
Precise determination of the low-energy hadronic contribution to
the muon g − 2 from analyticity and unitarity

Irinel Caprini

National Institute for Physics and Nuclear Engineering

Bucharest, Romania

Phys Rev D 93, 116007 (2016), with B. Ananthanarayan, D. Das and I.S. Imsong

HC2NP, 25-30 September 2016, Tenerife, Spain

Precise determination of the low-energy hadronic contribution to the muon g −



Outline

1 Aim and strategy

2 Mathematical formalism

3 Phenomenological input

4 Error evaluation

5 Low-energy contribution to aµ

6 Summary

Precise determination of the low-energy hadronic contribution to the muon g −



Aim � New generation experiments at Fermilab and J-PARC: error on aµ at the level of
δaexp

µ = 1.6 × 10−10� Largest theoretical error, δath
µ ∼ 4.3 × 10−10, from LO hadronic vacuum

polarization (HVP)� A large part of it comes from the π+π− contribution from low-energies� Compilation of e+e− data, including BaBar : Davier et al. (2010)

a
ππ, LO
µ [2mπ, 0.63GeV] = (133.2 ± 1.3) × 10−10� Integration of BaBar data alone: error ∼ 1.5 × 10−10 Malaescu (2013)� Inclusion of KLOE 11: modest improvement, due to tension between BaBar

and KLOE Hagiwara et al. (2011)� More recent experiments (KLOE 13, BESIII 16, CMD-3 preliminary) do not
report data at low energies
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the kernel function K(s) in the integral for aµ� Left: red: corresponding error contribution, with statistical and systematic errors
added in quadrature� Right: low-energy data on the e+e− → π+π− cross section

Large experimental errors on the cross-section amplified by the QED kernel
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Large experimental errors on the cross-section amplified by the QED kernel

⇒ More convenient to use the pion electromagnetic form factor

〈π+(p′)|Jelm

µ |π+(p)〉 = (p + p′)µF (t), t = (p − p′)2
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aµ and the pion form factor

a
ππ(γ), LO
µ [

√
tl ,

√
tu ] =

α2m2
µ

12π2

Z tu

tl

dt

t
|F (t)|2 K(t) β3

π(t) |Fω(t)|2
“

1 +
α

π
ηπ(t)

”� F (t): the pion electromagnetic form factor in the isospin limit� K(t) =
R 1
0

du(1 − u)u2(t − u + m2
µu2)−1 the QED kernel� βπ(t) = (1 − 4mπ/t)1/2 two-pion phase space� Fω(t) = 1 + ǫ t

(mω−iΓω/2)2−t
isospin-breaking correction (ω − ρ mixing)� 1 + α

π
ηπ(t): FSR correction (scalar QED)
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Z tu
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t
|F (t)|2 K(t) β3

π(t) |Fω(t)|2
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1 +
α

π
ηπ(t)

”� F (t): the pion electromagnetic form factor in the isospin limit� K(t) =
R 1
0

du(1 − u)u2(t − u + m2
µu2)−1 the QED kernel� βπ(t) = (1 − 4mπ/t)1/2 two-pion phase space� Fω(t) = 1 + ǫ t

(mω−iΓω/2)2−t
isospin-breaking correction (ω − ρ mixing)� 1 + α

π
ηπ(t): FSR correction (scalar QED)

Consider the low-energy contribution: a
ππ(γ), LO
µ [2mπ, 0.63GeV] ≡ aµ

Aim: reduce the error on aµ by exploiting analyticity, unitarity and more

precise phenomenological information on F (t) available at other energies
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Strategy

Basic idea:� Use as input, instead of the modulus, the phase arg[F (t)], known with precision
in the elastic region of the unitarity cut from Fermi-Watson theorem and Roy
equations for ππ scattering� Use additional, more precise, values of F (t), available at other energies
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Requirements on the method:� No specific parametrization� Independence on the unknown phase of F (t) above the inelastic threshold� Reliable evaluation of the errors
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Strategy

Basic idea:� Use as input, instead of the modulus, the phase arg[F (t)], known with precision
in the elastic region of the unitarity cut from Fermi-Watson theorem and Roy
equations for ππ scattering� Use additional, more precise, values of F (t), available at other energies

Requirements on the method:� No specific parametrization� Independence on the unknown phase of F (t) above the inelastic threshold� Reliable evaluation of the errors

