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Finite-Size effects by dispersive technique


• Breakdown of the expansion in charge radii (de Rújula scenario) 


Compton scattering sum rules


Proton polarizability effects in the hyperfine splitting of muonic 
hydrogen


• pion-nucleon loops (LO ChPT)


• Δ-exchange (NLO ChPT)


• neutral-pion exchange (NLO ChPT)


����(Z!)6 ln(Z!) polarizability contribution in light muonic atoms          

    from off-forward two-photon exchange

Outline

2HC2NP, Tenerife, Spain, 30.09.2016 Franziska Hagelstein, Uni Mainz

��



Proton Radius Puzzle
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[RCODATA 2010
E = 0.8775(51) fm]

seven standard-deviation discrepancy (7σ) !!!
[RµH

E = 0.84087(39) fm]
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Lamb shift 

discrepancy: 


310 μeV
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Proton Radius Puzzle: 
Possible Explanations

Franziska Hagelstein, Uni Mainz

Lamb shift 
difference of  
310 ± 2 μeV

eH theory wrong ?μH experiment wrong ?

μH theory wrong ?

- 2γ corrections

- missing QED or EW corrections

- soft hadronic corrections

eH experiment 

+ ep scattering wrong ? 

- R∞

- 2γ corrections

- low-Q2 extrapolation

Why do we observe 
different radii ?

BSM ?

HC2NP, Tenerife, Spain, 30.09.2016 



subleading effects of 
proton structure 

proposed to resolve 
the puzzle

�V (2�) = �V (2�)
elastic

+ �V (2�)
polariz.

310µeV
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�Eth
LS = 206.0668(25)� 5.2275(10) (RE/fm)2

Theory of  
μH Lamb Shift

numerical values reviewed in: A. Antognini et al., Annals Phys. 331 (2013) 127-145

theory uncertainty:

2.5µeV
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Assuming 
ChPT is working, it should be 

best applicable to atomic systems, 

where the energies are very small !
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Lamb shift: 

6

NLO becomes appreciable in μH wave function 
at the origin
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Finite-Size Effects

HFS:

Fermi - Energy:


with Bohr radius

wi


EF (nS) =
8
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Why muonic atoms ?
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Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift
in moments of charge distribution

Franziska Hagelstein and Vladimir Pascalutsa
Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany

(Received 13 February 2015; published 20 April 2015)

We quantify a limitation in the usual accounting of the finite-size effects, where the leading [(Zα)4] and
subleading [(Zα)5] contributions to the Lamb shift are given by the mean-square radius and the third Zemach
moment of the charge distribution. In the presence of any nonsmooth behavior of the nuclear form factor at
scales comparable to the inverse Bohr radius, the expansion of the Lamb shift in the moments breaks down. This
is relevant for some of the explanations of the “proton size puzzle.” We find, for instance, that the de Rújula
toy model of the proton form factor does not resolve the puzzle as claimed, despite the large value of the third
Zemach moment. Without relying on the radii expansion, we show how tiny, milli-percent (pcm) changes in the
proton electric form factor at a MeV scale would be able to explain the puzzle. It shows that one needs to know
all the soft contributions to the proton electric form factor to pcm accuracy for a precision extraction of the proton
charge radius from atomic Lamb shifts.

DOI: 10.1103/PhysRevA.91.040502 PACS number(s): 31.30.jr, 14.20.Dh, 13.40.Gp, 11.55.Fv

I. INTRODUCTION

The proton structure is long known to affect the hydrogen
spectrum, predominantly by an upward shift of the S levels
expressed in terms of the root-mean-square (rms) radius,

RE =
√

⟨r2⟩E, ⟨rN ⟩E ≡
∫

dr⃗ rNρE(r⃗), (1)

of the proton charge distribution ρE . At leading order (LO)
in the fine-structure constant α, the nth S level is shifted by
(cf. [1])

#EnS(LO) = 2(Zα)4m3
r

3n3
R2

E, (2)

where Z = 1 for the proton, mr is the reduced mass. The
proton charge radius has thus been extracted from the hydrogen
(eH) and muonic-hydrogen (µH) Lamb shifts, with rather
contradictory results:

REp(eH) = 0.8758(77) fm [2], (3a)

REp(µH) = 0.84087(39) fm [3,4]. (3b)

The eH value is backed up by the extractions from electron-
proton (ep) scattering [5,6], albeit with a notable exception [7].

