Laser spectroscopy of light muonic atoms

U11 18148:0

The proton radius puzzle

erc

Randolf Pohl

JGU, Mainz MPQ, Garching

for the CREMA collabor ion*

Collaborators

CREMA (Charge Radius Experiment with Muonic Atoms) at PSI

A. Antognini, K. Kirch, <u>F. Kottmann</u> , B. Naar, K. Schuhmann, D. Taqqu	ETH Zürich, Switzerland						
M. Diepold, B. Franke, J. Götzfried, T.W. Hänsch, J. Krauth, F. Mul- hauser, T. Nebel, <u>R. Pohl</u>	MPQ, Garching, Germany						
M. Hildebrandt, A. Knecht, A. Dax	PSI, Switzerland						
F. Biraben, P. Indelicato, EO. Le Bigot, S. Galtier, L. Julien, F. Nez, C. Szabo-Foster	Labor. Kastler Brossel, Paris, France						
F.D. Amaro, J.M.R. Cardoso, L.M.P. Fernandes, A.L. Gouvea, J.A.M. Lopez, C.M.B. Monteiro, J.M.F. dos Santos	Uni Coimbra, Portugal						
D.S. Covita, J.F.C.A. Veloso	Uni Aveiro, Portugal						
M. Abdou Ahmed, T. Graf, A. Voss, B. Weichelt	IFSW, Uni Stuttgart, Germany						
TL. Chen, CY. Kao, YW. Liu	Nat. Tsing Hua Uni, Hsinchu, Taiwan						
P. Amaro, J.P. Santos	Uni Lisbon, Portugal						
L. Ludhova, P.E. Knowles, L.A. Schaller	Uni Fribourg, Switzerland						
A. Giesen	Dausinger & Giesen GmbH, Stuttgart, Germany						
P. Rabinowitz	Uni Princeton, USA						

Hydrogen group at MPQ

A. Beyer, L. Maisenbacher, A. Matveev, C.G. Parthey, J. Alnis, MPQ, Garching, Germany R. Pohl, Th. Udem, T.W. Hänsch

K. Khabarova, N. Kolachevksy

Lebedev Inst., Moscow, Russia

Randolf Pohl

The proton radius puzzle

The proton rms charge radius measured with electrons: 0.8770 ± 0.0045 fm 0.8409 ± 0.0004 fm muons:

The proton radius puzzle

Randolf Pohl

A proton radius puzzle?

The proton rms charge radius measured with electrons: 0.8770 ± 0.0045 fm muons: 0.8409 ± 0.0004 fm

Randolf Pohl

Outline

Introduction:

How large are the proton, deuteron, helion, alpha...? Atomic vs. nuclear physics

Muonic hydrogen:

Size does matter!

- Laser spectroscopy of muonic atoms/ions
- New measurements:
 - Muonic deuterium \rightarrow Another puzzle!
 - Muonic helium
 - Regular hydrogen \rightarrow New Rydberg constant!
- Future:
 - HFS in muonic hydrogen and helium-3
 - X-ray spectroscopy of radium etc.
 - Lamb shift in muonic Li, Be, ...
 - 1S-2S in regular tritium (triton radius)
 - **.**...

Charge radii of light nuclei

Neutron number N

JG

Atomic physics

Shift ist proportional to the

size of the proton

Orbital pictures from Wikipedia

Muonic hydrogen

Regular hydrogen:

electron e^- + proton p

Muonic hydrogen:

muon μ^- + proton p

Muonic hydrogen

Regular hydrogen:

electron e^- + proton p

Muonic hydrogen:

muon μ^- + proton p

Randolf Pohl

Muonic hydrogen

electron e^- + proton p

Muonic hydrogen:

muon μ^- + proton p

muon mass $m_{\mu} \approx 200 \times m_e$ Bohr radius $r_{\mu} \approx 1/200 \times r_e$

 μ inside the proton: $200^3 \approx 10^7$

muon **much** is more sensitive to r_p

Proton charge radius and muonic hydrogen

Lamb shift in μp [meV]:

$$\Delta E = 206.0668(25) - 5.2275(10) r_p^2$$
 [meV]

Proton size effect is 2% of the μp Lamb shift

Measure to $10^{-5} \Rightarrow r_{\rm p}$ to 0.05%

Experiment:

