^{\pm}, \mathcal{T}_3^{\pm}, \mathcal{A}$

Tensor basis

- construct all possible multiplets from generic seed elements: 138 elements, but only 136 independent
- transversality not yet implemented, but quark loop projected on this basis already behaves as expected:

singlet FFs scale with $S_0!$

n	Seed	#	Multiplet type
0	$\delta^{\mu\nu}\delta^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
2	$\delta^{\mu u} k^{ ho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+$
	$\delta^{\mu\nu} p^{\rho} p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_1^{\pm}, \mathcal{A}$
	$\delta^{\mu u} p^{ ho} q^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+, \mathcal{T}_2^\pm$
	$\delta^{\mu\nu}p^{\rho}k^{\sigma}$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
	$p^{\mu} p^{\nu} q^{\rho} q^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^-$
	$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S}, \left(\mathcal{D}_{1}, ight) \mathcal{D}_{2}, \mathcal{T}_{1}^{\pm}, \mathcal{A}$
	$p^{\mu} q^{\nu} k^{\rho} k^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+, \mathcal{T}_2^\pm$
	$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
	$p^\mup^\nuq^\rhok^\sigma$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$

Transverse basis

- Same argument: 43 elements, but only 41 independent
- Need to work out **transversality conditions** $p_1^{\mu} \mathcal{M}^{\mu\nu\rho\sigma} = 0, \dots p_4^{\sigma} \mathcal{M}^{\mu\nu\rho\sigma} = 0$ without introducing kinematic singularities, then construct **singlets** with lowest momentum powers: hard (both analytically and symbolically)
- Simpler: find 41 tensors that are transverse, analytic & have lowest mass dimension:

• To construct singlets, combine them with momentum multiplets:

$$\begin{split} \mathcal{S}_1 &= \mathcal{S} \\ \mathcal{S}_2 &= \mathcal{D} \cdot \mathcal{D} \\ \mathcal{S}_3 &= (\alpha \, \mathcal{D} * \mathcal{D} + \beta \, \mathcal{T} * \mathcal{T}) \cdot \mathcal{D} \end{split}$$

Ambiguity: two doublets with same mass dimension

	(2, 0)	(1,1)	(0, 2)	(3, 0)	(2, 1)	(1, 2)	(0,3)
Singlet	$\mathcal{D}\cdot\mathcal{D}$		$\mathcal{T}\cdot\mathcal{T}$	$\mathcal{D} \cdot (\mathcal{D} \ast \mathcal{D})$		$\mathcal{D} \cdot (\mathcal{T} \ast \mathcal{T})$	$\mathcal{T} \cdot (\mathcal{T} \vee \mathcal{T})$
Doublet	$\mathcal{D} * \mathcal{D}$		T * T	$(\mathcal{D}\cdot\mathcal{D})\mathcal{D}$		$ \begin{aligned} \mathcal{D} * (\mathcal{T} * \mathcal{T}) \\ (\mathcal{T} \cdot \mathcal{T}) \mathcal{D} \end{aligned} $	
Triplet		$\mathcal{T} \lor \mathcal{D}$	$\mathcal{T} \vee \mathcal{T}$		$\mathcal{T} \lor (\mathcal{D} * \mathcal{D})$ $(\mathcal{D} \cdot \mathcal{D}) \mathcal{T}$	$\mathcal{T} \vee (\mathcal{T} \vee \mathcal{D})$	$ \begin{array}{c} \mathcal{T} \lor (\mathcal{T} \lor \mathcal{T}) \\ (\mathcal{T} \cdot \mathcal{T}) \mathcal{T} \end{array} $
Antitriplet		$\mathcal{T}\wedge\mathcal{D}$			$\mathcal{T} \wedge (\mathcal{D} \ast \mathcal{D})$	$\mathcal{T} \land (\mathcal{T} \lor \mathcal{D})$	$\mathcal{T} \land (\mathcal{T} \lor \mathcal{T})$
Antisinglet				$\mathcal{D} \wedge (\mathcal{D} \ast \mathcal{D})$		$\mathcal{D} \wedge (\mathcal{T} \ast \mathcal{T})$	