Achieved by using:� Analyticity and unitarity of the form factor� Adequate mathematical methods: extremal problems for analytic functions� Statistical simulations to account for the uncertainties
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Extremal problem

Find optimal upper and lower bounds on |F (t)| on the elastic unitarity cut,
4m2

π < t < tin, for F (t) in the class of functions real analytic in the t-plane cut along
the real axis for t ≥ 4m2

π , which satisfy the following conditions:� Phase known in the elastic region (from δ1
1 phase-shift of ππ scattering):

Arg[F (t + iǫ)] = δ1
1(t), 4m2

π ≤ t ≤ tin� An integral condition on the modulus squared above the inelastic threshold:

1

π

Z

∞

tin

dt w(t) |F (t)|2 ≤ I� Given values for the first two Taylor coefficients at t = 0:

F (0) = 1,
h

dF (t)
dt

i

t=0
=

1

6
〈r2

π〉� Given values at several spacelike and timelike energies:

F (tn) = Fn ± ǫn, n = 1, 2...
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Extremal problem

Find optimal upper and lower bounds on |F (t)| on the elastic unitarity cut,
4m2

π < t < tin, for F (t) in the class of functions real analytic in the t-plane cut along
the real axis for t ≥ 4m2

π , which satisfy the following conditions:� Phase known in the elastic region (from δ1
1 phase-shift of ππ scattering):

Arg[F (t + iǫ)] = δ1
1(t), 4m2

π ≤ t ≤ tin� An integral condition on the modulus squared above the inelastic threshold:

1

π

Z

∞

tin

dt w(t) |F (t)|2 ≤ I� Given values for the first two Taylor coefficients at t = 0:

F (0) = 1,
h

dF (t)
dt

i

t=0
=

1

6
〈r2

π〉� Given values at several spacelike and timelike energies:

F (tn) = Fn ± ǫn, n = 1, 2...

Combined phase-modulus problem. Can be reduced to a standard Schur-Carathéodory
and Pick-Nevanlinna interpolation problem

Caprini, EPJC(2000), Abbas, Ananthanarayan, Caprini, Imsong and Ramanan, EPJA(2010)
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Solution of the extremal problem

The solution is expressed in terms of several auxiliary quantities:� Conformal mapping of the t-plane cut for t > tin onto the unit disc |z | < 1:

z ≡ z̃(t) =

√
tin −√

tin − t√
tin +

√
tin − t

, z̃(0) = 0; t̃(z) = tin
4z

(1 + z)2� An Omnès function:

O(t) = exp

 

t

π

Z

∞

4m2
π

dt
δ(t′)

t′(t′ − t)

!

where δ(t) = δ1
1(t) for t ≤ tin and an arbitrary smooth function for t > tin� A function analytic without zeros in |z | < 1 (”outer function”) with modulus on

|z | = 1 equal to
p

w(t) |dt/dz̃(t)|:

C1(z) = exp

»

1

2π

Z 2π

0
dθ

e iθ + z

e iθ − z
ln[w(t̃(e iθ))|dt̃

dz
|]
–� Another outer function in |z | < 1 with modulus on the boundary equal to

|O(t̃(z))|:

C2(z) = exp

 
p

tin − t̃(z)

π

Z

∞

tin

dt′
ln |O(t′)|√

t′ − tin(t′ − t̃(z))

!
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Solution of the extremal problem� Define the function: g(z) ≡ F (t̃(z)) [O(t̃(z))]−1 C1(z) C2(z) analytic in |z | < 1� Define gk ≡
»

1

k!

dkg(z)

dzk

–

z=0

, 0 ≤ k ≤ K − 1� For zn ∈ (−1, 1), define ξ̄n = g(zn) −
PK−1

k=0 gkzk
n , 1 ≤ n ≤ N� Let Ī = I −

PK−1
k=0 g2

k� Construct the determinant D:

D =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Ī ξ̄1 ξ̄2 · · · ξ̄N

ξ̄1
z2K
1

1 − z2
1

(z1z2)K

1 − z1z2
· · · (z1zN)K

1 − z1zN

ξ̄2
(z1z2)

K

1 − z1z2

(z2)
2K

1 − z2
2

· · · (z2zN)K

1 − z2zN

.

..
.
..

.

..
.
..