R. Pohl et al., Nature 466, 213 (2010).

A. Antognini, RP et al., Science 339, 417 (2013).

Theory summary:

A. Antognini, RP et al., Ann. Phys. 331, 127 (2013).

Randolf Pohl

Swiss muons

Swiss muons

Swiss muons

Randolf Pohl

µp Lamb shift experiment: Principle

time spectrum of 2 keV x-rays (\sim 13 hours of data @ 1 laser wavelength)

μp Lamb shift experiment: Principle

μp Lamb shift experiment: Principle

μp Lamb shift experiment: Principle

Muonic hydrogen results

Randolf Pohl

Muonic hydrogen results

- <u>two transitions measured</u> $v_t = 49881.35(-65) \text{ GHz}$ $v_s = 54611.16(1.05) \text{ GHz}$
 - Lamb shift \Rightarrow charge radius

$$\Delta E_{\rm LS} = 206.0668(25) - 5.2275(10) r_{\rm E}^2 \quad \text{[meV, fm]}$$

$$r_{\rm E}^2 = \int {\rm d}^3 r \ r^2 \ \rho_E(r)$$

 $r_{\rm E} = 0.84087 \, (26)_{\rm exp} \, (29)_{\rm th} \, {\rm fm} = 0.84087 \, (39) \, {\rm fm}$

10x more precise than CODATA-2010 4% smaller (7 σ) proton radius puzzle

Exp.: R. Pohl *et al.*, Nature 466, 213 (2010).
A. Antognini, RP *et al.*, Science 339, 417 (2013).
Theo: A. Antognini, RP *et al.*, Ann. Phys. 331, 127 (2013).

Randolf Pohl

Muonic hydrogen results

- Exp.: R. Pohl *et al.*, Nature 466, 213 (2010).
 A. Antognini, RP *et al.*, Science 339, 417 (2013).
 Theo: A. Antognini, RP *et al.*, Ann. Phys. 331, 127 (2013).
 - Randolf Pohl

HC2NP, Tenerife, 30 Sept. 2016

- <u>two transitions measured</u> $v_t = 49881.35(-65) \text{ GHz}$ $v_s = 54611.16(1.05) \text{ GHz}$
- Lamb shift \Rightarrow charge radius

$$\Delta E_{\rm LS} = 206.0668(25) - 5.2275(10) r_{\rm E}^2 \quad \text{[meV, fm]}$$

$$r_{\rm E}^2 = \int {\rm d}^3 r \, r^2 \, \rho_E(r)$$

 $r_{\rm E} = 0.84087 \, (26)_{\rm exp} \, (29)_{\rm th} \, {\rm fm} = 0.84087 \, (39) \, {\rm fm}$

• <u>2S-HFS \Rightarrow Zemach radius</u>

 $\Delta E_{\rm HFS} = 22.9843(30) - 0.1621(10) r_{\rm Z} \text{ [meV, fm]}$ $r_{\rm Z} = \int d^3 r \int d^3 r' r \rho_E(r) \rho_M(r - r')$

 $r_{\rm Z} = 1.082 \ (31)_{\rm exp} \ (20)_{\rm th} \ {\rm fm} = 1.082 \ (37) \ {\rm fm}$

Proton Zemach radius

2S hyperfine splitting in μp is: $\Delta E_{HFS} = 22.9843(30) - 0.1621(10) r_Z$ [fm] meV

with $r_{\mathbf{Z}} = \int d^3r \int d^3r' r \rho_E(r) \rho_M(r-r')$

We measured $\Delta E_{\rm HFS} = 22.8089(51) \,\,{\rm meV}$

This gives a proton Zemach radius $r_{\rm Z} = 1.082 \ (31)_{\rm exp} \ (20)_{\rm th} = 1.082 \ (37) \ {\rm fm}$

Proton Zemach radius

2S hyperfine splitting in μp is: $\Delta E_{HFS} = 22.9843(30) - 0.1621(10) r_{Z}$ [fm] meV

with $r_{\mathbf{Z}} = \int d^3r \int d^3r' r \rho_E(r) \rho_M(r-r')$

We measured $\Delta E_{\rm HFS} = 22.8089(51) \,\,{\rm meV}$

This gives a proton Zemach radius $r_{\rm Z} = 1.082 \ (31)_{\rm exp} \ (20)_{\rm th} = 1.082 \ (37) \ {\rm fm}$

Muonic deuterium

Muonic DEUTERIUM

Experiment:

RP et al. (CREMA), Science 353, 417 (2016).