Transverse basis

• In total: 7 seed elements produce **41 singlets** with minimal mass dimensions: GE, Fischer, Heupel, PRD 92 (2015)

n	Seed element	#	Multiplets	n = 4	n = 6	n=8	n = 10	n = 12
4	$t^{\mu u}_{12} t^{ ho\sigma}_{34}$	3	S, D_1	1	1	1		
	$\varepsilon_{12}^{\mu\nu}\varepsilon_{34}^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$	1	1	1		
6	$\varepsilon_1^{\mu\lambda\alpha}t_{22}^{\alpha\nu}\varepsilon_3^{\rho\lambda\beta}t_{44}^{\beta\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_2^+, \mathcal{T}_2^-, \mathcal{A}$		1	3	5	3
	$t_{12}^{\mu\nu} t_{33}^{\rho\lambda} t_{44}^{\lambda\sigma}$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+$		1	2	3	
	$t_{12}^{\mu u} t_{31}^{\rho\lambda} t_{24}^{\lambda\sigma}$	7	$\mathcal{S},\mathcal{T}_1^+,\mathcal{T}_1^-$		1	1	3	2
	$\varepsilon_{12}^{\mu\nu}\varepsilon_{31}^{\rho\lambda}t_{24}^{\lambda\sigma}$	7	$\mathcal{D}_2, \mathcal{T}_2^+, \mathcal{T}_1^-, \mathcal{T}_2^-$			2	5	
8	$t_{12}^{\mu\nu}t_{31}^{\rho\alpha}t_{12}^{\alpha\beta}t_{24}^{\beta\sigma}$	3	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+$			1	2	
	Total	41		2	5	11	18	5

• 7 equivalent seeds in dispersive approach: Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015)

 $\begin{array}{l} \varepsilon_{12}^{\mu\nu} \varepsilon_{33}^{\sigma\sigma}, \\ t_{12}^{\mu\nu} t_{331}^{\sigma}, \\ t_{12}^{\mu\nu} t_{312}^{\sigma} t_{312}^{\sigma}, \\ t_{12}^{\mu\nu} t_{312}^{\rho\sigma} t_{32}^{\sigma\rho\lambda} t_{3}^{\sigma\beta\lambda}, \\ t_{131}^{\mu\nu} t_{231}^{\rho\lambda} t_{41}^{\sigma\sigma}, \\ t_{141}^{\mu\nu} t_{32}^{\mu\nu} - t_{131}^{\mu\beta} t_{422}^{\mu\nu} t_{3}^{\rho\lambda\lambda} t_{4}^{\sigma\beta\lambda} \end{array}$

 However, to determine quark loop we need gauge part too: only poor constraints here

$$\begin{split} \Pi^{\mu\nu}(Q) &= \Pi(Q^2) \, t^{\mu\nu}_{QQ} \, + \, \widetilde{\Pi}(Q^2) \, \delta^{\mu\nu} \\ &= \left[\Pi(Q^2) + \frac{\widetilde{\Pi}(Q^2)}{Q^2} \right] t^{\mu\nu}_{QQ} \, + \, \frac{\widetilde{\Pi}(Q^2)}{Q^2} \, Q^{\mu}Q^{\nu} \end{split}$$

Quark loop with $m_q = \text{const}$

LbL amplitude in NJL model: So dependence for fixed doublet & triplet variables

Gernot Eichmann (Uni Giessen)

Quark loop from DSE

Gernot Eichmann (Uni Giessen)

Summary

- Understanding structure of the LbL amplitude is important for pinning down g-2
- Microscopic decomposition:

- ▷ revisit transversality constraints to derive T+G basis ⇒ pin down quark loop
- calculate sum of both diagrams (gauge invariant), in tandem with Compton scattering
- ▷ calculate two-photon form factors ⇒ missing effects in T-matrix?
- Best DSE values so far: Mini-review: GE, Fischer, Heupel, Williams, 1411.7876, AIP Conf. Proc. 1701 (2016)

 $a_{\mu}^{\rm HVP} = 676 \times 10^{-10} \qquad a_{\mu}^{\rm QL} = 10.7 \, (2) \times 10^{-10} \qquad a_{\mu}^{\rm PS} = 8.1 \, (1.2) \, \times 10^{-10}$

Thank you!