The next-to-leading order (NLO) effect of the nuclear
charge distribution is given by [8]

#EnS(NLO) = − (Zα)5m4
r

3n3
R3

E(2), (4)

with RE(2) = 3
√

⟨r3⟩E(2) the Friar radius and

⟨r3⟩E(2) =
∫

dr⃗ ρE(r⃗ )
∫

dr⃗ ′ |r⃗ − r⃗ ′|3 ρE(r⃗ ′) (5)

the third Zemach moment. Other α5 effects of proton structure,
such as polarizabilities, play a lesser role in both normal and
muonic hydrogen, and are not in anyway of relevance to the
present discussion of finite-size effects.

A Lorentz-invariant definition of the above moments is
given in terms of the electric form factor (FF), GE(Q2), as

⟨r2⟩E = −6
d

dQ2
GE(Q2)

∣∣∣∣
Q2=0

, (6a)

⟨r3⟩E(2) = 48
π

∫ ∞

0

dQ

Q4

{
G2

E(Q2) − 1 + 1
3
Q2⟨r2⟩E

}
. (6b)

At the current level of precision, the eH Lamb shift sees only
the LO term, while in µH the NLO term becomes appreciable.
An immediate resolution of the eH vs µH discrepancy (also
known as the proton size puzzle) was suggested by de
Rújula [9], whose toy model for proton charge distribution
yielded a large Friar radius, capable of providing the observed
µH Lamb shift using the RE value from eH. Shortly after, this
model was shown to be incompatible with the empirical FF
GE extracted from ep scattering [10,11]. In this work we find
that the µH Lamb shift in de Rújula’s model is not described
correctly by the standard formulas of Eqs. (2) and (4). The
correct result involves an infinite series of moments, and it
does not provide any significant reduction of the discrepancy in
that model. We shall consider a different scenario of mending
the discrepancy by a small change in the proton FF, using the
corrected formalism.

II. LAMB SHIFT: TO EXPAND OR NOT

Our main observation is that the standard expansion in the
moments is only valid provided the convergence radius of the
Taylor expansion of GE in Q2 is much larger than the inverse
Bohr radius of the given hydrogen-like system. In other words,
for Q2 ∼ (Zαmr )2, the electric FF must be representable by a
quickly convergent power series.

To see this we write the electric FF correction to the
Coulomb potential (−Zα/r) as follows:

VFF(r) = Zα

πr

∫ ∞

t0

dt

t
e−r

√
t Im GE(t), (7)

where Im GE is the discontinuity in the FF across the branch
cuts in the time-like region. This potential is derived by taking

1050-2947/2015/91(4)/040502(5) 040502-1 ©2015 American Physical Society
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Comment on “Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift
in moments of charge distribution”

J. Arrington
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 15 December 2015; published 23 February 2016)

In a recent paper, Hagelstein and Pascalutsa [F. Hagelstein and V. Pascalutsa, Phys. Rev. A 91, 040502 (2015)]
examine the error associated with an expansion of proton structure corrections to the Lamb shift in terms of
moments of the charge distribution. They propose a small modification to a conventional parametrization of the
proton’s charge form factor and show that this can resolve the proton radius puzzle. However, while the size of
the bump they add to the form factor is small, it is large compared to the total proton structure effects in the initial
parametrization, yielding a final form factor that is unphysical. Reducing their modification to the point where
the resulting form factor is physical does not allow for a resolution of the radius puzzle.

