MODEL-INDEPENDENT CALCULATIONS OF PROTON STRUCTURE EFFECTS IN MUONIC HYDROGEN

FRANZISKA HAGELSTENN

in collaboration with VLADIMIR PASCALUTSA and OLEKSII GRYNIUK
INSTITUT FÜR KERNPHYSIK, UNIVERSITÄT MAINZ, GERMANY

Outline

* Finite-Size effects by dispersive technique
- Breakdown of the expansion in charge radii (de Rújula scenario)
* Compton scattering sum rules
* Proton polarizability effects in the hyperfine splitting of muonic hydrogen
- pion-nucleon loops (LO ChPT)
- Δ-exchange (NLO ChPT)
- neutral-pion exchange (NLO ChPT)
(); $(Z \alpha)^{6} \ln (Z \alpha)$ polarizability contribution in light muonic atoms from off-forward two-photon exchange

Proton Radius Puzzle

> Lamb shift discrepancy: $310 \mu \mathrm{eV}$

[1] J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). [2] P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012). [3] R. Pohl, A. Antognini et al., Nature 466, 213 (2010). [4] A. Antognini et al., Science 339, 417 (2013).

seven standard-deviation discrepancy (7б) !!!

$$
\left[R_{E}^{\mu \mathrm{H}}=0.84087(39) \mathrm{fm}\right] \geqslant\left[R_{E}^{\text {CODATA } 2010}=0.8775(51) \mathrm{fm}\right]
$$

Proton Radius Puzzle: Possible Explanations

Why do we observe different radii?

$$
\Delta E_{\mathrm{LS}}^{\mathrm{th}}=206.0668(25)-5.2275(10)\left(R_{E} / \mathrm{fm}\right)^{2}
$$

numerical values reviewed in: A. Antognini et al., Annals Phys. 331 (2013) 127-145

Why muonic atoms?

Finite-Size Effects

Fermi - Energy:

$E_{F}(n S)=\frac{8}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M} \frac{1}{n^{3}}$

* HFS:
with Bohr radius $a=1 /\left(Z \alpha m_{r}\right)$
$\Delta E_{n S}(\mathrm{LO}+\mathrm{NLO})=E_{F}(n S)\left[1-2 Z \alpha m_{r} R_{Z}\right]$

* Lamb shift:

> wave function at the origin NLO becomes appreciable in $\mu \mathrm{H}$

$$
\Delta E_{n l}(\mathrm{LO}+\mathrm{NLO})=\delta_{l 0} \frac{2 \pi Z \alpha}{3} \frac{1}{\pi(a n)^{3}}\left[R_{E}^{2}-\frac{Z \alpha m_{r}}{2} R_{E(2)}^{3}\right]
$$

Fourier transformation:

$$
\rho_{E}(r)=\int \frac{\mathrm{d} \boldsymbol{q}}{(2 \pi)^{3}} G_{E}\left(\boldsymbol{q}^{2}\right) e^{-i \boldsymbol{q} \boldsymbol{r}}
$$

$$
\begin{aligned}
R_{E}^{2} & =-6 \lim _{Q^{2} \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} Q^{2}} G_{E}\left(Q^{2}\right) \\
R_{E(2)}^{3} & =\frac{48}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{4}}\left\{G_{E}^{2}\left(Q^{2}\right)-1+\frac{1}{3}\left\langle r^{2}\right\rangle_{E} Q^{2}\right\}
\end{aligned}
$$

$$
\text { J. L. Friar, Annals Phys. } 122 \text { (1979) } 151
$$

Lamb Shift: Expand or not?

PHYSICAL REVIEW A 91, 040502(R) (2015)
rapd conmunications
sion of finite-size corrections to the hydrogen Lamb shift
Breakdown of the expansion of finite-size corrections to the
in moments of charge distribution
Franziska Hagelstein and Vladimir Pascalutsa
Institut fiir Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universitit Mainz, D-55128 Mainz, Germany
(Received 13 February 2015; published 20 April 2015)

PHYSICAL REVIEW A 93, 026501 (2016)
Comment on "Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift in moments of charge distribution"
J. Arrington
Physics Division, Argonne National abboratry, Argonne, Illinois 60439, USA
(Received 15 December 2015; published 23 February 2016)

PHYSICAL REVIEW A 93, 026502 (2016)
Reply to "Comment on 'Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift in moments of charge distribution' "