イロト イロト イヨト イヨト

Gernot Eichmann (Uni Giessen)

Sept 29, 2016 26 / 26

Backup slides

Electron vs. muon g-2

 $a_e \ [10^{-10}]$

Exp:	11 596 521.81		
QED:	11 596 521.71 .81	(0.09) (0.08)	Cs Rb
EW:	0.00		
Hadroni	c: 0.02		
SM:	11 596 521.73 .83	(0.09) (0.08)	Cs Rb

 $a_{\mu} [10^{-10}]$

Exp:	11 6	59 208.9	(6.3)
QED:	11 6	58 471.9	(0.0)
EW:		15.3	(0.2)
Hadronic:			
• VP (LO+H	IO)	685.1	(4.3)
• VP (LO+F • LBL	HO)	685.1 10.5	(4.3) (2.6)
• VP (LO+F • LBL	10) 11 6	685.1 10.5 59 182.8	(4.3) (2.6) (4.9)

Bijnens, Prades, Mod. Phys. Lett. A22 (2007) Jegerlehner, Nyffeler, Phys. Rept. 477 (2009) Hagiwara et al., J. Phys. G 38 (2011)

<ロト < 回 > < 回 > < 回 > .

3

DQC

... to Dyson-Schwinger equations

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + ig A + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \left[\underbrace{-1}_{\mathfrak{g}} \right]_{\mathfrak{g}} \left[\begin{array}{c} \partial \!\!\!/ \\ \partial \!\!\!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!\!/ \\ \partial \!\!/ \\ \partial \!\!$$

DSEs = quantum equations of motion: instead of calculating n-point functions directly, derive eqs. of motion for them from path integral

Quantum "effective action":

infinitely many coupled eqs., in practice truncations: model / neglect higher n-point functions to obtain closed system

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994), Alkofer, von Smekal, Phys. Rept. 353 (2001) Fischer, J. Phys. G32 (2006)

Mesons

• The pion plays special role in hadron physics: quark-antiquark **bound state** ⇔ Goldstone boson of **spontaneous chiral symmetry breaking**

• Eigenvalue spectrum of BS kernel:
Holl, Krassnigg, Roberts, PRC 70 (2004)

$$\gamma_5 (f_1 + f_2 \not P + f_3 \not q + f_4 [\not q, \not P]) \otimes \text{Color} \otimes \text{Flavor}$$

 $pion is made of s waves and p waves!
(relative momentum ~ orbital angular momentum ~ orbital angular momentum ~ orbital angular momentum ~ $\pi (1300) \pi (1800)$$

1

$$K\psi_i = \lambda_i(P^2)\psi_i, \qquad \lambda_i \xrightarrow{P^2 \longrightarrow -m_i^2}$$

Resonances?

Without them: bound states without widths

Difficult to implement at **quark-gluon level:** complicated topologies beyond rainbow-ladder

Different phenomenological pictures how this could happen:

 'pion-cloud effects' affect masses and form factors in light-quark region

• dynamical generation of resonances: start with 'bare' seed, hadronic interactions produce new poles

e.g. Suzuki et al., PRL 104 (2010)

Three-quark vs. five-quark / molecular components

So what does it mean?

Note: **'bound states without widths'** doesn't mean that $\rho \rightarrow \pi\pi$, $\Delta \rightarrow N\pi$,... decays are zero!!

Results favor 'mild' scenario:

- spectrum generated by quark-gluon interactions
- meson-baryon effects would merely shift poles into complex plane
- Effects on masses? Scale set by f_π, but pion-cloud affects f_π too so only 'non-trivial effects' visible
- Will be interesting to study transition form factors

Mader, GE, Blank, Krassnigg, PRD 84 (2011), GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 1606.09602

Gernot Eichmann (Uni Giessen)

Structure properties

 Current-mass evolution of Roper similar to nucleon. Lattice? GE, Fischer, Sanchis-Alepuz, 1607.05748

- All signatures of 1st radial excitation: partial-wave content, zero crossing
- Roper transition form factors in qualitative agreement with experiment Segovia et al., PRL 115 (2015)

• $\gamma N \rightarrow \Delta$ transition form factors:

GE, Nicmorus, PRD 85 (2012)

Discrepancies mainly in **magnetic dipole** (G_M^*): "Core + 25% pion cloud"

Electric quadrupole ratio

small & negative, encodes deformation. No pion cloud necessary: OAM from p waves!

