Pablo Sanchez-Puertas sanchezp@kph.uni-mainz.de

Johannes Gutenberg-Universität Mainz In collaboration with P. Masjuan

Hadronic Contributions to New Physics Searches Puerto de la Cruz, Tenerife (Spain), 29th September 2016

UNIVERSITÄT

Outline

- 1. Hadronic light-by-light: pseudoscalar pole contribution
- 2. A transition form factor for the HLbL
- 3. Updated pseudoscalar pole contribution
- 4. $P \rightarrow \bar{\ell} \ell$ decays: further information and new physics
- 5. Summary & Outlook

Section 1

Hadronic light-by-light: pseudoscalar pole contribution

The current
$$(g-2)_{\mu}$$
 status

$$\begin{array}{l} a_{\mu}^{\rm SM} = (116 \,\, 591 \,\, 826(57)) \times 10^{-11} \\ a_{\mu}^{\rm exp} = (116 \,\, 592 \,\, 091(63)) \times 10^{-11} \\ a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (265(85)) \times 10^{-11} \end{array}$$

New Physics? only 3σ

The current
$$(g-2)_{\mu}$$
 status

 $\begin{array}{l} a_{\mu}^{\rm SM} = (116 \,\, 591 \,\, 826(57)) \times 10^{-11} \\ a_{\mu}^{\rm exp} = (116 \,\, 592 \,\, 091(63)) \times 10^{-11} \\ a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (265(85)) \times 10^{-11} \end{array}$

Future $(g_{\mu} - 2)$ experiments Fermilab & J-PARC: precision $\delta a_{\mu} = 16 \times 10^{-11}$

The current
$$(g-2)_{\mu}$$
 status

$$\begin{split} & a_{\mu}^{\rm SM} = (116 \,\, 591 \,\, 826(57)) \times 10^{-11} \\ & a_{\mu}^{\rm exp} = (116 \,\, 592 \,\, 091(63)) \times 10^{-11} \\ & a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (265(85)) \times 10^{-11} \end{split}$$

Future $(g_{\mu} - 2)$ experiments Fermilab & J-PARC: precision $\delta a_{\mu} = 16 \times 10^{-11}$

The current
$$(g-2)_{\mu}$$
 status

 $\frac{\text{Future } (g_{\mu} - 2) \text{ experiments}}{\text{Fermilab & J-PARC: precision}}$ $\delta a_{\mu} = 16 \times 10^{-11}$

Order	$Result imes 10^{11}$
$a_{\mu}^{\mathrm{HVP}\cdot\mathrm{LO}}$ $a_{\mu}^{\mathrm{HVP}\cdot\mathrm{NLO}}$ $a_{\mu}^{\mathrm{HVP}\cdot\mathrm{N^{2}LO}}$	6 923(42) -98.4(7) 12.4(1)
$a_{\mu}^{\mathrm{HLbL\cdot LO}} a_{\mu}^{\mathrm{HLbL\cdot NLO}}$	116(<mark>39</mark>) 3(2)
$a_{\mu}^{ m QCD}$	6 956(<mark>57</mark>)

Davier et al ('12), Hagiwara et al ('11), Kurz et al ('14) Jegerlehnner Nyffeler ('09, '14) Improve on the QCD side

Hadronic contributions: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

Hadronic contributions: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi PT$

Hadronic contributions: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0},η,η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	_	-	-	80(40)
MV	114(10)	-	22(5)	_	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

- Enough for $\delta a_{\mu} = 63 \times 10^{-11}$
- Not in future $\delta a_{\mu} = 16 \times 10^{-11}$
- Most results circa 15 years old
- Some advances since then

Hadronic contributions: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0},η,η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	-	-	-	80(40)
MV	114(10)	-	22(5)	_	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

- Enough for $\delta a_{\mu} = 63 \times 10^{-11}$
- Not in future $\delta a_{\mu} = 16 \times 10^{-11}$
- Most results circa 15 years old
- Some advances since then

Hadronic contributions: Hadronic Light-by-Light

- Not direct connection to data
- Dispersive proposals recently (much involved)
- Multi-scale problem \rightarrow more difficulties
- Devise non-perturbative approach to QCD!

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0}, η, η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	-	_	_	80(40)
MV	114(10)	-	22(5)	-	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

Update π^0 , η , η' Contributions

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \left\langle \Omega \right| T\left\{ j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4) \right\} \left| \Omega \right\rangle$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \frac{i \langle \Omega | T\{j^{\mu}(0)j^{\nu}(x_2)\} | P \rangle \langle P | T\{j^{\rho}(0)j^{\sigma}(x_4)\} | \Omega \rangle}{q^2 - m_P^2 + i\epsilon} + \dots$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{i p_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1) j^{\nu}(x_2) j^{\rho}(x_3) j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\mathcal{M}^{\mu\nu}_{P \to \gamma^*\gamma^*} \frac{i}{(p_1 + p_2)^2 - m_P^2} i\mathcal{M}^{\rho\sigma}_{\gamma^*\gamma^* \to P} + \text{ crossed } + \dots$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

Related to physical process! Graphically, it looks like

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

Related to physical process! Experimentally, it looks like

Hadronic light-by-light: pseudoscalar pole contribution

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL $(g-2)_{\mu}$ contribution

Hadronic light-by-light: pseudoscalar pole contribution

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL $(g-2)_{\mu}$ contribution

• After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ &\times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^3) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_2^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$

Hadronic light-by-light: pseudoscalar pole contribution

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL $(g-2)_{\mu}$ contribution

- After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ & \times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^3) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$
- Without the transition form factors $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ integrands look like

Hadronic light-by-light: pseudoscalar pole contribution

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL $(g-2)_{\mu}$ contribution

- After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ & \times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^3) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$
- Without the transition form factors $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ integrands look like

We reduced everything to an integral involving physical input Description for space-like $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$, specially below 2 GeV Incorporate high-energy description (otherwise $I_1(Q_1, Q_2, t)$ diverges)

Section 2

A transition form factor for the HLbL

Describing the TFF I: First principles

$$\frac{Q^2 \to \infty}{Q^{2} \to \infty} F_{\pi\gamma\gamma^*}(0, Q^2) = \frac{2F_{\pi}}{Q^2}$$
$$\lim_{Q^2 \to \infty} F_{\pi\gamma^*\gamma^*}(Q^2, Q^2) = \frac{2F_{\pi}}{3Q^2}$$
Guarantee convergence!
$$Q^2 \to 0$$
$$F_{\pi\gamma\gamma}(0,0) = (4\pi^2 F_{\pi})^{-1}$$

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Nice overall picture, but not precision
- Ok, they are models (not full QCD), problem is uncertainty estimate

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Nice overall picture, but not precision
- Ok, they are models (not full QCD), problem is uncertainty estimate

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD \longrightarrow Fit it with a model
- Data not always available were required \rightarrow extrapolation reliability?
- How to systematically improve to arbitrary known precision?

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Nice overall picture, but not precision
- Ok, they are models (not full QCD), problem is uncertainty estimate

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD \longrightarrow Fit it with a model
- Data not always available were required ightarrow extrapolation reliability?
- How to systematically improve to arbitrary known precision?