Franziska Hagelstein and Vladimir Pascalutsa
Institut fuir Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universitït Mainz, D-55128 Mainz, Germany (Received 22 January 2016; published 23 February 2016)

$$
\begin{aligned}
\Delta E_{2 P-2 S}^{\mathrm{FF}(1)} & =-\frac{(Z \alpha)^{4} m_{r}^{3}}{2 \pi} \int_{t_{0}}^{\infty} \mathrm{d} t \frac{\operatorname{Im} G_{E}(t)}{\left(\sqrt{t}+Z \alpha m_{r}\right)^{4}} \\
& =-\frac{2 Z \alpha}{\pi} \int_{0}^{\infty} \mathrm{d} Q w_{E}(Q) G_{E}\left(Q^{2}\right) \\
& =-\frac{(Z \alpha)^{4} m_{r}^{3}}{12}\left[\left\langle r^{2}\right\rangle_{E}-Z \alpha m_{r}\left\langle r^{3}\right\rangle_{E}\right]+O\left(\alpha^{6}\right)
\end{aligned}
$$

convolution of
momentum-space $w_{E}(Q)=2\left(Z \alpha m_{r}\right)^{4} Q^{2} \frac{\left(Z \alpha m_{r}\right)^{2}-Q^{2}}{\left[\left(Z \alpha m_{r}\right)^{2}+Q^{2}\right]^{4}}$
wave functions:

Lamb Shift: Expand or not?

$$
E_{2 P-2 S}^{\mathrm{FF}(1)}=\int_{0}^{\infty} \mathrm{d} Q w_{E}(Q) G_{E}\left(Q^{2}\right) \quad \text { with } \quad w_{E}(Q)=-\frac{4}{\pi}(Z \alpha)^{5} m_{r}^{4} Q^{2} \frac{\left(Z \alpha m_{r}\right)^{2}-Q^{2}}{\left[\left(Z \alpha m_{r}\right)^{2}+Q^{2}\right]^{4}}
$$

* the finite-size effects are not always expandable in the moments of charge distribution
- convergence radius of the Taylor expansion of $G_{E}\left(Q^{2}\right)$ has to be much larger than the inverse Bohr radius ($\mathrm{Z} \alpha \mathrm{m}_{\mathrm{r}}$) of the given hydrogen-like system
* a tiny non-smoothness of the electric form factor at a MeV scale would be able to explain the puzzle
- one needs to know all the "soft" (below several MeV) contributions to the proton electric FF to high accuracy
- missing standard model effects, e.g., muon-decay correction?

- light particles beyond the standard model

Structure Effects through 2γ

* proton structure effects at subleading orders arise through multi-photon processes

forward
two-photon exchange (2γ)

polarizability contribution

elastic contribution: finite-size recoil,
3rd Zemach moment (Lamb shift), Zemach radius (Hyperfine splitting)

* "blob" corresponds to doubly-virtual Compton scattering (VVCS):

$$
\begin{aligned}
T^{\mu \nu}(q, p)= & \left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right) T_{2}\left(\nu, Q^{2}\right) \\
& -\frac{1}{M} \gamma^{\mu \nu \alpha} q_{\alpha} S_{1}\left(\nu, Q^{2}\right)-\frac{1}{M^{2}}\left(\gamma^{\mu \nu} q^{2}+q^{\mu} \gamma^{\nu \alpha} q_{\alpha}-q^{\nu} \gamma^{\mu \alpha} q_{\alpha}\right) S_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

Proton Structure in e-p Scattering

photoabsorption cross section:

Compton scattering (CS):

photon energy and virtuality: ν, Q^{2}
Bjorken variable: $x=Q^{2} / 2 M \nu$

$$
\tau=Q^{2} / 4 M^{2}
$$

proton polarizabilities:

$\alpha_{E 1}\left(Q^{2}\right)+\beta_{M 1}\left(Q^{2}\right)=\frac{8 \alpha M}{Q^{4}} \int_{0}^{x_{0}} \mathrm{~d} x x f_{1}\left(x, Q^{2}\right)$