DOI: 10.1103/PhysRevA.93.026501

In Ref. [1] Hagelstein and Pascalutsa propose a possible
explanation to the proton radius puzzle [2,3], noting that
the error associated with the expansion of the Lamb shift
in terms of the moments of the charge radius, ⟨r2⟩ and
⟨r3⟩, can be large in the presence of sharp structures in
the form factors. They demonstrate that a small, narrow
contribution to the proton’s charge form factor at very low
Q2 could explain the discrepancy in the extracted rms charge
radius from the muonic hydrogen Lamb shift measurements
[4,5]. Their example involves a narrow peak added to a
standard parametrization of the charge form factor GE(Q2)
at Q2 values that significantly impact the Lamb shift in
muonic hydrogen [4,5]. The modification is too high in Q2

to significantly modify the Lamb shift in electronic hydrogen
[6,7], but below the Q2 region where electron scattering
data exist and can be used to extract the charge radius
[8–12].

Their proposed modification to GE is very small, with
a peak contribution to GE of 3 × 10−5, narrowly localized
around Q2 ≈ 10−6 GeV2. However, while the change in GE

is extremely small, that does not mean that this is a minor
modification to the proton form factor. This modification
should not be compared to GE , which is close to unity at
low Q2, but should should be compared to GE − 1, which
represents the deviation of the form factor from that of a
point proton: GE(Q2) = 1. For the form factor parametrization
[13] used in [1], |GE − 1| = 3.5 × 10−6 for Q2 ≈ 10−6 GeV2.
The proposed modification, while small compared to GE , is
roughly ten times larger than the total finite-size effect in [13].
Because this bump is added to the form factor, their modified
form factor is unphysical, yielding GE > 1 as shown in Fig. 1.

Based on Fig. 3 of Ref. [1], reducing the size of the
modification by an order of magnitude to avoid GE > 1
would not provide a significant improvement in the agreement
between eH and µH Lamb shift results. Similar features in
the region of the eH sensitivity peak, Q2 ≈ 10−10 GeV2,
would have to be 105 times smaller to avoid exceeding the full

FIG. 1. Finite structure correction to the GE , GE(Q2) − 1, vs Q

for the parametrization of Ref. [13] (solid line) and including the
modification of Ref. [1] (dashed line).

finite-size correction from [13]. Even if a smaller (or negative)
modification were made, such that the resulting GE would not
be unphysical, it would most likely be inconsistent with the
constraints from analyticity of the form factors [14].

While the bump added to GE in [1] brings the Lamb shift
extractions into agreement after correcting for the error made
when expanding in moments of the charge radius, the resulting
form factor is unphysical. Simply reducing or broadening the
bump near the peak of sensitivity for the µH Lamb shift
measurements cannot provide a resolution to the discrepancy.
It seems unlikely that it is possible to find another such
modification that resolves the discrepancy and is consistent
with the constraints from the analyticity of the form factors.

This work was supported by the U.S. Department of Energy,
Office of Science, Office of Nuclear Physics, under Contract
No. DE-AC02-06CH11357.

[1] F. Hagelstein and V. Pascalutsa, Phys. Rev. A 91, 040502
(2015).

[2] R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, Annu. Rev.
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Reply to “Comment on ‘Breakdown of the expansion of finite-size corrections to the hydrogen Lamb
shift in moments of charge distribution’ ”

Franziska Hagelstein and Vladimir Pascalutsa
Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany

(Received 22 January 2016; published 23 February 2016)

To comply with the critique of the preceding Comment [J. Arrington, Phys. Rev. A 93, 026501 (2016)], we
consider another modification of the proton electric form factor, which resolves the proton-radius puzzle. The
proposed modification satisfies all the consistency criteria put forward in the Comment and yet has an impact on
the puzzle similar to that of the original paper [F. Hagelstein and V. Pascalutsa, Phys. Rev. A 91, 040502 (2015)].
We thus disagree with the concluding statement of the Comment: To the contrary, it is not difficult to find an
ad hoc modification of the form factor at low Q that resolves the discrepancy and is consistent with analyticity
constraints. We emphasize once again that we do not consider such an ad hoc modification of the proton form
factor to be a solution of the puzzle until a physical mechanism for it is found.

DOI: 10.1103/PhysRevA.93.026502

The formalism developed in Ref. [1] was illustrated by a
modification of the proton electric form factor (FF) GE , which
could reconcile the discrepancy in the various proton-radius
extractions. As is correctly pointed out in the Comment, this
modification is inconsistent with the analyticity constraints.
The latter require that all the singularities of GE(Q2) lie on
the negative Q2 axis, whereas the modification has a pole
near the positive axis resulting in a resonancelike structure, as
shown in Fig. 1 (red dashed curve) as well as in the figure of
the Comment.