First three-body results similar Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Tetraquarks are resonances

• Light scalar mesons σ , κ , a_0 , f_0 as tetraquarks: solution of four-body equation reproduces mass pattern GE, Fischer, Heupel, PLB 753 (2016)

$$\begin{array}{c} -p_{1} \\ -p_{2} \\ p_{2} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{2}$$

BSE dynamically generates **meson poles** in wave function, drive σ mass from 1.5 GeV to ~350 MeV

Four quarks rearrange to "meson molecule"

Tetraquarks are "dynamically generated **resonances**" (but from the quark level!)

• Similar in meson-meson / diquark-antidiquark approximation (analogue of quark-diquark for baryons) Heupel, GE, Fischer, PLB 718 (2012)

3 > < 3

Form factors

Form factors

Microscopic decomposition of current matrix element:

satisfies electromagnetic gauge invariance, consistent with baryon's Faddeev equation

Nucleon em. form factors

Three-body results:

all ingredients calculated, model dependence shown by bands GE, PRD 84 (2011)

- electric proton form factor: consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q²
- Similar for axial & ps. FFs, Δ elastic and $N \rightarrow \Delta \gamma$ transition GE, Fischer, EPJ A 48 (2012), Sanchis-Alepuz et al., PR0 87 (2013), Alkofer et al., Hyp. Int. 234 (2015)
 - ⇒ "quark core without pion-cloud effects"

イロト イポト イヨト イヨト

Nucleon em. form factors

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

 Pion-cloud effects missing (⇒ divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)

• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core Exp: $\kappa^s = -0.12$ Calc: $\kappa^s = -0.12(1)$ GE, PRD 84 (2011)

イロト イポト イヨト イヨト

Axial form factors

- looks like magnetic form factors: missing structure at low $Q^2 \Rightarrow g_A$ too small
- Timelike meson poles: a_1 in G_A , $\pi \& \pi(1300)$ in G_P , $G_{\pi NN}$
- Goldberger-Treiman relation reproduced for all quark masses:

$$G_A(0) = \frac{f_{\pi}}{M_N} G_{\pi NN}(0)$$
 GE & Fischer, EPJ A 48 (2012)

\varDelta electromagnetic FFs

Almost no experimental information since Δ unstable: $\Delta \rightarrow N\pi$

Magnetic moment $\mu_{\Delta} \sim 3.5$ with large errors (Δ^+). But Ω^- (spin 3/2, sss) is stable w.r.t strong interaction, magnetic moment $|\mu_{\Omega}| = 3.6(1)$. Accidental?

$$J^{\mu,\rho\sigma}(P,Q) = i \mathbb{P}^{\rho\alpha}(P_f) \left[\left(F_1^{\star} \gamma^{\mu} - F_2^{\star} \frac{\sigma^{\mu\nu}Q^{\nu}}{2M_{\Delta}} \right) \delta^{\alpha\beta} - \left(F_3^{\star} \gamma^{\mu} - F_4^{\star} \frac{\sigma^{\mu\nu}Q^{\nu}}{2M_{\Delta}} \right) \frac{Q^{\alpha}Q^{\beta}}{4M_{\Delta}^2} \right] \mathbb{P}^{\beta\sigma}(P_i)$$

Form factors at $Q^2=0$:

$G_{E_0}(0) = e_\Delta$ $G_{E_2}(0) = \mathcal{Q}$	charge electric quadrupole moment	$G_{M1}(0)$
$G_{M_1}(0) = \mu_\Delta$ $G_{M_3}(0) = \mathcal{O}$	magnetic dipole moment magnetic octupole moment	

almost quark-mass independent, match Ω^- magnetic moment Nicmorus, GE, Alkofer, PRD 82 (2010)

Three-body results similar (except G_{M_3}) Sanchis-Alepuz, Alkofer, Williams, PRD 87 (2013)