- - - -astic + inelastic

I = Born + non-Born
proton structure functions:

$$
\begin{array}{|l}
\hline f_{1}\left(x, Q^{2}\right), f_{2}\left(x, Q^{2}\right) \\
\text { Lamb shift }
\end{array} \frac{g_{1}\left(x, Q^{2}\right), g_{2}\left(x, Q^{2}\right)}{\text { Hyperfine splitting }}
$$

elastic structure functions:
Sachs form factors: $\mathrm{G}_{\mathrm{E}}, \mathrm{G}_{\mathrm{m}}$
Dirac \& Pauli form factors: $\mathrm{F}_{1}, \mathrm{~F}_{2}$

$$
\begin{aligned}
& f_{1}^{\mathrm{el}}\left(x, Q^{2}\right)=\frac{1}{2} G_{M}^{2}\left(Q^{2}\right) \delta(1-x) \\
& f_{2}^{\mathrm{el}}\left(x, Q^{2}\right)=\frac{1}{1+\tau}\left[G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)\right] \delta(1-x) \\
& g_{1}^{\mathrm{el}}\left(x, Q^{2}\right)=\frac{1}{2} F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) \delta(1-x) \\
& g_{2}^{\mathrm{el}}\left(x, Q^{2}\right)=-\frac{\tau}{2} F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) \delta(1-x) \\
& \hline
\end{aligned}
$$

CS Amplitudes \& Structure Functions

optical theorem: unitarity
$\operatorname{Im} T_{1}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} Z^{2} \alpha}{M} f_{1}\left(x, Q^{2}\right)$
$\operatorname{Im} T_{2}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} Z^{2} \alpha}{\nu} f_{2}\left(x, Q^{2}\right)$
$\operatorname{Im} S_{1}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} Z^{2} \alpha}{\nu} g_{1}\left(x, Q^{2}\right)$
$\operatorname{Im} S_{2}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} Z^{2} \alpha M}{\nu^{2}} g_{2}\left(x, Q^{2}\right)$

dispersion relations:

 analyticity, crossing symmetries$$
\begin{aligned}
T_{i}\left(\nu, Q^{2}\right) & =\frac{2}{\pi} \int_{\nu_{\text {el }}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime} \operatorname{Im} T_{i}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}} \\
S_{1}\left(\nu, Q^{2}\right) & =\frac{2}{\pi} \int_{\nu_{\text {el }}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime} \operatorname{Im} S_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}} \\
\nu S_{2}\left(\nu, Q^{2}\right) & =\frac{2}{\pi} \int_{\nu_{\text {el }}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime 2} \operatorname{Im} S_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}
\end{aligned}
$$

with
$\nu_{\mathrm{el}}=Q^{2} / 2 M$

$$
\begin{aligned}
& T_{1}\left(\nu, Q^{2}\right)=\frac{2}{\pi} \int_{\nu_{\mathrm{el}}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime} \operatorname{Im} T_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}=\frac{8 \pi Z^{2} \alpha}{M} \int_{0}^{1} \frac{\mathrm{~d} x}{x} \frac{f_{1}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}} \\
& T_{2}\left(\nu, Q^{2}\right)=\frac{2}{\pi} \int_{\nu_{\mathrm{el}}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime} \operatorname{Im} T_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}=\frac{16 \pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{1} \mathrm{~d} x \frac{f_{2}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}} \\
& S_{1}\left(\nu, Q^{2}\right)=\frac{2}{\pi} \int_{\nu_{\mathrm{el}}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime} \operatorname{Im} S_{1}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}=\frac{16 \pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{1} \mathrm{~d} x \frac{g_{1}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}} \\
& \nu S_{2}\left(\nu, Q^{2}\right)=\frac{2}{\pi} \int_{\nu_{\mathrm{el}}^{\infty}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime 2} \operatorname{Im} S_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}=\frac{16 \pi Z^{2} \alpha M^{2}}{Q^{2}} \int_{0}^{1} \mathrm{~d} x \frac{g_{2}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}}
\end{aligned}
$$

Compton Scattering Sum Rules

* Compton scattering (CS) amplitudes in terms of integrals of total photoabsorption cross sections
- dispersion relations:

$$
\begin{aligned}
& T_{1}(\nu, 0)=-\frac{4 \pi \alpha}{M}+\frac{2 \nu^{2}}{\pi} \int_{0}^{\infty} \mathrm{d} \nu^{\prime} \frac{\sigma_{\text {abs }}\left(\nu^{\prime}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}} \\
& S_{1}(\nu, 0)=\frac{M}{\pi} \int_{0}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime} \Delta \sigma_{\text {abs }}\left(\nu^{\prime}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}
\end{aligned}
$$

* low-energy expansion of CS amplitudes:

$$
\begin{aligned}
-\frac{1}{4 \pi} T_{1}(\nu, 0) & =-\frac{Z^{2} \alpha}{M}+\left(\alpha_{E 1}+\beta_{M 1}\right) \nu^{2}+\left[\alpha_{E 1 \nu}+\beta_{M 1 \nu}+1 / 12\left(\alpha_{E 2}+\beta_{M 2}\right)\right] \nu^{4}+O\left(\nu^{6}\right) \\
\frac{1}{4 \pi} S_{1}(\nu, 0) & =-\frac{\alpha \varkappa^{2}}{2 M}+M \gamma_{0} \nu^{2}+M \bar{\gamma}_{0} \nu^{4}+O\left(\nu^{6}\right)
\end{aligned}
$$