Here we present a modified GE , shown in Fig. 1 (blue dotted
curve), that complies with the consistency requirements put
forward in the Comment and is yet resolving the discrepancy
in exactly the same way as described in the original paper.
The rest of this Reply can be viewed as the revised Sec. III of
Ref. [1].

III. RESOLVING THE PUZZLE

We assume the electric FF to separate into a smooth GE

and a nonsmooth part G̃E such that

GE(Q2) = GE(Q2) + G̃E(Q2). (20)

For the smooth part we take a well-known parametrization that
fits the ep data, while for the nonsmooth one we take

G̃E(Q2) =
AQ2

0Q
2[Q2 + ϵ2]

[
Q2

0 + Q2
]4 , (21)

where A, ϵ, and Q0 are real parameters. The poles of this
function are at negative Q2 (timelike region) and hence it
obeys the analyticity constraint.

According to Fig. 2, in order to make a maximal impact on
the puzzle, the fluctuation G̃E must be located at the extrema
of w(Q) in Eq. (19a)1 around either the eH or µH inverse Bohr
radius. Here we only consider the latter case and set one of the

1Equation numbers below (20) refer to the equations in Ref. [1].

position parameters to the MeV scale:

Q0 = 1.6 MeV. (22)

This choice conditions the choice of the smooth part GE , in
case one wants to solve the puzzle. Indeed, since with this Q0
the nonsmooth part affects mostly the µH result, the smooth
part must have a radius consistent with the eH value. We
therefore adopt the chain-fraction fit of Arrington and Sick
[2]:

GE(Q2) = 1

1 + 3.478Q2

1− 0.140Q2

1− 1.311Q2

1+ 1.128Q2

1−0.233Q2

. (23)

Fixing Q0, the other two parameters of G̃E , A and ϵ, are
fitted by requiring our FF to yield the empirical Lamb shift
contribution, in both normal and muonic hydrogen, i.e.,

E
FF(empir.)
2P−2S (eH) = −0.620(11) neV, (24a)

E
FF(empir.)
2P−2S (µH) = −3650(2) µeV. (24b)

Note that these are not the experimental Lamb shifts, but
only the finite-size contributions, described by Eqs. (2) and (4),
with the corresponding empirical values for the radii. In the eH
case we have taken the CODATA value of the proton radius,
Eq. 3(a), which is obtained as an weighted average over several
hydrogen spectroscopy measurements, and RE(2) = 2.78(14)
fm [3]. In the µH case we have taken the values from Ref. [4],
hence Eq. 3(b) for the radius and the same value as the above
for RE(2).

Figure 3 shows at which A and ϵ our FF complies with either
the eH (blue dot-dashed curve) or µH (red solid curve) Lamb
shift. For A = 1.2 × 10−4 MeV2 and ϵ = 0.143 MeV, our FF
describes them both, thus resolving the puzzle (the description
of the ep data by GE is not affected by the addition of G̃E).

Figure 2 shows the fitted G̃E , and the weighting function
(17) for eH and µH. The modification thus enhances the FF
in the region below the onset of ep data (Q < 63 MeV). The
overlap between the correction and the positive contribution
of the µH weighting function is clearly dominating, resulting

2469-9926/2016/93(2)/026502(3) 026502-1 ©2016 American Physical Society
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0
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2)
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wave functions:
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GE

old GE

new GE

0.2 0.5 1.0 2.0
6

4

2

0

2

Q MeV

10
5

G
E

1
FIG. 1. Plot of GE(Q2) − 1 and GE(Q2) − 1 as a function of Q.

The solid black curve shows the empirical FF from Ref. [2]. The
dashed red curve shows the modified FF from Ref. [1]. The dotted
blue curve is the modified FF of this work.

in the desired matching to the experimental Lamb shifts given
in Eq. (24).