.

..

ξ̄N

(z1zN)K

1 − z1zN

(z2zN)K

1 − z2zN

· · ·
z2K
N

1 − z2
N

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

⇒ the determinant D and its minors are nonnegative
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Application of the solution� K = 2� By this we implement the condition F (0) = 1 and the charge radius 〈r2
π〉� N = 3� 2 points used as input, one at a spacelike energy and the other at a timelike

energy� One point where we want to calculate bounds on |F (t)|� The condition D ≥ 0 gives a quadratic inequality with coefficients known from
the input for the unknown modulus |F (t)|, from which we obtain upper and
lower bounds

m ≤ |F (t)| ≤ M, t < tin� The positivity of the minors provide consistency constraints on the quantities
that enter as input, which ensures that the quadratic equations for the bounds
have real solutions
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Input: the phase� First inelastic threshold tin = (mπ + mω)2 = (0.92 GeV)2

Eidelman and Lukaszuk (2004)� The phase shift δ1
1(t) determined from Roy equations for the ππ amplitudes

Ananthanarayan, Colangelo, Gasser and Leutwyler (2001),

Caprini, Colangelo and Leutwyler (2013), Garcia-Martin et al. (2011)

⇒ two phases denoted as Bern and Madrid� For t > tin, δ(t) taken as an arbitrary smooth function� The results are not affected by this arbitrariness� Rigorous proof based on theory of analytic functions

Abbas, Ananthanarayan, Caprini, Imsong and Ramanan (2010)� Checked numerically for sufficiently smooth functions δ(t)
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Input: the phase� First inelastic threshold tin = (mπ + mω)2 = (0.92 GeV)2

Eidelman and Lukaszuk (2004)� The phase shift δ1
1(t) determined from Roy equations for the ππ amplitudes

Ananthanarayan, Colangelo, Gasser and Leutwyler (2001),

Caprini, Colangelo and Leutwyler (2013), Garcia-Martin et al. (2011)

⇒ two phases denoted as Bern and Madrid� For t > tin, δ(t) taken as an arbitrary smooth function� The results are not affected by this arbitrariness� Rigorous proof based on theory of analytic functions

Abbas, Ananthanarayan, Caprini, Imsong and Ramanan (2010)� Checked numerically for sufficiently smooth functions δ(t)

⇒ The results do not depend on the phase of F (t) in the inelastic region
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Input: high-energy integral� Input data on |F (t)|:� From tin to
√

t = 3 GeV Babar data Aubert et al. (2009)� For 3 GeV≤
√

t ≤ 20 GeV a constant value� Above 20 GeV we impose a 1/t decrease according to QCD scaling� Choice of the weight w(t)� The weights with a rapid decrease allow a precise calculation of the integral,
but lead to weaker bounds� The weights with a slower decrease lead to stronger bounds, but do not
suppress the unknown high energy part� Suitable choice: w(t) = 1

t
Ananthanarayan, Caprini, Das and Imsong (2012, 2013)� The range above 3 GeV contributes with ∼ 1%� Numerical evaluation: I = 0.578 ± 0.022
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Input: high-energy integral� Input data on |F (t)|:� From tin to
√

t = 3 GeV Babar data Aubert et al. (2009)� For 3 GeV≤
√

t ≤ 20 GeV a constant value� Above 20 GeV we impose a 1/t decrease according to QCD scaling� Choice of the weight w(t)� The weights with a rapid decrease allow a precise calculation of the integral,
but lead to weaker bounds� The weights with a slower decrease lead to stronger bounds, but do not
suppress the unknown high energy part� Suitable choice: w(t) = 1

t
Ananthanarayan, Caprini, Das and Imsong (2012, 2013)� The range above 3 GeV contributes with ∼ 1%� Numerical evaluation: I = 0.578 ± 0.022� Remarkable property: for a fixed weight w(t), the bounds depend in a

monotonous way on I , becoming stronger/weaker when I is decreased/increased

⇒ The most conservative bounds are obtained with I = 0.578 + 0.022
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Input: values from the holomorphy domain

1 Normalization condition F (0) = 1

2 Charge radius in a rather large range 〈r2
π〉 ∈ (0.41, 0.45) fm2 inferred from

previous studies Ananthanarayan, Caprini, Das, Imsong (2013)