Spin-independent CS amplitude

PDG 2014:

$a_{E 1}+\beta_{M 1}=13.7(6) \times 10^{-4} \mathrm{fm}^{3}$ BChPT:
$a_{E 1}+\beta_{M 1}=14.0(7) \times 10^{-4} \mathrm{fm}^{3}$
V. Lensky, et al., Phys. Rev. C 90 (2014) 055202

Baldin sum rule:

$$
\begin{aligned}
& \alpha_{E 1}+\beta_{M 1}=\frac{1}{2 \pi^{2}} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \frac{\sigma_{\mathrm{abs}}(\nu)}{\nu^{2}} \\
& \mathrm{a}_{\mathrm{E} 1}+\beta_{\mathrm{M} 1}=14.0(2) \times 10^{-4} \mathrm{fm}^{3}
\end{aligned}
$$

Spin-independent CS amplitude

Baldin sum rule:

$$
\begin{aligned}
& \alpha_{E 1}+\beta_{M 1}=\frac{1}{2 \pi^{2}} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \frac{\sigma_{\mathrm{abs}}(\nu)}{\nu^{2}} \\
& \mathrm{a}_{\mathrm{E} 1}+\beta_{\mathrm{M} 1}=14.0(2) \times 10^{-4} \mathrm{fm}^{3}
\end{aligned}
$$

PDG 2014:

$\alpha_{E 1}+\beta_{M 1}=13.7(6) \times 10^{-4} \mathrm{fm}^{3}$ BChPT:
$a_{\mathrm{E} 1}+\beta_{\mathrm{M} 1}=14.0(7) \times 10^{-4} \mathrm{fm}^{3}$
V. Lensky, et al., Phys. Rev. C 90 (2014) 055202

Spin-dependent CS amplitude

Forward spin polarizability sum rules:

$$
\begin{aligned}
& \gamma_{0}=-\frac{1}{4 \pi^{2}} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \frac{\Delta \sigma_{\text {abs }}(\nu)}{\nu^{3}} \\
& \bar{\gamma}_{0}=-\frac{1}{4 \pi^{2}} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \frac{\Delta \sigma_{\text {abs }}(\nu)}{\nu^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{0}=-92.9(10.5) \times 10^{-6} \mathrm{fm}^{4} \\
& \bar{\gamma}_{0}=48.4(8.2) \times 10^{-6} \mathrm{fm}^{6}
\end{aligned}
$$

BChPT:

$$
\gamma_{0}=-90(140) \times 10^{-6} \mathrm{fm}^{4}
$$

$$
\bar{\gamma}_{0}=110(50) \times 10^{-6} \mathrm{fm}^{4}
$$

V. Lensky, et al., Eur. Phys. J. C 75 (2015) 604

Spin-dependent CS amplitude

Forward spin polarizability sum rules:

$$
\begin{aligned}
& \gamma_{0}=-\frac{1}{4 \pi^{2}} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \frac{\Delta \sigma_{\text {abs }}(\nu)}{\nu^{3}} \\
& \bar{\gamma}_{0}=-\frac{1}{4 \pi^{2}} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu \frac{\Delta \sigma_{\text {abs }}(\nu)}{\nu^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{0}=-92.9(10.5) \times 10^{-6} \mathrm{fm}^{4} \\
& \bar{\gamma}_{0}=48.4(8.2) \times 10^{-6} \mathrm{fm}^{6}
\end{aligned}
$$

Dispersive Approach

wave function at the origin

[1] K. Pachucki, Phys. Rev. A 60 (1999) 3593-3598 [2] A. Martynenko, Phys. Atom. Nucl. 69 (2006) 1309-1316 [3] C. E. Carlson, M. Vanderhaeghen, hep-ph/1101.5965 (2011) [4] M. C. Birse, J. A. McGovern, Eur. Phys. J. A 48 (2012) 120 [5] M. Gorchtein, et al., Phys. Rev. A 87 (2013) 052501

$$
\Delta E(n S)=8 \pi \alpha m \phi_{n}^{2} \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d} \nu}{2 \pi} \int \frac{\mathrm{~d} \mathbf{q}}{(2 \pi)^{3}} \frac{\left(Q^{2}-2 \nu^{2}\right) T_{1}\left(\nu, Q^{2}\right)-\left(Q^{2}+\nu^{2}\right) T_{2}\left(\nu, Q^{2}\right)}{Q^{4}\left(Q^{4}-4 m^{2} \nu^{2}\right)}
$$