We emphasize that the magnitude of the change in the FF
is extremely tiny,

|G̃E/GE| < 3 × 10−6, (25)

for any positive Q2. The Comment suggests that a comparison
of our correction to the deviation of the FF from unity is more
fair. For our newly proposed G̃E , we find this ratio to be

|G̃E/(GE − 1)| < 0.57,

which does not seem unreasonable either. Furthermore, our
new FF modification satisfies another criteria put forward in
the Comment, namely, GE(Q2) < 1 for Q2 > 0.

Nevertheless, the modification obviously has a profound
effect on the µH Lamb shift. Its effect on the second and third

106 GE Q2

104 w Q , eH

104 w Q , ΜH

1 aeH 1 aµH ep data

106 GE Q2

104 w Q , eH

104 w Q , µH

10 7 10 5 0.001 0.1 10

6

4

2

0

2

4

Q GeV

FIG. 2. Correction G̃E(Q2) for Q0 = 1.6 MeV, A = 1.2 ×
10−4 MeV2, and ϵ = 0.143 MeV (solid green curve) and the
weighting function w(Q) for eH (blue dotted curve) and µH (red
dashed curve) as functions of Q. The dash-dotted line indicates the
onset of electron-proton scattering data.

µH

eH

0.10 0.12 0.14 0.16 0.18
1.10

1.15

1.20

1.25

1.30

MeV

A
10

4
M

eV
2

FIG. 3. Parameters of G̃E for which the eH and µH Lamb shifts
of Eq. (24) are reproduced. For fixed Q0 = 1.6 MeV, we chose A =
1.2 × 10−4 MeV2 and ϵ = 0.143 MeV, as indicated by the dashed
lines.

moments is given by

⟨̃r2⟩E ≡ −6
d

dQ2
G̃E(Q2)

∣∣∣∣
Q2=0

= −6Aϵ2

Q6
0

, (26)

⟨̃r3⟩E ≡ 48
π

∫ ∞

0

dQ

Q4

{
G̃E(Q2) + 1

6
⟨̃r2⟩EQ2

}

= 15A
(
Q2

0 − 7ϵ2)/2Q7
0. (27)

The numerical values of these moments, together with their
desired effect on the Lamb shift and the nonexpanded Lamb
result, are given in Table I. One can see that the expansion
in moments breaks down for the modified FF contribution
to µH.

In conclusion, we have reworked the low-Q modifica-
tion of the empirical proton FF GE such that it complies
with the criteria put forward in the Comment. The original
(“old”) and the reworked (“new”) modifications are shown

TABLE I. Lamb shift and moments corresponding to our
model FF, with Q0 = 1.6 MeV, A = 1.2 × 10−4 MeV2, and ϵ =
0.143 MeV.

Eq. GE G̃E GE

⟨r2⟩E (fm2) (6a) (0.9014)2 −(0.1849)2 (0.8823)2

⟨r3⟩E (fm3) (12) (1.052)3 (8.539)3 (8.544)3

Lamb shift, expanded (11)

E
FF(1)
2P−2S(eH) (neV) −0.6569 0.0371 −0.6198

E
FF(1)
2P−2S(µH) (µeV) −4202 11542 7340

Lamb shift, exact (19a)

E
FF(1)
2P−2S(eH) (neV) −0.6569 0.0370 −0.6200

E
FF(1)
2P−2S(µH) (µeV) −4202 552 −3650

026502-2

HC2NP, Tenerife, Spain, 30.09.2016 



the finite-size effects are not always expandable in the moments of 
charge distribution


• convergence radius of the Taylor expansion of GE (Q2) has to be much 
larger than the inverse Bohr radius (Z!mr) of the given hydrogen-like 
system


a tiny non-smoothness of the electric form factor at a MeV scale would 
be able to explain the puzzle


• one needs to know all the “soft” (below several MeV) contributions to 
the proton electric FF to high accuracy


- missing standard model effects, e.g., muon-decay correction?