 $\Delta E_{\rm LS}^{\rm exp} = 202.8785\,(31)_{\rm stat}(14)_{\rm syst}\,{\rm meV}$

 $\Rightarrow r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo} \, {\rm fm}$

JG

Randolf Pohl

Muonic DEUTERIUM

Experiment:

RP et al. (CREMA), Science 353, 417 (2016).

 $\Delta E_{\mathrm{LS}}^{\mathrm{exp}} = 202.8785\,(31)_{\mathrm{stat}}(14)_{\mathrm{syst}}\,\mathrm{meV}$

 $\Rightarrow r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo} \, {\rm fm}$

Theory:

 $\Delta E_{\text{LS}}^{\text{theo}} = 228.7766(10) \,\text{meV} \,(\text{QED}) \\ + 1.7096(200) \,\text{meV} \,(\text{TPE}) \\ - 6.1103(3) \,r_{\text{d}}^2 \,\text{meV/fm}^2,$

Krauth, RP *et al.*, Ann. Phys. **366**, 168 (2016) [arXiv 1506.01298]

based on papers and communication from

Bacca, Barnea, Birse, Borie, Carlson, Eides, Faustov, Friar, Gorchtein, Hernandez, Ivanov, Jentschura, Ji, Karshenboim, Korzinin, Krutov, Martynenko, McGovern, Nevo Dinur, Pachucki, Shelyuto, Sick, Vanderhaeghen *et al*.

THANK YOU!

Randolf Pohl

H/D isotope shift: $r_{\rm d}^2 - r_{\rm p}^2 = 3.82007(65) \,{\rm fm}^2$

C.G. Parthey, RP et al., PRL 104, 233001 (2010)

 CODATA 2010
 $r_{\rm d} = 2.14240(210)$ fm

 $r_{\rm p}$ from μ H gives
 $r_{\rm d} = 2.12771(22)$ fm
 $\leftarrow 7\sigma$ from $r_{\rm p}$

Randolf Pohl

H/D isotope shift: $r_{\rm d}^2 - r_{\rm p}^2 = 3.82007(65) \, {\rm fm}^2$

C.G. Parthey, RP et al., PRL 104, 233001 (2010)

CODATA 2010 $r_{\rm d} = 2.14240(210) \text{ fm}$ $r_{\rm p}$ from μ H gives $r_{\rm d} = 2.12771(22) \text{ fm} \leftarrow 7\sigma$ from $r_{\rm p}$

Randolf Pohl

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_{\rm d} = 2.14240(210) \text{ fm}$

 $r_{\rm p}$ from μ H gives $r_{\rm d} = 2.12771(22) \text{ fm} \leftarrow 7\sigma \text{ from } r_{\rm p}$

Muonic DEUTERIUM $r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo}$ fm RP *et al.*, Science 353, 417 (2016)

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_{\rm d} = 2.14240(210) \ {\rm fm}$

 $r_{\rm p}$ from μ H gives $r_{\rm d} = 2.12771(22) \text{ fm} \leftarrow 7\sigma \text{ from } r_{\rm p}$

Muonic DEUTERIUM $r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo}$ fm RP *et al.*, Science 353, 417 (2016)

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_{\rm d} = 2.14240(210) ~{\rm fm}$

 $r_{\rm p}$ from μ H gives $r_{\rm d} = 2.12771(22) \text{ fm} \leftarrow 7\sigma \text{ from } r_{\rm p}$

Muonic DEUTERIUM $r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo}$ fm RP *et al.*, Science 353, 417 (2016)

electronic D (r_p indep.) $r_d = 2.14150(450)$ fm

RP et al. arXiv 1607.03165

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_{\rm d} = 2.14240(210) ~{\rm fm}$

 $r_{\rm p}$ from μ H gives $r_{\rm d} = 2.12771(22) \ {\rm fm} \ \leftarrow 7\sigma \ {\rm from} \ r_{\rm p}$