—Data-based

Dispersive reconstruction

- Data based, in principle full QCD
- In practice most of QCD contributions \Rightarrow Not full Q^2 reconstruction

Objectives and strategies

—What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We propose to use Padé Approximants

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We propose to use Padé Approximants

—How to implement the double virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

Objectives and strategies

—What do we need? A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

—How to implement for single-virtual case? We propose to use Padé Approximants

—How to implement the double virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

Padé Approximants: Introduction to the method

Given a function with known series expansion

$$F_{P\gamma\gamma^*}(Q^2) = F_{P\gamma\gamma^*}(0)(1 + b_PQ^2 + c_PQ^4 + ...)$$
 i.e. χPT

Its Padé approximant is defined as

$$P_{M}^{N}(Q^{2}) = \frac{T_{N}(Q^{2})}{R_{M}(Q^{2})} = F_{P\gamma\gamma^{*}}(0)(1 + b_{P}Q^{2} + c_{P}Q^{4} + \dots + \mathcal{O}(Q^{2})^{N+M+1})$$

Convergence th. \Rightarrow Model-independency Increase $\{N, M\} \Rightarrow$ Systematic error estimation

$$P_1^0 = \frac{F_{P\gamma\gamma^*}(0)}{1 - b_P Q^2} = F_{P\gamma\gamma^*}(0)(1 + b_P Q^2 + \mathcal{O}(Q^4)) \xrightarrow{} \chi \text{PT/DR} + \text{pQCD}$$

Correct low (& high) energy implementation!

A transition form factor for the HLbL

Padé Approximants: Results

P. Masjuan '12; R. Escribano, P. Masjuan, P. S (& S. Gonzalez) '14 '15 (&16)

A transition form factor for the HLbL

Padé Approximants: Results

P. Masjuan '12; R. Escribano, P. Masjuan, P. S (& S. Gonzalez) '14 '15 (&16)

Objectives and strategies

—What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

----What is the philosophy? Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We proppose to use Padé Approximants

—How to implement the double-virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants
What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

• Generalization of Padé apps. \rightarrow Canterbury apps. (Chisholm 1973) For a symmetric function with Taylor expansion

 $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) = F_{P\gamma\gamma}(0, 0)(1 + c_{1,0}(Q_1^2 + Q_2^2) + c_{2,0}(Q_1^4 + Q_2^4) + c_{1,1}Q_1^2Q_2^2 + \dots)$

Its Canterbury appproximant is defined as

$$C_{M}^{N}(Q_{1}^{2},Q_{2}^{2}) = \frac{T_{N}(Q_{1}^{2},Q_{2}^{2})}{Q_{M}(Q_{1}^{2},Q_{2}^{2})} = \frac{\sum_{i,j}^{N} a_{i,j} Q_{1}^{2i} Q_{2}^{2j}}{\sum_{k,l}^{M} b_{k,l} Q_{1}^{2k} Q_{2}^{2l}}$$

Fulfilling the conditions that

$$\begin{split} \sum_{i,j}^{M} b_{i,j} Q_1^{2i} Q_2^{2j} \sum_{\alpha,\beta}^{\infty} c_{\alpha,\beta} Q_1^{2\alpha} Q_2^{2\beta} &- \sum_{k,l}^{N} a_{k,l} Q_1^{2k} Q_2^{2l} = \sum_{\gamma,\delta}^{\infty} d_{\gamma,\delta} Q_1^{2\gamma} Q_2^{2\delta}, \\ d_{\gamma,\delta} &= 0 \quad 0 \leq \gamma + \delta \leq M + N \\ d_{\gamma,\delta} &= 0 \quad 0 \leq \gamma \leq \max(M, N), \\ 0 \leq \delta \leq \max(M, N) \\ d_{\gamma,\delta} &= 0 \quad 1 \leq \gamma \leq \min(M, N), \\ \delta &= M + N + 1 - \gamma. \end{split}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

-Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

 $C_1^0(Q_1^2, Q_2^2) = F_{P\gamma\gamma}(0, 0)(1 + b_P(Q_1^2 + Q_2^2) + a_{P;1,1}Q_1^2Q_2^2 + ...)$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

1.Reproduce original series expansion \Rightarrow low energies 2.Reduce to Padé Approximants

$$C_1^0(Q^2,0) = \frac{F_{P\gamma\gamma}(0,0)}{1-b_PQ^2} = P_1^0(Q^2) \Rightarrow F_{P\gamma\gamma}(0,0) \& b_P \text{ determined}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

2.Reduce to Padé Approximants (already determined)

3.Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown)

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2.Reduce to Padé Approximants (already determined)
- 3.Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown) 3a. χ PT leading logs suggest factorization at low energies

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2. Reduce to Padé Approximants (already determined)
- 3. Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown)
 - 3a. $\chi {\rm PT}$ leading logs suggest factorization at low energies
 - 3b. Can incorporate QCD constraints from OPE

$$C_1^0(Q_1^2,Q_2^2)|_{OPE} = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}; \ (a_{P;1,1}\equiv 2b_P^2) \ OPE$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2.Reduce to Padé Approximants (already determined)
- 3.Systematically implement double virtuality: $a_{P;1,1}$ (Exp. unknown)
 - 3a. $\chi {\rm PT}$ leading logs suggest factorization at low energies
 - 3b. Can incorporate QCD constraints from OPE

Theoretically, we expect $a_{P;1,1} \in \{b_P^2 \div 2b_P^2\}$ Precise value ultimately from experiment (implements low energies)

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

--Reconstruction

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

---Reconstruction

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

--Reconstruction

1.Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)

$$F_{\pi\gamma^*\gamma^*} = \frac{1}{3Q^2} (2F_{\pi}) \left(1 - \frac{8}{9} \frac{\delta^2}{Q^2} + \mathcal{O}(\alpha_s(Q^2)) \right) \Rightarrow \beta_{2,2} = 0, \alpha_{1,1}, \beta_{2,1}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1. Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3. Reproduce the low energies $(a_{P;1,1})$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1. Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies $(a_{P;1,1})$ Previous estimate $b_P^2 \leq a_{P;1,1} \leq 2b_P^2 \Rightarrow$ limited if avoiding poles Be generous: all configurations with no poles $\Rightarrow a_{P;1,1}^{\min} < a_{P;1,1}^{\max} < a_{P;1,1}^{\max}$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies ($a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max})$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1. Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies $(\textit{a}_{\textit{P};1,1}^{\min} < \textit{a}_{\textit{P};1,1} < \textit{a}_{\textit{P};1,1}^{\max})$

Low- and high energies implemented Full use of data and theory constraints Double-virtual data for $a_{P;1,1}$ (and δ^2) desirable Systematization up to required precision $(C_3^2(Q_1^2, Q_2^2) \rightarrow C_{N+1}^N(Q_1^2, Q_2^2))$

Section 3

Updated pseudoscalar pole contribution

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays

Updated pseudoscalar pole contribution

Seeing is believing: toy models and systematics

-Regge Model-

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{Regge}}(Q_{1}^{2},Q_{2}^{2}) = \frac{{}_{a}F_{P\gamma\gamma}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right)-\psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