- light particles beyond the standard model

8 Franziska Hagelstein, Uni Mainz

with wE(Q) = � 4

⇡
(Z↵)5m4

r Q
2 (Z↵mr)2 �Q2

[(Z↵mr)2 +Q2]4
EFF(1)

2P�2S =

Z 1

0
dQwE(Q)GE(Q

2)

Lamb Shift: Expand or not ‽

HC2NP, Tenerife, Spain, 30.09.2016 



Structure Effects through 2γ

9

“blob” corresponds to doubly-virtual Compton scattering (VVCS): 

proton structure effects at subleading orders arise through multi-photon 
processes

elastic contribution:             

finite-size recoil, 


3rd Zemach moment (Lamb shift),

Zemach radius (Hyperfine splitting)                     

polarizability contribution

Franziska Hagelstein, Uni MainzHC2NP, Tenerife, Spain, 30.09.2016 

forward
two-photon exchange (2γ)

Tµ⌫(q, p) =

✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q

2) +
1

M2

✓
pµ � p · q

q2
qµ

◆✓
p⌫ � p · q

q2
q⌫
◆
T2(⌫, Q

2)

� 1

M
�µ⌫↵q↵ S1(⌫, Q

2)� 1

M2

�
�µ⌫q2 + qµ�⌫↵q↵ � q⌫�µ↵q↵

�
S2(⌫, Q

2)
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Proton Structure in e-p Scattering

Franziska Hagelstein, Uni Mainz

N

γ∗

N

elasticγ∗

N

X

inelastic

photoabsorption 

cross section:

elastic + inelastic 

= Born + non-Born 

proton structure functions:
f1(x,Q

2), f2(x,Q
2), g1(x,Q

2), g2(x,Q
2)

Lamb shift Hyperfine splitting 

(HFS)

f

el
1 (x,Q2) =

1

2
G

2
M (Q2) �(1� x)

f

el
2 (x,Q2) =

1

1 + ⌧

⇥
G

2
E(Q

2) + ⌧G

2
M (Q2)

⇤
�(1� x)

g

el
1 (x,Q

2) =
1

2
F1(Q

2)GM (Q2) �(1� x)

g

el
2 (x,Q

2) = �⌧

2
F2(Q

2)GM (Q2) �(1� x)

elastic structure functions:

Sachs form factors: GE, GM

Dirac & Pauli form factors: F1, F2 

↵

E1(Q
2) + �

M1(Q
2) =

8↵M

Q

4

Z
x0

0
dxx f1(x,Q

2)

proton polarizabilities:

Compton scattering (CS):

photon energy and virtuality: 

Bjorken variable: x = Q

2
/2M⌫

⌫, Q2

⌧ = Q2/4M2

HC2NP, Tenerife, Spain, 30.09.2016 
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CS Amplitudes & Structure Functions

Franziska Hagelstein, Uni Mainz
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optical theorem:

unitarity
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2
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dispersion relations:

analyticity, crossing symmetries
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Compton Scattering Sum Rules 

12

Compton scattering (CS) amplitudes in terms of integrals of total 
photoabsorption cross sections 

• dispersion relations:

low-energy expansion of CS amplitudes: 
1

4⇡
T1(⌫, 0) = �Z2↵

M
+ (↵E1 + �M1)⌫

2 +
⇥
↵E1⌫ + �M1⌫ + 1/12 (↵E2 + �M2)

⇤
⌫4 +O(⌫6)

1

4⇡
S1(⌫, 0) = �↵{2

2M
+M�0⌫

2 +M �̄0⌫
4 +O(⌫6)

HC2NP, Tenerife, Spain, 30.09.2016 
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M
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Z 1

0
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�abs(⌫0)

⌫0 2 � ⌫2 � i0+

S1(⌫, 0) =
M

⇡

Z 1

0
d⌫0

⌫0��abs(⌫0)

⌫0 2 � ⌫2 � i0+



Spin-independent CS amplitude  

13

where W ¼
ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2

k¼−2
CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þmπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):

σReggeðWÞ ¼ c1Wp1 þ c2Wp2 : ð13Þ

For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.

TABLE I. Fitting parameters for the resonances (11) obtained
for fits I and II.