Muonic DEUTERIUM $r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo}$ fm RP *et al.*, Science 353, 417 (2016)

electronic D ($r_{\rm p}$ indep.) $r_{\rm d} = 2.14150(450) ~{\rm fm} ~{\leftarrow} 3.5\sigma$ RP *et al.* arXiv 1607.03165

Theory in µd: TPE

 $r_{\rm d} = 2.12562(13)_{\rm exp}(77)_{\rm theo}$ fm,

using $\Delta E_{\text{TPE}}^{\text{theo}} = 1.7096(200) \,\text{meV}$

limited by deuteron structure (TPE) contributions to the μd LS

Cancellation between elastic "Friar" (a.k.a. 3rd Zemach) terms and part of inelastic "polarizability" contributions.

Nucleon structure adds relevant contributions (and uncertainty).

Friar & Payne, PRA 56, 5173 (1997); Pachucki, PRL 106, 193007 (2011); Friar, PRC 88, 034003 (2013); Hernandez *et al.*, PLB 736, 344 (2014); Pachucki & Wienczek, PRA 91, 040503(R) (2015); Carlson, Gorchtein, Vanderhaeghen, PRA 89, 022504 (2014); Birse & McGovern *et al.*

J.J. Krauth, RP et al., Ann. Phys. 366, 168 (2016) [1506.01298]

Randolf Pohl

Theory in µd: TPE

Table 3: Deuteron structure contributions to the Lamb shift in muonic deuterium. Values are in meV.

Item	Contribution	Pachucki [55] Friar [60]		Hernandez <i>et al.</i> [58]		Pach.& Wienczek [65]		Carlson <i>et al.</i> [64]	Our choice					
		AV18		ZRA		AV18	N ³ LO [†]		AV18		data	ν	ralue	source
	Source	1		2		3	4		5		6			
p1	Dipole	1.910	$\delta_0 E$	1.925	Leading C1	1.907	1.926	$\delta_{D1}^{(0)}$	1.910	$\delta_0 E$		1.9165	$\pm \ 0.0095$	3-5
p2	Rel. corr. to p1, longitudinal part	-0.035	$\delta_R E$	-0.037	Subleading C1	-0.029	-0.030	$\delta_L^{(0)}$	-0.026	$\delta_R E$				
p3	Rel. corr. to p1, transverse part					0.012	0.013	$\delta_T^{(0)}$						
p4	Rel. corr. to p1, higher order								0.004	$\delta_{HO}E$				
sum	Total rel. corr., p2+p3+p4	-0.035		-0.037		-0.017	-0.017		-0.022			-0.0195	$\pm \ 0.0025$	3-5
p5	Coulomb distortion, leading	-0.255	$\delta_{C1}E$						-0.255	$\delta_{C1}E$				
$\mathbf{p6}$	Coul. distortion, next order	-0.006	$\delta_{C2}E$						-0.006	$\delta_{C2}E$				
sum	Total Coulomb distortion, p5+p6	-0.261				-0.262	-0.264	$\delta_C^{(0)}$	-0.261			-0.2625	$\pm \ 0.0015$	3-5
p7	El. monopole excitation	-0.045	$\delta_{Q0}E$	-0.042	C0	-0.042	-0.041	$\delta_{R2}^{(2)}$	-0.042	$\delta_{Q0}E$				
$\mathbf{p8}$	El. dipole excitation	0.151	$\delta_{Q1}E$	0.137	Retarded C1	0.139	0.140	$\delta^{(2)}_{D1D3}$	0.139	$\delta_{Q1}E$				
p9	El. quadrupole excitation	-0.066	$\delta_{Q2}E$	-0.061	C2	-0.061	-0.061	$\delta_Q^{(2)}$	-0.061	$\delta_{Q2}E$				
sum	Tot. nuclear excitation, $p7+p8+p9$	0.040		0.034	$\mathrm{C0} + \mathrm{ret}\text{-}\mathrm{C1} + \mathrm{C2}$	0.036	0.038		0.036			0.0360	$\pm \ 0.0020$	2-5
p10	Magnetic	-0.008 \diamond	$\delta_M E$	-0.011	M1	-0.008	-0.007	$\delta_M^{(0)}$	-0.008	$\delta_M E$		-0.0090	$\pm \ 0.0020$	2-5
SUM_1	Total nuclear (corrected)	1.646		1.648		1.656	1.676		1.655			1.6615	$\pm \ 0.0103$	
p11	Finite nucleon size			0.021	Retarded C1 f.s.	0.020 ♦	0.021 $^{\diamond}$	$?^{?}\delta^{(2)}_{NS}$	0.020	$\delta_{FS}E$				
p12	n p charge correlation			-0.023	pn correl. f.s.	-0.017	-0.017	$\delta_{np}^{(1)}$	-0.018	$\delta_{FZ}E$				
sum	p11+p12			-0.002		0.003	0.004		0.002			0.0010	$\pm \ 0.0030$	2-5
p13	Proton elastic 3rd Zemach moment	$\left.\right\}_{0.043(3)}$	$\delta_P E$	0.030	$\langle r^3 angle_{(2)}^{ m pp}$				$\left.\right\}_{0.043(3)}$	$\delta_P E$		0.0289	$\pm \ 0.0015$	Eq.(13)
p14	Proton inelastic polarizab.)				$\int 0.02$	(7(2))	δ^N , [64	J	-	$\int_{0.028(2)\Lambda E^{hadr}}$	$\int_{0.0280}$	+0.0020	6
p15	Neutron inelastic polarizab.					<u>ر 0.02</u>	(2)	opol [01	0.016(8)	$\delta_N E$	$\int 0.020(2)\Delta E$) 0.0200	1 0.0020	0
p16	Proton & neutron subtraction term											-0.0098	$\pm \ 0.0098$	Eq.(15)
sum	Nucleon TPE, $p13+p14+p15+p16$	0.043(3)		0.030		0.02	27(2)		0.059(9)			0.0471	$\pm \ 0.0101$	
$\rm SUM_2$	Total nucleon contrib.	0.043(3)		0.028		0.03	30(2)		0.061(9)			0.0476	$\pm \ 0.0105$	
	Sum, published	1.680(16)		1.941(19)	1.690(20)		1.717(20)		2.011(740)				
	Sum, corrected			1.697(19)		1.714(20)		1.707(20)		1.748(740)	1.7096	±0.0147		