-Logarithmic Model-

$$F_{\pi^0\gamma^*\gamma^*}^{\log}(Q_1^2, Q_2^2) = rac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(rac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}
ight)$$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	55.2	59.7	60.4	60.6
OPE	65.7	60.8	60.7	60.7
Fit ^{OPE}	66.3	62.7	61.1	60.8
Exact		60.7		

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	56.7	64.4	66.1	66.8
OPE	65.7	67.3	67.5	67.6
Fit ^{OPE}	79.6	71.9	69.3	68.4
Exact		67	7.6	

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays

Updated pseudoscalar pole contribution

Seeing is believing: toy models and systematics

—Regge Model—

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{\text{Regge}}(Q_{1}^{2},Q_{2}^{2}) = \frac{aF_{P\gamma\gamma}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

—Logarithmic Model—

$$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(rac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}
ight)$$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	55.2	59.7	60.4	60.6
OPE	65.7	60.8	60.7	60.7
Fit ^{OPE}	66.3	62.7	61.1	60.8
Exact		60.7		

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	56.7	64.4	66.1	66.8
OPE	65.7	67.3	67.5	67.6
Fit ^{OPE}	79.6	71.9	69.3	68.4
Exact		67	7.6	

- The convergence result is excellent!
- The OPE choice seems the best \rightarrow high energy matters
- Still, low energies provide a good performance
- Error \sim difference among elements \rightarrow Systematics!

Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ $a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$ Fact $(a_{P:1,1} = b_P^2)$ OPE $(a_{P:1,1} = 2b_P^2)$ π^0 $54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$ $64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$ $\begin{array}{rl} 13.0(0.4)_{F}(0.4)_{b_{\eta}}[0.6]_{t} & 17.0(0.6)_{F}(0.4)_{b_{\eta}}[7]_{t} \\ 12.0(0.4)_{F}(0.3)_{b_{\eta'}}[0.5]_{t} & 16.0(0.5)_{F}(0.3)_{b_{\eta'}}[6]_{t} \end{array}$ η η' Total 79.0[2.8]_t $97.9[3.2]_t$

Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\;(a_{P;1,1}=b_P^2)$	OPE $(a_{P;1,1} = 2b_P^2)$
π ⁰	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
η	$13.0(0.4)_F(0.4)_{b_n}[0.6]_t$	$17.0(0.6)_F(0.4)_{b_n}[7]_t$
η'	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$	$16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	97.9[3.2] _t

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t$	$62.9(1.2)_L(0.3)_{\delta}[1.2]_t$
η	$16.6(0.8)_L(0)_\delta[0.8]_t$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	95.2[1.7] _t	93.4[1.7] _t

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$\textit{a}_{\mu}^{\mathrm{HLbL};\textit{P}} \times 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \eta'$	$\begin{array}{c} 13.0(0.4)_{F}(0.4)_{b\eta}[0.6]_{t}\\ 12.0(0.4)_{F}(0.3)_{b_{\eta'}}[0.5]_{t} \end{array}$	$17.0(0.6)_{F}(0.4)_{b_{\eta}}[7]_{t}$ $16.0(0.5)_{F}(0.3)_{b_{\eta'}}[6]_{t}$
Total	79.0[2.8] _t	97.9[3.2] _t

$a_{\mu}^{\rm HLbL; P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.9(1.2)_L(0.3)_{\delta}[1.2]_t\{2.0\}_{sys}$
η	$16.6(0.8)_L(0)_\delta[0.8]_t$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	$95.2[1.7]_t$	$93.4[1.7]_t$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$\textit{a}_{\mu}^{\mathrm{HLbL};\textit{P}} \times 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \eta'$	$\begin{array}{c} 13.0(0.4)_F(0.4)_{b_{\eta}}[0.6]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$	$\frac{17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t}{16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t}$
Total	79.0[2.8] _t	$97.9[3.2]_t$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.9(1.2)_L(0.3)_{\delta}[1.2]_t\{2.0\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[0.8]_t\{0.4\}_{sys}$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t\{0.8\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	$95.2[1.7]_t$	$93.4[1.7]_t$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$Fact\; \left(a_{P;1,1} = b_P^2 \right)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \eta'$	$\begin{array}{c} 13.0(0.4)_{F}(0.4)_{b\eta}[0.6]_{t}\\ 12.0(0.4)_{F}(0.3)_{b_{\eta'}}[0.5]_{t} \end{array}$	$17.0(0.6)_F(0.4)_{b_\eta}[7]_t$ $16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	$97.9[3.2]_t$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$(62.9(1.2)_L(0.3)_{\delta}[1.2]_t\{2.0\}_{sys})$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{0.4\}_{sys}$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t\{0.8\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.2[1.7]_t$	$93.4[1.7]_t$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$\textit{a}_{\mu}^{\mathrm{HLbL};\textit{P}} \times 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \eta'$	$\begin{array}{c} 13.0(0.4)_{F}(0.4)_{b\eta}[0.6]_{t}\\ 12.0(0.4)_{F}(0.3)_{b_{\eta'}}[0.5]_{t} \end{array}$	$\frac{17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t}{16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t}$
Total	79.0[2.8] _t	97.9[3.2] _t

$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$(62.9(1.2)_L(0.3)_{\delta}[1.2]_t\{2.0\}_{sys})$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{0.4\}_{sys}$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.2[1.7]_t \{2.7\}_{sys}$	$93.4[1.7]_t \{4.5\}_{sys}$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$	$Fact\; \big(a_{P;1,1} = b_P^2\big)$	OPE $(a_{P;1,1} = 2b_P^2)$
π ⁰	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \\ \eta'$	$ \begin{array}{c} 13.0(0.4)_{F}(0.4)_{b_{\eta}}[0.6]_{t} \\ 12.0(0.4)_{F}(0.3)_{b_{\eta'}}[0.5]_{t} \end{array} $	$\frac{17.0(0.6)_F(0.4)_{b_{\eta'}}[7]_t}{16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t}$
Total	79.0[2.8] _t	97.9[3.2] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.9(1.2)_L(0.3)_{\delta}[1.2]_t\{2.0\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{0.4\}_{sys}$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.2[1.7]_t \{2.7\}_{sys}$	$93.4[1.7]_t \{4.5\}_{sys}$

—Final Result (preliminary)

 $a_{\mu}^{\pi,\eta,\eta'} = (63.4[1.3]\{2.0\} + 16.4[0.9]\{0.7\} + 14.5[0.7]\{1.7\}) \times 10^{-11} = 94.3[1.7]\{4.5\} \times 10^{-11}$

Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$\textit{a}_{\mu}^{\mathrm{HLbL};\textit{P}} \times 10^{11}$	$Fact\; \bigl(a_{P;1,1} = b_P^2 \bigr)$	OPE $(a_{P;1,1} = 2b_P^2)$
π^0	$54.0(1.1)_F(2.5)_{b_{\pi}}[2.7]_t$	$64.9(1.4)_F(2.8)_{b_{\pi}}[3.1]_t$
$\eta \\ \eta'$	$\frac{13.0(0.4)_F(0.4)_{b_{\eta}}[0.6]_t}{12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t}$	$17.0(0.6)_F(0.4)_{b_{\eta}}[7]_t$ $16.0(0.5)_F(0.3)_{b_{\eta'}}[6]_t$
Total	79.0[2.8] _t	97.9[3.2] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$63.9(1.3)_L(0)_{\delta}[1.3]_t\{1.0\}_{sys}$	$62.9(1.2)_L(0.3)_{\delta}[1.2]_t\{2.0\}_{sys}$
η	$16.6(0.8)_L(0)_{\delta}[1.0]_t\{0.4\}_{sys}$	$16.2(0.8)_L(0.5)_{\delta}[0.9]_t\{0.7\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.2[1.7]_t \{2.7\}_{sys}$	$93.4[1.7]_t \{4.5\}_{sys}$

—Final Result (preliminary)

$$a_{\mu}^{\pi,\eta,\eta'}=(63.4(2.4)+16.4(1.1)+14.5(1.8)) imes10^{-11}=94.3(4.8) imes10^{-11}$$

What has been achieved?