M (MeV) Γ (MeV) AðμbÞ
Fit I 1213.6% 0.1 117.6% 1.9 522.7% 17.0

1412.8% 5.9 82.8% 26.8 40.1% 33.8
1496.0% 2.8 136.5% 11.1 161.8% 32.4
1649.4% 4.1 135.3% 15.3 83.2% 22.7
1697.5% 2.6 18.8% 12.6 18.2% 26.0
1894.3% 15.6 302.0% 41.3 31.5% 8.7

Fit II 1214.8% 0.1 99.0% 1.1 502.3% 12.3
1403.9% 6.2 118.2% 19.6 51.8% 23.8
1496.9% 2.1 133.4% 9.4 162.0% 29.2
1648.0% 4.4 135.2% 15.9 83.6% 23.8
1697.2% 2.7 21.2% 13.2 18.7% 25.9
1893.7% 17.4 323.5% 45.3 31.7% 9.1

TABLE II. Fitting parameters for the background (12) obtained
for fits I and II in the resonance region.

Fit I Fit II

C−2 ðμb GeV2Þ 0.44% 0.22 0.26% 0.17
C−1 ðμb GeVÞ −11.06% 3.69 −7.97% 2.89
C0 ðμbÞ 74.38% 20.16 57.27% 16.09
C1 ðμb GeV−1Þ 22.18% 37.71 54.26% 31.07
C2 ðμb GeV−2Þ 37.69% 21.48 19.51% 18.17

EVALUATION OF THE FORWARD COMPTON SCATTERING … PHYSICAL REVIEW D 92, 074031 (2015)

074031-3

c1 ¼ 62.0" 8.1; c2 ¼ 126.3" 4.3;

p1 ¼ 0.184" 0.032; p2 ¼ −0.81" 0.12:

We also tried the high-energy parameterization used in [8]
but obtained a worse fit and abandoned it.
The fitting was done with the help of the SCIPY

package for PYTHON. The resulting chi-square
evaluated as

χ2 ¼
X

i

ðσfiti − σexpi Þ2

ðΔσexpi Þ2
ð14Þ

is of about the same quality for the two fits. In the
intermediate region, we obtain χ2=point ¼ 0.7 for fit I
and χ2=point ¼ 0.6 for fit II. In the high-energy region,
χ2=point ¼ 1.2 in both cases. Again, the low-energy region
is not fitted but is borrowed from, respectively, the MAID

and SAID analyses.

FIG. 2 (color online). Our evaluation of Re f based on the two fits of the photoabsorption cross section compared with previous
evaluations [5,6,9]. The experimental data point is from Ref. [10].

TABLE III. Empirical evaluations of sum rules and verification of the Kramers-Kronig relation for the proton.

Baldin Fourth order Sixth ordera Re f(2.2 GeV)
(10−4 fm3) (10−4 fm5) (10−4 fm7) (μb GeV)

Damashek-Gilman [5] 14.2" 0.3 −11.5b
Armstrong et al. [6] −10.8
Schröder [7] 14.7" 0.7 6.4
Babusci et al. [8] 13.69" 0.14
A2 Collaboration [9] 13.8" 0.4 −10.5c
MAID (π chan.) [12] 11.63d

SAID (π chan.) [14] 11.5e

This work
Fit I 14.29" 0.27 6.08" 0.12 4.36" 0.09 −10.35
Fit II 13.85" 0.22 6.01" 0.11 4.42" 0.08 −9.97
Experiment
Alvensleben et al. [10] −12.3" 2.4

aR∞
ν0

dνν−6σabsðνÞ=ð2π2ÞbInterpolated value.
cBased on the cross-section parametrization from [21].
dIntegrated from threshold to νmax ¼ 1.663 GeV.
eIntegrated from threshold to νmax ¼ 2 GeV.