 $\Delta E^{\text{TPE}}(\text{theo}) = 1.7096 \pm 0.0200 \text{ meV}$ $\Delta E^{\text{TPE}}(\text{exp}) = 1.7638 \pm 0.0068 \text{ meV}$ J.J. Krauth *et al.*, Ann. Phys. **366**, 168 (2016) [1506.01298]

 $xp) = 1.7638 \pm 0.0068 \text{ meV}$

Experimental TPE in \mu d

 $\Delta E^{\text{TPE}}(\text{theo}) = 1.7096 \pm 0.0200 \text{ meV}$ $\Delta E^{\text{TPE}}(\text{exp}) = 1.7638 \pm 0.0068 \text{ meV}$ 2.6σ . 3x more accurate

 $\Delta E_{\rm LS} = 228.7766(10) \,\mathrm{meV} \,(\mathrm{QED}) + \Delta E^{\rm TPE} - 6.1103(3) \,r_{\rm d}^2 \,\mathrm{meV/fm^2},$

• $\Delta E_{LS}^{exp} = 202.8785 (31)_{stat} (14)_{syst} \text{ meV from } \mu \text{D exp.}$

• $r_d = 2.12771(22)$ fm from $r_d^2 - r_p^2 = 3.82007(65)$ fm² [H/D(1S-2S) isotope shift] using $r_{\rm p}(\mu \rm H) = 0.84087(39) \rm fm$

Experimental TPE in \mud

Conclusions μ **p** and μ **d**

Putting BSM scenarios aside,

- Muonic hydrogen gives:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm
 - Proton Zemach radius: $R_Z = 1.082(37)$ fm
 - Rydberg constant:

 $R_{\infty} = 3.2898419602495 \ (10)^{\text{radius}} \ (25)^{\text{QED}} \times 10^{15} \text{ Hz/c}$