____ Final Updated Result ______ $\delta a^{\rm e}_{\mu}$

$$\delta a_{\mu}^{\exp} = 16 \times 10^{-11}$$

 $a^{\pi,\eta,\eta'}_{\mu} = (63.4(2.4) + 16.4(1.1) + 14.5(1.8)) imes 10^{-11} = 94.3(4.8) imes 10^{-11}$

____ Final Updated Result ______
$$\delta a_\mu^{\rm exp} = 16 \times 10^{-11}$$

$$a_{\mu}^{\pi,\eta,\eta'}=(63.4(2.4)+16.4(1.1)+14.5(1.8)) imes 10^{-11}=94.3(4.8) imes 10^{-11}$$

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- η and η' relevant, of the order of $\delta a_{\mu}^{\mathrm{exp}}$

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- η and η' relevant, of the order of $\delta a_{\mu}^{\mathrm{exp}}$

Previous KN Result ______
$$\delta a_{\mu}^{\exp} = 16 \times 10^{-11}$$

 $a_{\mu}^{\pi,\eta,\eta'} = (58(10) + 13(1) + 12(1)) \times 10^{-11} = 83(12) \times 10^{-11}$

• Intended for $\delta a_{\mu} = 63 \times 10^{-11}$; no systematics ($N_c \rightarrow 30\%$?)

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

$$= \text{Final Updated Result} \qquad \qquad \delta a_{\mu}^{\exp} = 16 \times 10^{-11} = a_{\mu}^{\pi,\eta,\eta'} = (63.4(2.4) + 16.4(1.1) + 14.5(1.8)) \times 10^{-11} = 94.3(4.8) \times 10^{-11} = 10$$

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- η and η' relevant, of the order of δa_{μ}^{\exp}
- Full use of current data with systematics and good data description

Previous KN Result
$$\delta a_{\mu}^{exp} = 16 \times 10^{-11}$$

 $a_{\mu}^{\pi,\eta,\eta'} = (58(10) + 13(1) + 12(1)) \times 10^{-11} = 83(12) \times 10^{-11}$

- Intended for $\delta a_{\mu} = 63 \times 10^{-11}$; no systematics ($N_c \rightarrow 30\%$?)
- Old data-base: new preciser data exists

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

____ Final Updated Result ______
$$\delta a_\mu^{\mathrm{exp}} = 16 imes 10^{-11}$$

$$a_{\mu}^{\pi,\eta,\eta'} = (63.4(2.4) + 16.4(1.1) + 14.5(1.8)) imes 10^{-11} = 94.3(4.8) imes 10^{-11}$$

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- η and η' relevant, of the order of δa_{μ}^{\exp}
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'

Previous KN Result ______ $\delta a_{\mu}^{\exp} = 16 \times 10^{-11}$ _____ $a_{\mu}^{\pi,\eta,\eta'} = (58(10) + 13(1) + 12(1)) \times 10^{-11} = 83(12) \times 10^{-11}$

- Intended for $\delta a_{\mu} = 63 \times 10^{-11}$; no systematics ($N_c \rightarrow 30\%$?)
- Old data-base: new preciser data exists
- $\eta \eta'$ factorized: roughly 6×10^{-11} shift

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

____ Final Updated Result ______
$$\delta a_{\mu}^{\mathrm{exp}} = 16 imes 10^{-11}$$

$$a_{\mu}^{\pi,\eta,\eta'} = (63.4(2.4) + 16.4(1.1) + 14.5(1.8)) imes 10^{-11} = 94.3(4.8) imes 10^{-11}$$

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- η and η' relevant, of the order of δa_{μ}^{\exp}
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'

- There are no systematic errors included above $(N_c \rightarrow 30\%?)$
- No data used for the η, η' but SU(3)-symmetry

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

____ Final Updated Result ______
$$\delta a_{\mu}^{\mathrm{exp}} = 16 imes 10^{-11}$$

$$a_{\mu}^{\pi,\eta,\eta'} = (63.4(2.4) + 16.4(1.1) + 14.5(1.8)) imes 10^{-11} = 94.3(4.8) imes 10^{-11}$$

- Updated value meeting future exp. precision (if $\delta a_{\mu}^{\text{HVP}}$, then 11×10^{-11})
- η and η' relevant, of the order of $\delta a_{\mu}^{\mathrm{exp}}$
- Full use of current data with systematics and good data description
- Full QCD constraints, also for the η and η'

___ Possible improvements _____

- Double virtuality measurements $(a_{P;1,1}, \delta^2)$: BESIII
- Lattice results
- π^{0} : SL at BESIII & KLOE-2; TL at NA62, A2
- η' : SL at BESIII, Belle II & GlueX; TL at NA60 & A2
- η' : SL at BESIII, Belle II & GlueX; TL A2

KN: Phys.Rev., D65, 073034 (2002); GLCR: Phys.Rev., D89, 073016 (2014)

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays

 $P
ightarrow ar{\ell} \ell$ decays: further information and new physics

Section 4

$P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

$P \to \bar{\ell} \ell$ decays: a brief introduction

- Probes the (double virtual) TFF
- Clean check assuming no NP
- Alternatively, deviation \rightarrow NP
$P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

$P \rightarrow \bar{\ell}\ell$ decays: a brief introduction

$$\mathcal{A}(q^2) = \frac{2i}{\pi^2 q^2} \int d^4k \frac{\left(k^2 q^2 - (k \cdot q)^2\right) \tilde{F}_{P\gamma^*\gamma^*}(k^2, (q-k)^2)}{k^2 (q-k)^2 \left((p-k)^2 - m_\ell^2\right)}$$

- The process is low-energy dominated
- UV divergent for a constant TFF

 $P
ightarrow ar{\ell}\ell$ decays: further information and new physics

$P \rightarrow \bar{\ell}\ell$ decays: a brief introduction

$$\mathcal{A}(q^2) = \frac{2i}{\pi^2 q^2} \int d^4k \frac{\left(k^2 q^2 - (k \cdot q)^2\right) \tilde{F}_{P\gamma^*\gamma^*}(k^2, (q-k)^2)}{k^2 (q-k)^2 \left((p-k)^2 - m_\ell^2\right)}$$

Ideal case for our approach

Previous comments apply to this case, but novelties ...