3 Most recent data at spacelike energies Horn et al. (2006), Huber et al. (2008)

F (−1.60 GeV2) = 0.243 ± 0.012+0.019
−0.008

F (−2.45 GeV2) = 0.167 ± 0.010+0.013
−0.007� Included in order to constrain the high-energy behaviour of the form factor
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Input: modulus from the elastic region of the cut

Optimal region: 0.65GeV ≤
√

t ≤ 0.71GeV determined from previous studies
Ananthanarayan, Caprini, Das, Imsong (2013)� Close to the low-energy region of interest ⇒ strong bounds� Data are more precise and more consistent among them

Experiment Number of points

CMD2 2

SND 2

BABAR 26

KLOE 2011 8

KLOE 2013 8

BESIII 10

CLEO 3

ALEPH 3

OPAL 3

Belle 2

Number of measurements in the region 0.65GeV ≤
√

t ≤ 0.71GeV in e+e− and

τ -decay experiments
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Extraction of |F (t)| from data� The formalism requires F (t) in the isospin limit� |F (t)| extracted from measurements by applying suitable corrections
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Extraction of |F (t)| from data� The formalism requires F (t) in the isospin limit� |F (t)| extracted from measurements by applying suitable corrections

• e+e− experiments:

|F (t)|2 =
3t

α2πβπ(t)3

σ0
ππ(γ)

(t)

1 + α
π

ηπ(t)� σ0
ππ(γ)

: bare cross-section (without VP) corrected for ρ − ω mixing
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Extraction of |F (t)| from data� The formalism requires F (t) in the isospin limit� |F (t)| extracted from measurements by applying suitable corrections

• e+e− experiments:

|F (t)|2 =
3t

α2πβπ(t)3

σ0
ππ(γ)

(t)

1 + α
π

ηπ(t)� σ0
ππ(γ)

: bare cross-section (without VP) corrected for ρ − ω mixing

• τ -decay experiments

|F−(t)|2 =
2m2

τ

|Vud |2
1

SEW

„

1 − t

m2
τ

«

−2„

1 +
2t

m2
τ

«

−1 Bππ

B

„

1

Nππ

dNππ

dt

«

1

β3
−

(t)

1

GEM� dNππ/Nππdt: normalized invariant mass spectrum of the two-pion final state� SEW : short distance correction� β−(t): two-pion phase space relevant for τ decay� GEM : long-distance radiative correction� ρ − γ mixing advocated recently Jegerlehner (2011) negligible in the input range
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Modulus of F (t) used as input
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Modulus squared |F (t)|2 in the region 0.65-0.71 GeV extracted from e+e− → π+π−

(left) and τ -decay (right) experiments
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Statistical simulations� The formalism provides upper and lower bounds on |F (t)| at low energies for
definite values of the input quantities (phase, charge radius, spacelike value,
timelike modulus)� To account for the uncertainties, we have generated a large number of
pseudodata for each of the input quantities, using a priori given distributions
(uniform or gaussian)� For each set of inputs in the sample, upper and lower bounds on the modulus
squared |F (t)|2 at all energies below 0.63 GeV have been calculated using the
mathematical algorithm� A number of random admissible values for |F (t)|2 between the upper and lower
bounds have been generated at each energy and used in the integral giving aµ� We obtained a large sample (∼ 106) of values for the quantity aµ for each
timelike input� The entire sample was binned to obtain a mean value and a 68.3% confidence
level interval
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Distributions of aµ values (Bern phase)

• Distribution of aµ (× 1010) obtained without input from the timelike region
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• Distribution of aµ (× 1010) obtained without input from the timelike region
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• Distribution of aµ (× 1010) obtained using as input a timelike modulus from BABAR
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aµ with input from e+e− experiments (Bern phase)
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Allowed intervals at 68.3% C.L. for aµ ≡ a
ππ(γ), LO
µ [2mπ, 0.63GeV] × 1010,

as a function of the energy where the timelike modulus was used as input
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aµ with input from τ -decay experiments (Bern phase)
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Combining results with input from different timelike energies

Averaging prescription where the effective size of the correlations is estimated from
the data themselves Schmelling (1995), PDG

• Average: given n values ai with errors δi , the most robust prescription is

ā =
n
X

i=1

wiai , wi =
1/δa2

i
Pn

j=1 1/δa2
j
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Combining results with input from different timelike energies