- Deuteron charge radius: $r_d = 2.12771 (22)$ fm using H/D(1S-2S)
- $r_{\rm p}$ is ~ 7 σ smaller than CODATA-2010 4.0 σ smaller than $r_{\rm p}$ (H spectrosopy)
- Muonic deuterium gives:
 - $r_{\rm d}$ is 7.5 σ smaller than CODATA-2010 (99% correlated with $r_{\rm p}$!) 3.5 σ smaller than $r_{\rm d}$ (D spectrosopy)
 - TPE contribution to Lamb shift: $\Delta E_{LS}^{TPE}(exp) = 1.7638(68) \text{ meV}$ 2.6 σ larger, but 3x more accurate than theory 1.7096(200) meV
 - TPE contribution to 2S-HFS: $\Delta E_{\text{HFS}}^{\text{TPE}}(\exp) = 0.2178(74) \text{ meV}$ in good agreement with theor. estimate 0.2226(49) meV

Muonic helium ions

Lamb shift in muonic helium

- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He to ~ 50 ppm
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (± 0.0005 fm),

This is 10 times better than from electron scattering.

● Solve discrepancy in ³He - ⁴He isotope shift.

Lamb shift in muonic helium

- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He to ~ 50 ppm
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (± 0.0005 fm),

This is 10 times better than from electron scattering.

Solve discrepancy in ³He - ⁴He isotope shift.

Randolf Pohl

 $\mu^4 \mathrm{He}(2\mathrm{S}_{1/2}
ightarrow 2\mathrm{P}_{3/2})$ at \sim 813 nm wavelength

 $\mu^4 \mathrm{He}(2\mathrm{S}_{1/2}
ightarrow 2\mathrm{P}_{3/2})$ at \sim 813 nm wavelength

Randolf Pohl

 $\mu^4 \mathrm{He}(2\mathrm{S}_{1/2}
ightarrow 2\mathrm{P}_{3/2})$ at \sim 813 nm wavelength

Carboni et al, Nucl. Phys. A273, 381 (1977)

 $\mu^4 \mathrm{He}(2\mathrm{S}_{1/2}
ightarrow 2\mathrm{P}_{3/2})$ at \sim 813 nm wavelength

bateli, Micheeli, Fospelov, FAL 107

Randolf Pohl

Muonic summary

- Muonic hydrogen gives:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm

 7σ away from electronic average (CODATA: H, e-p scatt.)

- Deuteron charge radius: $r_d = 2.12771(22)$ fm from μ H + H/D(1S-2S)
- Muonic deuterium:
 - Deuteron charge radius: $r_d = 2.12562 (13)_{exp} (77)_{theo}$ fm (PRELIMINARY!) consistent with muonic proton radius, but again 7σ away from CODATA: 2.14240(210) fm

RP et al., submitted (2016)

- Proton" Radius Puzzle is in fact "Z=1 Radius Puzzle"
- muonic helium-3 and -4 ions: No big discrepancy (PRELIMINARY)

- Muonic hydrogen gives:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm

 7σ away from electronic average (CODATA: H, e-p scatt.)

- Deuteron charge radius: $r_d = 2.12771(22)$ fm from μ H + H/D(1S-2S)
- Muonic deuterium:
 - Deuteron charge radius: $r_d = 2.12562 (13)_{exp} (77)_{theo}$ fm (PRELIMINARY!) consistent with muonic proton radius, but again 7σ away from CODATA: 2.14240 (210) fm

RP et al., submitted (2016)

- Proton" Radius Puzzle is in fact "Z=1 Radius Puzzle"
- muonic helium-3 and -4 ions: No big discrepancy (PRELIMINARY)
- Could ALL be solved if the Rydberg constant [and hence the (electronic) proton radius] was wrong.
 Plus ~ 2.6σ change in deuteron polarizability.
 Plus: accept dispersion fits of e-p scattering
- Or: BSM physics, e.g. Tucker-Smith & Yavin (2011)

(Electronic) hydrogen.