•
$$-m_P^2 \leq Q^2 \leq \infty$$
: care with η and η'

• Loop integral approximations: not admissible for the η,η'

Pseudoscalar transition form factors the muon (g - 2) and $P \rightarrow \bar{\ell}\ell$ decays <u> $P \rightarrow \bar{\ell}\ell$ decays</u>: further information and new physics

Systematics errors: toy models (I)

Prediction for the reconstructed C_1^0

$$C_1^0(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}(0,0)}{1 - b_P(Q_1^2 + Q_2^2) + (2b_P^2 - a_{P;1,1})Q_1^2Q_2^2}; a_{P;1,1} \in (b_P^2,2b_P^2)$$

Pseudoscalar transition form factors the muon (g - 2) and $P \rightarrow \bar{\ell}\ell$ decays <u> $P \rightarrow \bar{\ell}\ell$ decays</u>: further information and new physics

Systematics errors: toy models (I)

Prediction for the reconstructed C_1^0

$$C_1^0(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}(0,0)}{1 - b_P(Q_1^2 + Q_2^2) + (2b_P^2 - a_{P;1,1})Q_1^2Q_2^2}; a_{P;1,1} \in (b_P^2,2b_P^2)$$

	Regge				Log	
$BR(P o ar{\ell}\ell)$	Fact	OPE	Exact	Fact	OPE	Exact
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	6.218	6.080	6.138	5.996	5.869	5.869

Pseudoscalar transition form factors the muon (g - 2) and $P \rightarrow \overline{\ell}\ell$ decays $P \rightarrow \overline{\ell}\ell$ decays: further information and new physics

Systematics errors: toy models (I)

Prediction for the reconstructed C_1^0

$$C_1^0(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}(0,0)}{1 - b_P(Q_1^2 + Q_2^2) + (2b_P^2 - a_{P;1,1})Q_1^2Q_2^2}; a_{P;1,1} \in (b_P^2,2b_P^2)$$

	Regge				Log	
$BR(P o ar{\ell}\ell)$	Fact	OPE	Exact	Fact	OPE	Exact
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	6.218	6.080	6.138	5.996	5.869	5.869
$\eta ightarrow e^+e^- imes 10^9$	4.950	5.064	5.012	4.614	4.717	4.626
$\eta ightarrow \mu^+ \mu^- imes 10^6$	4.844	5.151	4.992	5.461	5.889	5.859

Ok for the desired 5% precision we are aiming for π^0, η

Pseudoscalar transition form factors the muon (g - 2) and $P \rightarrow \overline{\ell}\ell$ decays $P \rightarrow \overline{\ell}\ell$ decays: further information and new physics

Systematics errors: toy models (I)

Prediction for the reconstructed C_1^0

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}; a_{P;1,1} \in (b_P^2,2b_P^2)$$

	Regge				Log	
$BR(P o ar{\ell}\ell)$	Fact	OPE	Exact	Fact	OPE	Exact
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	6.218	6.080	6.138	5.996	5.869	5.869
$\eta ightarrow e^+e^- imes 10^9$	4.950	5.064	5.012	4.614	4.717	4.626
$\eta ightarrow \mu^+ \mu^- imes 10^6$	4.844	5.151	4.992	5.461	5.889	5.859
$\eta^\prime ightarrow e^+e^- imes 10^{10}$	1.825	1.781	1.754	1.469	1.437	1.472
$\eta^\prime o \mu^+ \mu^- imes 10^7$	1.518	1.407	1.266	1.419	1.405	1.319

Ok for the desired 5% precision we are aiming for π^0 , η Does not seems to apply for the η' ... recall $-m_P^2 \leq Q^2 \leq \infty!$

 $P
ightarrow ar{\ell}\ell$ decays: further information and new physics

Systematics errors: toy models (II)

We have been neglecting a new feature: hadronic thresholds

Never considered in previous calculations:

- (1) Can our approach deal with it?
- (2) Associated C_1^0 systematic error?

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

Systematics errors: toy models (II)

We have been neglecting a new feature: hadronic thresholds

Never considered in previous calculations:

(1) Can our approach deal with it? (2) Associated C_1^0 systematic error?

Factorized ansatz
$$\tilde{F}_{P\gamma^*\gamma}(q_1^2, q_2^2) = \tilde{F}_{P\gamma^*\gamma}(q_1^2) \times \tilde{F}_{P\gamma^*\gamma}(q_2^2)$$

 $\tilde{F}_{P\gamma^*\gamma}(s) = c_{P\rho}G_{\rho}(s) + c_{P\omega}G_{\omega}(s) + c_{P\phi}G_{\phi}(s)$

With $G_V(s)$ fulfilling appropriate analytic and unitary constraints

 $P
ightarrow ar{\ell}\ell$ decays: further information and new physics

Systematics errors: toy models (II)

We have been neglecting a new feature: hadronic thresholds

Never considered in previous calculations:

(1) Can our approach deal with it? (2) Associated C_1^0 systematic error?

$$\mathcal{G}_{
ho}(s) = rac{M_{
ho}^2}{M_{
ho}^2 - s + rac{sM_{
ho}^2}{96\pi^2 F_{\pi}^2} \left(\ln\left(rac{m_{\pi}^2}{\mu^2}
ight) + rac{8m_{\pi}^2}{s} - rac{5}{3} - \sigma(s)^3 \ln\left(rac{\sigma(s) - 1}{\sigma(s) + 1}
ight)
ight)}$$

D. Gomez Dumm, A. Pich, J. Portoles '00

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

Systematics errors: toy models (II)

We have been neglecting a new feature: hadronic thresholds

Never considered in previous calculations:

(1) Can our approach deal with it? It works for the loop integral (2) Associated C_1^0 systematic error?

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

Systematics errors: toy models (II)

We have been neglecting a new feature: hadronic thresholds

Never considered in previous calculations:

(1) Can our approach deal with it? It works for the loop integral (2) Associated C_1^0 systematic error? From realistic unitary model

$BR(P o \ell \ell)$	toy model	C_{1}^{0}	Error (%)
$(\eta ightarrow ee) imes 10^{-9}$	5.410	5.418	0.16
$(\eta ightarrow \mu \mu) imes 10^{-6}$	4.494	4.527	0.74
$(\eta' ightarrow ee) imes 10^{-10}$	1.705	1.883	9
$(\eta' ightarrow \mu\mu) imes 10^{-7}$	1.195	1.461	18

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

Systematics errors: toy models (II)

We have been neglecting a new feature: hadronic thresholds

Never considered in previous calculations:

(1) Can our approach deal with it? It works for the loop integral (2) Associated C_1^0 systematic error? From realistic unitary model

$BR(P o \ell \ell)$	toy model	C_{1}^{0}	Error (%)
$(\eta ightarrow ee) imes 10^{-9}$	5.410	5.418	0.16
$(\eta ightarrow \mu \mu) imes 10^{-6}$	4.494	4.527	0.74
$(\eta' ightarrow ee) imes 10^{-10}$	1.705	1.883	9
$(\eta' ightarrow \mu \mu) imes 10^{-7}$	1.195	1.461	18

(3) Final systematic eror: $(Fact \div OPE)|_{band} \oplus Threshold|_{\%}$

 $P
ightarrow ar{\ell} \ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	7.48(38)
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$ $(4.72 \div 4.52)(5)$	$(4.58 \div 4.68)$ $(5.16 \div 4.88)$	$\begin{array}{c} \leq 2.3 \times 10^3 \\ 5.8(8) \end{array}$
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18)$ $(1.36 \div 1.49)(26)$	$(1.22 \div 1.24)$ $(1.42 \div 1.41)$	≤ 56 -