Averaging prescription where the effective size of the correlations is estimated from
the data themselves Schmelling (1995), PDG

• Average: given n values ai with errors δi , the most robust prescription is

ā =
n
X

i=1

wiai , wi =
1/δa2

i
Pn

j=1 1/δa2
j

• Standard deviation σ(ā):� Define χ2(f ) =
Pn

i,j=1(ai − ā)(C(f )−1)ij (aj − ā)

Cij =

(

δai δai if i = j ,

f δai δaj if i 6= j , f ∈ [0, 1]� If χ2(0) < n − 1: the data might indicate the existence of a positive correlation.
Increase f until χ2(f ) = n − 1 and adopt the variance

σ2(ā) =

0

@

n
X

i,j=1

(C(f )−1)ij

1

A

−1� If χ2(0) > n − 1: indication that the individual errors are underestimated.
Rescale σ2(ā) by the factor χ2(0)/(n − 1).

Precise determination of the low-energy hadronic contribution to the muon g −



Typical situation� The prescription indicated a positive correlation in all cases� Illustration for BESIII and Madrid phase:
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Dependence on f of the ratio χ2(f )/(n − 1) and of the standard deviation

σ ≡
p

σ2(f ). The error is obtained with f determined from the equation
χ2(f )/(n − 1) = 1.
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Pathologies
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Left (CMD2 and Madrid phase): The equality χ2(f )/(n − 1) = 1 holds for f very
close to 1, because the individual values are much closer than expected from the
ascribed errors. For f close to 1, σ2(f ) starts to decrease, so the blind application of
the prescription would lead to an unreliably small error.

Right (KLOE 11 and Madrid phase): The equality χ2(f )/(n − 1) = 1 holds for f very
close to 0, because the individual values are rather different and their errors are too
small. A further error reduction by their combination is not reliable.

Conservative approach: take the maximum error for f in the range (0, 1)
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Results from individual experiments

Bern phase Madrid phase
CMD2 131.804 ± 1.563 131.396 ± 1.585
SND 133.535 ± 1.371 133.102 ± 1.306
BABAR 134.338 ± 0.939 134.086 ± 0.862
KLOE 11 132.560 ± 1.220 132.017 ± 1.035
KLOE 13 132.864 ± 1.413 132.343 ± 1.224
BESIII 131.958 ± 1.725 132.753 ± 1.719
CLEO 134.478 ± 1.389 133.897 ± 1.183
OPAL 131.176 ± 2.803 129.910 ± 2.970
ALEPH 133.114 ± 1.703 132.298 ± 1.783
Belle 134.588 ± 1.227 134.280 ± 1.136

Central values and standard deviations for a
ππ(γ), LO
µ [2mπ, 0.63 GeV] × 1010,

obtained by combining the results from different energies for each experiment
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Average of different experiments� The prescription indicated a positive correlation between the values from
different experiments� The results from the two phases have been combined in a simple average� The data from e+e− and τ -decay experiments are consistent in the region
0.65 − 0.71 GeV ⇒ the results from all 10 experiments can be combined into a
single average:

a
ππ(γ), LO
µ [2mπ, 0.63 GeV] = (133.258 ± 0.723) × 10−10

Direct determination: (133.2 ± 1.3) × 10−10 Davier et al. (2010)
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Summary� The low-energy hadronic VP contribution to aµ has a relatively large error due to
the low experimental accuracy amplified by the QED kernel� I presented an attempt to reduce this error based on the analyticity and unitarity
properties of the pion electromagnetic form factor� The strategy was to use, instead of the modulus at low energies, the phase

in the elastic region and measurements of the modulus outside the
low-energy region� By solving a suitable extremal problem, upper and lower bounds on |F (t)|
at low energies have been obtained in a parametrization-free approach� The bounds are optimal and independent on the unknown phase of F (t)
above the inelastic threshold� The uncertainties of the input have been included by statistical simulations� The result for the contribution to a

ππ, LO
µ of energies below 0.63 GeV is

consistent with the direct determination from combined e+e− data� The error has been reduced by about 0.6 × 10−10 (a factor of 2)� Inclusion of forthcoming data from CMD-3 and SND at VEPP-2000 collider in
Novosibirsk expected to improve the precision

Precise determination of the low-energy hadronic contribution to the muon g −