$T_{1}\left(\nu, Q^{2}\right)=T_{1}\left(0, Q^{2}\right)+\frac{32 \pi Z^{2} \alpha M \nu^{2}}{Q^{4}} \int_{0}^{1} \mathrm{~d} x \frac{x f_{1}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}}$
$T_{2}\left(\nu, Q^{2}\right)=\frac{16 \pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{1} \mathrm{~d} x \frac{f_{2}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}}$

Caution:

in the dispersive approach the subtraction function is modelled!

low-energy expansion:

$\lim _{Q^{2} \rightarrow 0} \bar{T}_{1}\left(0, Q^{2}\right) / Q^{2}=4 \pi \beta_{M 1}$
modelled Q^{2} behavior: [1,2]
$\bar{T}_{1}\left(0, Q^{2}\right)=4 \pi \beta_{M 1} Q^{2} /\left(1+Q^{2} / \Lambda^{2}\right)^{4}$

	Pachucki	Martynenko	 Vanderhaeghen	 McGovern	Gorchtein et al. ${ }^{a}$
$\beta_{M 1}$	$1.56(57)$	$1.9(5)$	$3.4(1.2)$	$3.1(5)$	
$\Delta E_{2 S}^{(\text {subt })}$	1.9	2.3	$5.3(1.9)$	$4.2(1.0)$	$-2.3(4.6)$
$\Delta E_{2 S}^{(\text {inel })}$	-13.9	-16.1	$-12.7(5)$	$-12.7(5)^{b}$	$-13.0(6)$
$\Delta E_{2 S}^{(\text {poll })}$	$-12(2)$	$-13.8(2.9)$	$-7.4(2.0)$	$-8.5(1.1)$	$-15.3(4.6)$
$\Delta E_{2 S}^{(\text {el) }}$	$-23.2(1.0)$		-27.8		
$\Delta E_{2 S}$	$-35.2(2.2)$		$-\mathbf{2 9 . 5 (1 . 3)}$	$-24.7(1.6)^{c}$	$-24.5(1.2)$
-30.8					

2γ in $\mu \mathrm{H}$ Lamb Shift: ChPT vs. Dispersive Approach

	Nevado \& Pineda $\mathrm{HB} \chi \mathrm{PT}$	Alarcón et al. $\mathrm{B} \chi \mathrm{PT}$	Alarcón et al. $\mathrm{HB} \chi \mathrm{PT}$	Peset \& Pineda $\mathrm{HB} \chi \mathrm{PT}^{a}$
$\Delta E_{2 S}^{\text {(subt) }}$	$\begin{array}{lr}-3.0 & 1.3 \\ -5.2 & -19 .\end{array}$			
$\Delta E_{2 S}^{(\text {inel })}$				
$\Delta E_{2 S}^{(\text {pol }}$)	$-\overline{18.5}(\underline{9.3})$	$-\overline{8} \cdot \overline{2}\left(\overline{(}{ }_{-2.5}^{+1} . \overline{2}\right)$	-17.85	$-\overline{26.2}(-\overline{10.0})$
$\Delta E_{2 S}^{(\mathrm{el})}$	-10.1(5.1)			-8.3(4.3)
$\Delta E_{2 S}$	-28.6			$-34.4(12.5)$

D. Nevado, A. Pineda, Phys. Rev. C 77 (2008) 035202
A. Pineda, Phys. Rev. C 71 (2005) 065205
C. Peset, A. Pineda (2014)
J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852
${ }^{a}$ prediction at LO and NLO (including pions and deltas)

BChPT result is in good agreement with calculations based on dispersive sum rules!