 $P
ightarrow ar{\ell} \ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	7.48(38)
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$ $(4.72 \div 4.52)(5)$	$(4.58 \div 4.68)$ $(5.16 \div 4.88)$	$\begin{array}{l} \leq 2.3 \times 10^3 \\ 5.8(8) \end{array}$
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18)$ $(1.36 \div 1.49)(26)$	$(1.22 \div 1.24)$ $(1.42 \div 1.41)$	≤ 56 -

• Approximate results \Rightarrow large systematics; similar for LO χ PT

 $P
ightarrow ar{\ell} \ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	7.48(38) 3σ
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$	$(4.58 \div 4.68)$	$\leq 2.3 imes 10^3$
	$(4.72 \div 4.52)(5)$	$(5.16 \div 4.88)$	5.8(8) 1.3 σ
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18)$	$(1.22 \div 1.24)$	≤ 56
	$(1.36 \div 1.49)(26)$	$(1.42 \div 1.41)$	-

• Approximate results \Rightarrow large systematics; similar for LO χ PT

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	(6.20÷6.35)(4)	$(6.17 \div 6.31)$	6.87(36) 1.8 σ
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$ $(4.72 \div 4.52)(5)$	$(4.58 \div 4.68)$ $(5.16 \div 4.88)$	$\leq 2.3 imes 10^3 \ 5.8(8) \ 1.3\sigma$
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18)$ $(1.36 \div 1.49)(26)$	$(1.22 \div 1.24)$ $(1.42 \div 1.41)$	≤ 56 -

- Approximate results \Rightarrow large systematics; similar for LO χ PT
- Recent RC studies imply lower BR for π^0 [T. Husek, K. Kampf, J. Novotny, '14; P. Vasko, J. Novotny '11]

Pseudoscalar transition form factors the muon (g - 2) and $P \rightarrow \overline{\ell}\ell$ decays $P \rightarrow \overline{\ell}\ell$ decays: further information and new physics

Experimental implications (briefly)

Implications on HLbL

 $\mathsf{BR}(\pi^0 o e^+ e^-)|_{E\!\!\times\!p}^{RC} \Rightarrow 60\%$ reduction on $a_\mu^{\mathrm{HLbL};\pi^0}$

Requires $a_{P;1,1} < 0$ and $\delta^2 \gg OPE$... $\eta \to \mu^+ \mu^-$ strongly opposed

Double virtual measurement \Rightarrow Smoking Gun! (BESIII)

P. Masjuan, P. Sanchez, arXiv:1504.07001 & JHEP 1608 (2016) 108

Pseudoscalar transition form factors the muon (g - 2) and $P \rightarrow \overline{\ell}\ell$ decays $P \rightarrow \overline{\ell}\ell$ decays: further information and new physics

Experimental implications (briefly)

Implications on HLbL

Requires $a_{P;1,1} < 0$ and $\delta^2 \gg \text{OPE}$... $\eta \to \mu^+ \mu^-$ strongly opposed

Double virtual measurement \Rightarrow Smoking Gun! (BESIII)

Implications on New Physics: Pseudoscalar/Axial

- Results for generic couplings obtained
- Many constraints exist, but could be (eg. ${}^8 ext{Be}^* o {}^8 ext{Be} \; e^+e^-$ decays)
- LFV tests, but avoid LO $\chi {\rm PT}$ or approx. not suitable

 π^0 @NA62 ? $\eta^{(\prime)} \rightarrow \mu^+ \mu^-$ @LHCb ? $K_L \rightarrow \bar{\ell} \ell$ @NA62 ?

P. Masjuan, P. Sanchez, arXiv:1504.07001 & JHEP 1608 (2016) 108

Pseudoscalar transition form factors the muon (g-2) and $P o ar{\ell}\ell$ decays Summary & Outlook

Section 5

Summary & Outlook

Pseudoscalar transition form factors the muon (g-2) and $P \rightarrow \bar{\ell}\ell$ decays Summary & Outlook

Summary & Outlook

- Systematic data-driven TFF description [Canterbury approximants]
- Full use of SL and low-energy TL data + theory constraints
- New value $a_{\mu}^{HLbL;\pi,\eta,\eta'} = 94.2(5.4) imes 10^{-11}$ including systematics
- Error meets future experiments $\delta a_{\mu} \sim 16 imes 10^{-11}$ requirements
- Reanalysis of $P \rightarrow \overline{\ell} \ell$ decays: interesting experimental results
- Improvement: double-virtual measurements $\gamma^*\gamma^* \rightarrow P$ BESIII
- User friendly and potential tool for experimentalists/lattice

Backup

Section 6

Backup

Backup

Inputs for reconstructing the TFFs

	$F_{P\gamma\gamma}$	b _P	CP	d _P	P_{∞}
	(GeV^{-1})				(GeV)
π^0	0.2725(29)	0.0324(12)(19)	0.00106(9)(25)	_	$2F_{\pi}$
η	0.2738(47)	0.576(11)(4)	0.339(15)(5)	0.200(14)(18)	0.177(15)
η'	0.3437(55)	1.31(3)(1)	1.74(9)(2)	2.30(20)(12)	0.255(4)
η^{SL}	0.2738(47)	0.60(6)(3)	0.37(10)(7)	_	0.160(24)
η'^{SL}	0.3437(55)	1.30(15)(7)	1.72(47)(34)	—	0.255(4)

Backup

Inputs for reconstructing the TFFs

	$F_{P\gamma\gamma}$	b _P	CP	d _P	P_{∞}
	(Gev)				(Gev)
π^0	0.2725(29)	0.0324(12)(19)	0.00106(9)(25)	—	$2F_{\pi}$
η	0.2738(47)	0.576(11)(4)	0.339(15)(5)	0.200(14)(18)	0.177(15)
η'	0.3437(55)	1.31(3)(1)	1.74(9)(2)	2.30(20)(12)	0.255(4)
η^{SL}	0.2738(47)	0.60(6)(3)	0.37(10)(7)	_	0.160(24)
η'^{SL}	0.3437(55)	1.30(15)(7)	1.72(47)(34)	—	0.255(4)

Backup

Step I: $F_{P\gamma^*\gamma}(Q^2)$ and Padé Approximants

Series expansion from data-fitting: robustness

Accuracy test: compare to the low-energy time-like region

• Convergence expected below threshold at $\sqrt{q^2}=2m_\pi=0.280$ GeV

Step I: $F_{P\gamma^*\gamma}(Q^2)$ and Padé Approximants

Series expansion from data-fitting: robustness

Accuracy test: compare to the low-energy time-like region

- Convergence expected below threshold at $\sqrt{q^2} = 2m_\pi = 0.280$ GeV
- Compare to later released A2@MAMI data $(\eta
 ightarrow \gamma e^+e^-)$

Excellent results even above threshold

• Understood due to $\pi\pi$ P-wave smooth discontinuity $(q^2 - 4m_{\pi}^2)^{3/2}$