Randolf Pohl

Lamb shift: $L_{1S}(r_p) = 8171.636(4) + 1.5645 \langle r_p^2 \rangle$ MHz $L_{nS} \simeq \frac{L_{1S}}{n^3}$ = 3D

2S ----- 2P

8S 4S

3S

1S —

RP et al. arXiv 1607.03165

Randolf Pohl

RP et al. arXiv 1607.03165

Rydberg constant from hydrogen

Apparatus used for H/D(1S-2S)

C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010) C.G. Parthey, RP *et al.*, PRL **107**, 203001 (2011)

- 486 nm at 90° + Retroreflector \Rightarrow Doppler-free 2S-4P excitation
- 1st oder Doppler vs. ac-Stark shift
- m
 m I $\sim 2.5\,
 m kHz$ accuracy (vs. 15m kHz Yale, 1995)
- cryogenic H beam, optical excitation to 2S
 A. Beyer, RP et al., Ann. d. Phys. 525, 671 (2013)

Sansonetti *et al.*, PRL 107, 023001 (2011); Brown *et al.*, PRA 87, 032504 (2013) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), etc. Amaro, RP *et al.*, PRA 92, 022514 (2015); PRA 92, 062506 (2015)

Randolf Pohl

Lorentzian(1) + Lorentzian(2) + cross-term (QI)

Sansonetti *et al.*, PRL 107, 023001 (2011); Brown *et al.*, PRA 87, 032504 (2013) Horbatsch & Hessels, PRA 82, 052519 (2010); PRA 84, 032508 (2011), etc. Amaro, RP *et al.*, PRA 92, 022514 (2015); PRA 92, 062506 (2015)

2S-4P setup

Beyer, RP et al., submitted (2016)

Randolf Pohl

Beyer, RP et al., submitted (2016)

New hydrogen 2S→4P at MPQ!

$$2S \to 4P_{1/2}$$
 and $4P_{3/2}$

cold H(2S) beam optically excited $(1S \rightarrow 2S)$

 $\Delta v \sim 2 \,\text{kHz} \equiv \Gamma / 10'000 \,\text{III}$

Beyer, Maisenbacher, Matveev, RP, Khabarova, Grinin, Lamour, Yost, Hänsch, Kolachevsky, Udem, submitted (2016)

The nuclear chart

Neutron number N

The nuclear chart - new charge radii

Neutron number N

IG

Summary

- Results from muonic hydrogen:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm
 - Proton Zemach radius: $R_Z = 1.082(37)$ fm
 - Rydberg constant: $R_{\infty} = 3.2898419602495 (10)^{r_p} (25)^{\text{QED}} \times 10^{15} \text{ Hz/c}$
 - Deuteron charge radius: $r_d = 2.12771 (22)$ fm from μ H + H/D(1S-2S)
 - The "Proton radius puzzle"
- Muonic deuterium:
 - ($r_{\rm d} = 2.12562(78) \text{ fm from } \mu \text{D}$)
 - TPE in Lamb shift: $\Delta E = 1.7638(68)$ meV, 2.6σ larger, 3x more accurate
 - TPE in 2S-HFS: $\Delta E = 0.2178(74)$ meV in good agreement with theory
- muonic helium-3 and -4: charge radius 10x more precise. No big discrepancy
- H(2S-4P) gives revised Rydberg \Rightarrow small r_p PRELIMINARY

Summary

- Results from muonic hydrogen:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm
 - Proton Zemach radius: $R_Z = 1.082(37)$ fm
 - Rydberg constant: $R_{\infty} = 3.2898419602495 (10)^{r_p} (25)^{\text{QED}} \times 10^{15} \text{ Hz/c}$
 - Deuteron charge radius: $r_d = 2.12771 (22)$ fm from μ H + H/D(1S-2S)
- Muonic deuterium:
 - TPE in Lamb shift: $\Delta E = 1.7638(68)$ meV, 2.6σ larger, 3x more accurate
 - TPE in 2S-HFS: $\Delta E = 0.2178(74)$ meV in good agreement with theory
- muonic helium-3 and -4: charge radius 10x more precise. No big discrepancy
- H(2S-4P) gives revised Rydberg \Rightarrow small r_p PRELIMINARY
- New projects:
 - 1S-HFS in muonic hydrogen / ³He \leftarrow PSI, J-PARC, RIKEN-RAL, ...
 - LS in muonic Li, Be, B, T, ...; muonic high-Z, ...
 - 1S-2S and 2S- $n\ell$ in Hydrogen/Deuterium/Tritium, He⁺
 - Positronium $\equiv e^+e^-$, Muonium $\equiv \mu^+e^-$
 - Electron scattering: H at lower Q^2 , D, He
 - Muon scattering: MUSE @ PSI

CREMA in 2009...

Proton Size Investigators thank you for your attention

... and 2014