HFS in Muonic Hydrogen

$\Delta E_{\mathrm{HFS}}(n S)=\left[1+\Delta_{\mathrm{QED}}+\Delta_{\text {weak }}+\Delta_{\mathrm{FSE}}\right] E_{F}(n S)$

Zemach radius:

$\Delta_{Z}=\frac{8 Z \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa}-1\right] \equiv-2 Z \alpha m_{r} R_{\mathrm{Z}}$
experimental value: $R_{Z}=1.082(37) \mathrm{fm}$
A. Antognini, et al., Science 339 (2013) 417-420

A. Antognini, et al., Annals Phys. 331 (2013) 127-145

2γ in μH HF

$$
\frac{E_{\mathrm{HFS}}(n S)}{E_{F}(n S)}=\frac{4 m}{Z(1+\kappa)} \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d} \nu}{2 \pi} \int \frac{\mathrm{~d} \mathbf{q}}{(2 \pi)^{3}} \frac{1}{Q^{4}-4 m^{2} \nu^{2}}\left\{\frac{\left(2 Q^{2}-\nu^{2}\right)}{Q^{2}} S_{1}\left(\nu, Q^{2}\right)+\frac{3 \nu}{M} S_{2}\left(\nu, Q^{2}\right)\right\}
$$

* polarizability contribution is given by the non-Born part of the spin-dependent amplitudes

$$
\begin{aligned}
& S_{1}\left(\nu, Q^{2}\right)=S_{1}^{\operatorname{Bor}}\left(\nu, Q^{2}\right)+\frac{2 \pi Z^{2} \alpha}{M} F_{2}^{2}\left(Q^{2}\right)+\frac{16 \pi Z^{2} \alpha M}{Q^{2}} \int_{0}^{x_{0}} \mathrm{~d} x \frac{g_{1}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}} \\
& \nu S_{2}\left(\nu, Q^{2}\right)=\nu S_{2}^{\operatorname{Bor}}\left(\nu, Q^{2}\right)+\frac{64 \pi Z^{2} \alpha M^{4} \nu^{2}}{Q^{6}} \int_{0}^{x_{0}} \mathrm{~d} x \frac{x^{2} g_{2}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{e}}\right)^{2}-i 0^{+}}
\end{aligned} \Delta_{2}-\Delta_{\mathrm{Pol}}
$$

using dispersion relation \& optical theorem

2γ in $\mu \mathrm{H}$ HFS

$$
\begin{aligned}
& I_{1}\left(Q^{2}\right)=\frac{2 M^{2}}{Q^{2}} \int_{0}^{x_{0}} \mathrm{~d} x g_{1}\left(x, Q^{2}\right) \\
& I_{1}^{\mathrm{non}-\mathrm{pol}}\left(Q^{2}\right)=I_{A}^{\text {non-pol }}\left(Q^{2}\right)=-\frac{1}{4} F_{2}^{2}\left(Q^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{\mathrm{pol}}= & \frac{Z \alpha m}{2 \pi(1+\kappa) M}\left[\delta_{1}+\delta_{2}\right]=\Delta_{1}+\Delta_{2} \\
\delta_{1}= & 2 \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left(\frac{5+4 v_{l}}{\left(v_{l}+1\right)^{2}}\left[4 I_{1}\left(Q^{2}\right)+F_{2}^{2}\left(Q^{2}\right)\right]-\frac{32 M^{4}}{Q^{4}} \int_{0}^{x_{0}} \mathrm{~d} x x^{2} g_{1}\left(x, Q^{2}\right)\right. \\
& \left.\times\left\{\frac{1}{\left(v_{l}+\sqrt{1+x^{2} \tau^{-1}}\right)\left(1+\sqrt{1+x^{2} \tau^{-1}}\right)\left(1+v_{l}\right)}\left[4+\frac{1}{1+\sqrt{1+x^{2} \tau^{-1}}}+\frac{1}{v_{l}+1}\right]\right\}\right) \\
\delta_{2}= & 96 M^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{3}} \int_{0}^{x_{0}} \mathrm{~d} x g_{2}\left(x, Q^{2}\right)\left\{\frac{1}{v_{l}+\sqrt{1+x^{2} \tau^{-1}}}-\frac{1}{v_{l}+1}\right\}
\end{aligned}
$$

* 2γ effect on the HFS is completely constrained by empirical information
* a ChPT calculation of the HFS in $\mu \mathrm{H}$ will put the reliability of both ChPT and dispersive calculations to the test
leading chiral logarithms motivate the relative order of the Zemach and polarizability corrections A. Pineda, Phys. Rev. C 67 (2003) 025201

[1] C. E. Carlson, et al., Phys. Rev. A 83 (2011) 042509
[2] C. E. Carlson, et al., Phys. Rev. A 78 (2008) 022517
[3] R. Faustov, et al., Proc. SPIE Int. Soc. Opt. Eng. 6165 (2006) oM
[4] A. Martynenko et al., Nucl. Phys. A 703 (2002) 365-377
[5] A. Martynenko, Phys. Rev. A 71 (2005) 022506

Chiral Dynamics (LO)

pion-production cross section:

J. M. Alarcon, V. Lensky, V. Pascalutsa,

Eur. Phys. J. C 74 (2014) 2852
Lamb shift

* improved cutoff behavior after adding the pion form factor $\mathrm{F}_{\text {ппу }}\left(\mathrm{Q}^{2}\right)$

$$
E_{\mathrm{HFS}}^{(\pi N \text { loops })}(2 S)=-0.23_{-0.23}^{+1.08} \mu \mathrm{eV}
$$

$$
\begin{aligned}
& \Delta_{1}=-18 \mathrm{ppm} \\
& \Delta_{2}=8 \mathrm{ppm}
\end{aligned}
$$

2γ with Δ-Excitation (NLO)

* the Δ-contribution to the Lamb shift is small compared to the leading order $\pi \mathrm{N}$-loops

$$
E_{\mathrm{LS}}^{(\Delta)}=0.65 \pm 0.49 \mu \mathrm{eV}
$$

- expected since $\beta_{M 1}$ is suppressed
J. M. Alarcon, V. Lensky, V. Pascalutsa,

Eur. Phys. J. C 74 (2014) 2852

* multipole ratios are small, the result is dominated by $\left(\mathrm{G}^{*} \mathrm{M}\right)^{2}$
$\rightarrow E_{\mathrm{HFS}}^{(\Delta)}(2 S)=-0.86 \pm 0.65 \mu \mathrm{eV} \begin{aligned} & \Delta_{1}=34 \mathrm{ppm} \\ & \Delta_{2}=-71 \mathrm{ppm}\end{aligned}$

Neutral-Pion Exchange (NLO)

* $\mathcal{O}\left(\alpha^{6}\right)$ contribution from off-forward scattering
* result for muonic hydrogen:

$$
E_{\mathrm{HFS}}^{\left(\pi^{0}\right)}(2 S)=0.02 \pm 0.04 \mu \mathrm{eV}
$$

$$
E_{2 S \mathrm{HFS}}^{\left(\pi^{0}\right)}=-(0.09 \pm 0.06) \mu \mathrm{eV}
$$

N. T. Huong, E. Kou, B. Moussallam, Phys. Rev. D 93 (2016) 114005

Summary: 2γ in HFS

$$
\begin{gathered}
E_{\mathrm{HFS}}^{(\pi N \text { loops })}(2 S)=-0.23_{-0.23}^{+1.08} \mu \mathrm{eV} \\
E_{\mathrm{HFS}}^{(\Delta)}(2 S)=-0.86 \pm 0.65 \mu \mathrm{eV} \\
E_{\mathrm{HFS}}^{\left.\pi^{0}\right)}(2 S)=0.02 \pm 0.04 \mu \mathrm{eV}
\end{gathered}
$$

$$
E_{\mathrm{HFS}}^{(\mathrm{pol})}(2 S)=-1.07_{-0.69}^{+1.26} \mu \mathrm{VV}
$$

predictions of the polarizability contribution to the HFS based on BChPT disagree with the dispersive results

\rightarrow changes the Zemach radius into $\mathrm{Rz}_{\mathrm{z}}=1.025 \mathrm{fm}$ (smaller) compared to $R_{z}=1.082 \mathrm{fm}(\mu \mathrm{H})$ and $R_{z}=1.022 \mathrm{fm}[1]$ or $R_{z}=1.065-1.108 \mathrm{fm}$ [2] (FF)
[1] R. Faustov, E. Cherednikova, A. Martynenko, Nuclear Phys. A 703 (2002) 365-377. [2] C. E. Carlson, et al., Phys. Rev. A 78 (2008) 022517

* empirical information on spin structure functions is limited (especially for g_{2})
* problem in BChPT? next step: include $\pi \Delta$-loops

* the low-Q region is very important

Nuclear Polarizability Effect at $(Z \alpha)^{6} \ln (Z \alpha)$

* off-forward 2γ :

$$
\operatorname{Im} \mathscr{M}\left(p_{t}^{2}\right) \approx-\frac{2 \pi \alpha m}{(1-\tau)^{7 / 2}} \sqrt{\tau} \arccos \sqrt{\tau} \alpha_{E 1}+\mathcal{O}(\tau)
$$

* $(Z \boldsymbol{\alpha})^{6} \ln (Z \boldsymbol{\alpha})$ effect in the Lamb shift is expressed entirely in terms of the static electric dipole polarizability

$$
E_{n S}=-\frac{4\left(Z \alpha m_{r}\right)^{4} \alpha \alpha_{E 1}}{n^{3}} \ln \frac{Z \alpha m_{r}}{2 n m}
$$