Step I: $F_{P\gamma^*\gamma}(Q^2)$ and Padé Approximants

Series expansion from data-fitting: robustness

Accuracy test: compare to the low-energy time-like region

- Convergence expected below threshold at $\sqrt{q^2} = 2m_\pi = 0.280$ GeV
- Confirmed by brand new NA60 data $(\eta \rightarrow \gamma \mu^+ \mu^-)$

Excellent results even above threshold

• Understood due to $\pi\pi$ P-wave smooth discontinuity $(q^2 - 4m_{\pi}^2)^{3/2}$

Step I: $F_{P\gamma^*\gamma}(Q^2)$ and Padé Approximants

Series expansion from data-fitting: robustness

Accuracy test: compare to the low-energy time-like region

- Convergence expected below threshold at $\sqrt{q^2} = 2m_\pi = 0.280$ GeV
- Compare to later released BESIII data $(\eta'
 ightarrow \gamma e^+ e^-)$

Excellent results even above threshold

• Understood due to $\pi\pi$ P-wave smooth discontinuity $(q^2 - 4m_\pi^2)^{3/2}$

Step I: $F_{P\gamma^*\gamma}(Q^2)$ and Padé Approximants

Series expansion from data-fitting: robustness

Accuracy test: compare to the low-energy time-like region

- Convergence expected below threshold at $\sqrt{q^2} = 2m_{\pi} = 0.280$ GeV
- Compare to P_1^N fits to DR-like

Excellent results even above threshold

• Understood due to $\pi\pi$ P-wave smooth discontinuity $(q^2 - 4m_\pi^2)^{3/2}$

Backup

 $\delta^2 = 0.20(2)$ [sum-rules] ; $\eta, \eta' \Rightarrow 30\%$ for $SU(3)_F$ and large- N_c $F_{P\gamma\gamma} = 1: 1.00: 1.26$ $b_P m_P^{-2} = 1: 1.08: 0.80$ $P_{\infty} = 1: 0.96: 1.38$

A baby problem: Light pseudoscalars

Given the relevant QCD scale $M_V \gg m_P, m_\ell$, approximations are possible

$$\mathcal{A}(m_{\pi^{\mathbf{0}}}^{2}) \simeq rac{i\pi}{2eta_{\ell}} L + rac{1}{eta_{\ell}} \left(rac{1}{4}L^{2} + rac{\pi^{2}}{12} + Li_{2}\left(rac{eta_{\ell}-1}{1+eta_{\ell}}
ight)
ight) - rac{5}{4} + \int_{\mathbf{0}}^{\infty} dQ rac{3}{Q} \left(rac{m_{\ell}^{2}}{m_{\ell}^{2}+Q^{2}} - ilde{F}_{\pi^{\mathbf{0}}\gamma^{*}\gamma^{*}}(Q^{2},Q^{2})
ight)$$

P. Masjuan, P. Sanchez, arXiv:15040.07001 [hep-ph]

A baby problem: Light pseudoscalars

Given the relevant QCD scale $M_V \gg m_P, m_\ell$, approximations are possible

$$\mathcal{A}(m_{\pi^{0}}^{2}) \simeq \frac{i\pi}{2\beta_{\ell}} L + \frac{1}{\beta_{\ell}} \left(\frac{1}{4} L^{2} + \frac{\pi^{2}}{12} + Li_{2} \left(\frac{\beta_{\ell} - 1}{1 + \beta_{\ell}} \right) \right) - \frac{5}{4} + \left| \int_{0}^{\infty} dQ \frac{3}{Q} \left(\frac{m_{\ell}^{2}}{m_{\ell}^{2} + Q^{2}} - \tilde{F}_{\pi^{0} \gamma^{*} \gamma^{*}}(Q^{2}, Q^{2}) \right) \right|_{0}$$

P. Masjuan, P. Sanchez, arXiv:15040.07001 [hep-ph]

A baby problem: Light pseudoscalars

Given the relevant QCD scale $M_V \gg m_P, m_\ell$, approximations are possible

$$\mathcal{A}(m_{\pi^0}^2) \simeq \frac{i\pi}{2\beta_{\ell}} L + \frac{1}{\beta_{\ell}} \left(\frac{1}{4} L^2 + \frac{\pi^2}{12} + Li_2\left(\frac{\beta_{\ell} - 1}{1 + \beta_{\ell}}\right) \right) - \frac{5}{4} + \left| \int_0^\infty dQ \frac{3}{Q} \left(\frac{m_{\ell}^2}{m_{\ell}^2 + Q^2} - \tilde{F}_{\pi^0\gamma^*\gamma^*}(Q^2, Q^2) \right) \right|$$

- Singularity from $\gamma\gamma \frac{1}{Q}$ suppression Low space-like energies peak
- Peak at lepton mass IR regulator $\sim ln(m_e^2)$
- High energies, $F_{\pi\gamma\gamma}$ dominates UV regulator $\sim -\ln(\Lambda^2)$

P. Masjuan, P. Sanchez, arXiv:15040.07001 [hep-ph]

A baby problem: Light pseudoscalars

Given the relevant QCD scale $M_V \gg m_P, m_\ell$, approximations are possible

$$\mathcal{A}(m_{\pi^0}^2) \simeq \frac{i\pi}{2\beta_{\ell}} L + \frac{1}{\beta_{\ell}} \left(\frac{1}{4} L^2 + \frac{\pi^2}{12} + Li_2\left(\frac{\beta_{\ell} - 1}{1 + \beta_{\ell}}\right) \right) - \frac{5}{4} + \left| \int_0^\infty dQ \frac{3}{Q} \left(\frac{m_{\ell}^2}{m_{\ell}^2 + Q^2} - \tilde{F}_{\pi^0\gamma^*\gamma^*}(Q^2, Q^2) \right) \right|$$

P. Masjuan, P. Sanchez, arXiv:15040.07001 [hep-ph]

A baby problem: Light pseudoscalars

Given the relevant QCD scale $M_V \gg m_P, m_\ell$, approximations are possible

$$\mathcal{A}(m_{\pi^0}^2) \simeq \frac{i\pi}{2\beta_{\ell}} L + \frac{1}{\beta_{\ell}} \left(\frac{1}{4} L^2 + \frac{\pi^2}{12} + Li_2 \left(\frac{\beta_{\ell} - 1}{1 + \beta_{\ell}} \right) \right) - \frac{5}{4} + \left| \int_0^\infty dQ \frac{3}{Q} \left(\frac{m_{\ell}^2}{m_{\ell}^2 + Q^2} - \tilde{F}_{\pi^0 \gamma^* \gamma^*}(Q^2, Q^2) \right) \right|$$

—Calculation Requires $F_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ description precise at low space-like energies

P. Masjuan, P. Sanchez, arXiv:15040.07001 [hep-ph]

Backup

New Physics contributions

$$\mathcal{L} = \frac{g}{4m_{W}} \sum_{f} m_{A} c_{f}^{A} \left(\overline{f} A \gamma_{5} f \right) + 2m_{f} c_{f}^{\mathcal{P}} \left(\overline{f} i \gamma_{5} f \right) \mathcal{P}$$

$$\begin{split} & -\mathcal{A}(q^2) \to \mathcal{A}(q^2) + \frac{\sqrt{2}G_{F}F_{\pi}}{4\alpha_{em}^{2}F_{P\gamma\gamma}} (\lambda_{P}^{A} + \lambda_{P}^{\mathcal{P}}) - \\ & \lambda_{P}^{A} = c_{\ell}^{A} \left[\frac{F_{p}^{3}}{F_{\pi}} \left(c_{u}^{A} - c_{d}^{A} \right) + \frac{F_{P}^{q}}{F_{\pi}} \left(c_{u}^{A} + c_{d}^{A} \right) + \frac{F_{P}^{s}}{F_{\pi}} \sqrt{2}c_{s}^{A} \right], \\ & \lambda_{P}^{\mathcal{P}} = \frac{c_{\ell}^{\mathcal{P}}}{1 - \frac{M_{P}^{2}}{m^{2}}} \left[\frac{F_{p}^{3}}{F_{\pi}} \left(c_{u}^{\mathcal{P}} - c_{d}^{\mathcal{P}} \right) + \frac{F_{P}^{q}}{F_{\pi}} \left(-c_{s}^{\mathcal{P}} \right) + \frac{F_{P}^{s}}{F_{\pi}} \sqrt{2}c_{s}^{\mathcal{P}} \right]. \end{split}$$

Backup

New Physics contributions

$$\mathcal{L} = \frac{g}{4m_{W}} \sum_{f} m_{A} c_{f}^{A} \left(\overline{f} A \gamma_{5} f \right) + 2m_{f} c_{f}^{\mathcal{P}} \left(\overline{f} i \gamma_{5} f \right) \mathcal{P}$$

$$\begin{split} & \mathsf{BR}(\pi^0 \to e^+ e^-) \left(1 + 0.001 \left[c_\ell^{\mathsf{A}}(c_u^{\mathsf{A}} - c_d^{\mathsf{A}}) + c_\ell^{\mathcal{P}} \frac{c_u^{\mathcal{P}} - c_d^{\mathcal{P}}}{1 - M_{\mathcal{P}}^2 / m_P^2} \right] \right), \\ & \mathsf{BR}(\eta \to_{e^+ e^-}^{\mu^+ \mu^-}) \left(1 + \binom{-0.002}{+0.001} \left[0.84 c_\ell^{\mathsf{A}}(c_u^{\mathsf{A}} + c_d^{\mathsf{A}}) - 1.27 c_\ell^{\mathsf{A}} c_s^{\mathsf{A}} - \frac{2.11 c_\ell^{\mathcal{P}} c_s^{\mathcal{P}}}{1 - M_{\mathcal{P}}^2 / m_P^2} \right] \right), \\ & \mathsf{BR}(\eta \to_{e^+ e^-}^{\mu^+ \mu^-}) \left(1 + \binom{+0.003}{+0.001} \left[0.72 c_\ell^{\mathsf{A}}(c_u^{\mathsf{A}} + c_d^{\mathsf{A}}) + 1.61 c_\ell^{\mathsf{A}} c_s^{\mathsf{A}} + \frac{0.89 c_\ell^{\mathcal{P}} c_s^{\mathcal{P}}}{1 - M_{\mathcal{P}}^2 / m_P^2} \right] \right). \end{split}$$

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays Backup

χ PT at higher orders: leading logs

Higher order corrections are clearly required

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays

Backup

χ PT at higher orders: leading logs

$$\tilde{F}_{P\gamma^*\gamma^*}(q_1^2, q_2^2) = \underbrace{1}_{\text{LO}} + \underbrace{\frac{1}{\Lambda^2}(q_1^2 + q_2^2)}_{\text{NLO}} + \underbrace{\frac{1}{\Lambda^4}(q_1^4 + q_2^4) + \frac{1}{\Lambda^4}(q_1^2 q_2^2)}_{\text{NNLO}} + \mathcal{O}\left(\frac{q^6}{\Lambda^6}\right).$$

$$\begin{split} \mathcal{A}(q^2, m_{\ell}^2) &= \frac{2i}{\pi^2 q^2} \int d^4 k \frac{\left(k^2 q^2 - (k \cdot q)^2\right)}{k^2 (q - k)^2 \left((p - k)^2 - m_{\ell}^2\right)} \left[1 + \frac{(...)}{\Lambda^2} + \frac{(...)}{\Lambda^4} + ...\right] \\ &\equiv \mathcal{A}^{\rm LO}(q^2, m_{\ell}^2) + \mathcal{A}^{\rm NLO}(q^2, m_{\ell}^2) + \mathcal{A}^{\rm NNLO}(q^2, m_{\ell}^2) + ..., \end{split}$$

$$\mathcal{A}^{\rm NLO}(q^2, m_{\ell}^2) = \frac{1}{3\Lambda^2} (q^2 - 10m_{\ell}^2) (1 - L_{\ell}) + \frac{1}{9\Lambda^2} (4m_{\ell}^2 - q^2); \quad L_{\ell} = \ln(m_{\ell}^2/\Lambda^2)$$
$$\mathcal{A}^{\rm NNLO}(q^2, m_{\ell}^2) = \left[\frac{126m\ell^4 - q^4 - 8m_{\ell}^2q^2}{12\Lambda^4} L_{\ell} + \frac{26m_{\ell}^2q^2 + 7q^4 - 702m_{\ell}^4}{72\Lambda^4} \right],$$

Pseudoscalar transition form factors the muon (g-2) and $P
ightarrow ar{\ell} \ell$ decays

Backup

χ PT at higher orders: leading logs

$$\tilde{F}_{P\gamma^*\gamma^*}(q_1^2, q_2^2) = \underbrace{1}_{\text{LO}} + \underbrace{\frac{1}{\Lambda^2}(q_1^2 + q_2^2)}_{\text{NLO}} + \underbrace{\frac{1}{\Lambda^4}(q_1^4 + q_2^4) + \frac{1}{\Lambda^4}(q_1^2 q_2^2)}_{\text{NNLO}} + \mathcal{O}\left(\frac{q^6}{\Lambda^6}\right).$$

$$\begin{split} \mathcal{A}(q^2, m_{\ell}^2) &= \frac{2i}{\pi^2 q^2} \int d^4 k \frac{\left(k^2 q^2 - (k \cdot q)^2\right)}{k^2 (q - k)^2 \left((p - k)^2 - m_{\ell}^2\right)} \left[1 + \frac{(...)}{\Lambda^2} + \frac{(...)}{\Lambda^4} + ...\right] \\ &\equiv \mathcal{A}^{\rm LO}(q^2, m_{\ell}^2) + \mathcal{A}^{\rm NLO}(q^2, m_{\ell}^2) + \mathcal{A}^{\rm NNLO}(q^2, m_{\ell}^2) + ..., \end{split}$$

$$\begin{split} \mathcal{A}(q^2, m_e^2) - \mathcal{A}(q^2, m_\mu^2) &\simeq \mathcal{A}^{\mathrm{LO}}(q^2, m_e^2) - \mathcal{A}^{\mathrm{LO}}(q^2, m_\mu^2) \\ &+ \frac{q^2}{3\Lambda^2} \left(1 + \frac{q^2}{4\Lambda^2}\right) \ln\left(\frac{m_\mu^2}{m_e^2}\right) + \frac{10m_\mu^2}{3\Lambda^2} \ln\left(\frac{\Lambda^2}{m_\mu^2}\right). \end{split}$$