- no contribution from the magnetic dipole polarizability or the lowest order spin polarizabilities, i.e., not present in the HFS

$(Z \alpha)^{6} \ln (Z \alpha)$ Polarizability Effect in $\mu \mathrm{H}$

PDG 2014:
$\alpha_{E 1}=11.2 \pm 0.4 \times 10^{-4} \mathrm{fm}^{3}$

* off-forward 2γ :
$E_{\mathrm{LS}}^{\left(\alpha^{6} \ln \alpha\right)}(\mu \mathrm{H})=-0.79 \pm 0.03 \mu \mathrm{eV}$
* forward 2γ :
V. Lensky
$E_{\mathrm{LS}}^{\left(\alpha^{5}\right)}=-8.2_{-2.5}^{+1.2} \mu \mathrm{eV}$
J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852
* total Lamb shift:
$E_{\mathrm{LS}}^{\mathrm{th}}(\mu \mathrm{H})=206.0668(25)-5.2275(10)\left(R_{p} / \mathrm{fm}\right)^{2}$
A. Antognini et al., Annals Phys. 331 (2013) 127-145
\because

$(Z \alpha)^{6} \ln (Z \alpha)$ Polarizability Effect in muonic atoms: $\mu^{3} \mathrm{H}, \mu^{3} \mathrm{He}^{+}$and $\mu^{4} \mathrm{He}^{+}$

TABLE II: Summary of our numerical results for the polarizability contribution to the Lamb shift of light muonic atoms.

	$\mu^{3} \mathrm{H}$	$\mu^{3} \mathrm{He}^{+}$	$\mu^{4} \mathrm{He}^{+}$
$M[\mathrm{GeV}]$	$2.808921112(17)[1]$ $\alpha_{E 1}\left[\mathrm{fm}^{3}\right]$	$2.808391586(17)[1]$ $0.139(2)[2]$	$3.727379378(23)[1]$ $0.0683(8)(14)[2]$
presently accounted for nucl. pol. effect [meV]	$\delta_{\text {pol }}^{\mathrm{A}}=-0.476(10)(13)[3]$	$\delta_{\text {pol }}^{\mathrm{A}}=-4.16(06)(16)[3]$	$\delta_{\text {pol }}^{\mathrm{A}}=-2.47(15)[4]$
this work: $E_{L S}^{\left(\alpha^{6} \ln \alpha\right)}[\mathrm{meV}]$	$-0.128(2)$	$-1.950(65)$	$-0.925(22)$

* total Lamb shift in $\mu^{4} \mathrm{He}^{+}$[in meV]: $[5]$

$$
E_{\mathrm{LS}}\left(\mu^{4} \mathrm{He}^{+}\right)=1572.186(205)-106.358(7)\left(R_{\alpha} / \mathrm{fm}\right)^{2}
$$

[1] P. J. Mohr, et al., Rev. Mod. Phys. 84 (2012) 1527; P. J. Mohr, et al., arXiv:1507.07956 (2015).
[2] I. Stetcu, et al., Phys. Rev. C 79 (2009) 064001.
[3] N. Nevo Dinur, et al., Phys. Lett. B 755 (2016) 380.
[4] C. Ji, et al., Phys. Rev. Lett. 111 (2013) 143402.
[5] M. Diepold, et al., arXiv:1606.05231 [physics.atom-ph].

Summary \& Conclusions

* the finite-size effects are up to "soft" effects, $\mathrm{Q} \sim \boldsymbol{\alpha} \mathrm{m}_{\mathrm{r}}$, expandable in the moments of charge distribution
* (forward 2γ) polarizability contribution to the HFS:

$$
E_{\mathrm{HFS}}^{(\mathrm{pol})}(2 S)=-1.07_{-0.69}^{+1.26} \mu \mathrm{eV}
$$

- predictions of the polarizability contribution to the HFS based on BChPT disagree with the dispersive results
\rightarrow changes the Zemach radius into $\mathrm{Rz}_{\mathrm{z}}=1.025 \mathrm{fm}$ (smaller)
* $(Z \boldsymbol{\alpha})^{6} \ln (Z \alpha)$ nuclear polarizability effect in the Lamb shift of muonic atoms is non-negligible

$$
E_{n S}=-\frac{4\left(Z \alpha m_{r}\right)^{4} \alpha \alpha_{E 1}}{n^{3}} \ln \frac{Z \alpha m_{r}}{2 n m}
$$

Thank you for your attention !!!