GRYNIUK, HAGELSTEIN, AND PASCALUTSA PHYSICAL REVIEW D 92, 074031 (2015)

074031-4

O. Gryniuk et al., Phys. Rev. D 92 (2015) 074031; ibid. 94 (2016) 034043

↵E1 + �M1 =
1

2⇡2

Z 1

⌫0

d⌫
�abs(⌫)

⌫2

αE1 + βM1 = 14.0(2) × 10-4 fm3

Baldin sum rule:

HC2NP, Tenerife, Spain, 30.09.2016 

PDG 2014: 
αE1 + βM1 = 13.7(6) × 10-4 fm3 

BChPT:  
αE1 + βM1 = 14.0(7) × 10-4 fm3 

 V. Lensky, et al., Phys. Rev. C 90 (2014) 055202 
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where W ¼
ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2
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CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þmπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):
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For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.
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is of about the same quality for the two fits. In the
intermediate region, we obtain χ2=point ¼ 0.7 for fit I
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Babusci et al. [8] 13.69" 0.14
A2 Collaboration [9] 13.8" 0.4 −10.5c
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PDG 2014: 
αE1 + βM1 = 13.7(6) × 10-4 fm3 

BChPT:  
αE1 + βM1 = 14.0(7) × 10-4 fm3 

 V. Lensky, et al., Phys. Rev. C 90 (2014) 055202 
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At the next two orders, one finds the FSP sum rules:

γ0 ¼ −
1

4π2

Z
∞

ν0

dν
ΔσabsðνÞ

ν3
; ð8Þ

γ̄0 ¼ −
1

4π2

Z
∞

ν0

dν
ΔσabsðνÞ

ν5
: ð9Þ

In what follows, we assess the empirical helicity-
difference cross section and evaluate gðνÞ, IGDH, γ0, γ0
from the above integrals.

III. FIT OF THE POLARIZED
PHOTOABSORPTION CROSS SECTION

Webeginwith performing a smooth fit of the experimental
helicity-difference cross section of total photoabsorption on
the proton. The fitting procedure is similar to the one applied
for the unpolarized photoabsorption cross section σabs [4].
The integration domain is divided into three regions:

(i) low energy, ν ∈ ½ν0; ν1Þ;
(ii) medium energy, ν ∈ ½ν1; 2 GeVÞ;
(iii) high energy, ν ∈ ½2 GeV;∞Þ;

where ν0 (≈0.145 GeV) and ν1 (≈0.309 GeV) are thresholds
for the single- and double-pion photoproduction, respec-
tively. A smooth transition between the regions is implied.
In the low-energy region, we use the cross sections

generated by MAID [22] (single-pion production only).
Unfortunately, the MAID analysis does not provide any
indication of its uncertainty. In our error estimate, we
judiciously apply a 2% uncertainty to the MAID values.
In the medium-energy region, a fit to the data from

the MAMI (Mainz) and ELSA (Bonn) experiments of the
GDH and A2 collaborations [8–11] is applied in the form of
a sum of six nonrelativistic Breit-Wigner resonances,

ΔσresðWÞ ¼
X6

i¼1

Ai

1
4Γ

2
i

ðW −MiÞ2 þ 1
4Γ

2
i
; ð10Þ

where W ¼
ffiffiffi
s

p
is the invariant mass of the γp system.

Widths (Γ), masses (M), and couplings (A) are treated as
free fitting parameters. The resulting values are given in
Table II.
In the high-energy region, a function of the following

Regge form is used:

ΔσReggeðWÞ ¼ C1Wp1 þ C2Wp2 : ð11Þ

For W in GeV and the cross section in μb, we use the
following fixed parameters [13]:

C1 ¼ −17.05& 2.85; C2 ¼ 104.7& 14.5;

p1 ¼ −1.16& 0.46; p2 ¼ −3.32& 0.44:

The cross section fitting and the sum rule evaluations
are accomplished with the help of the SCIPY package

TABLE II. Fitted resonances parameters entering Eq. (10).

i Mi (MeV) Γi (MeV) Ai · 14Γ
2
i (nb · GeV2)

1 1210.2 119.3 1047.3
2 1405.0 493.5 −9008.4
3 1460.8 239.8 1964.0
4 1585.5 111.7 −226.9
5 1616.4 360.7 3829.3
6 1752.5 105.0 −103.4

FIG. 1. Fit of experimental data for the helicity-difference cross section of total photoproduction on the proton. The solid curve shows
our fit. The other curves, according to the legend, show the Born contribution (single-pion production on a pointlike proton), as well as
the results of MAID [22] and SAID [25] multipole analyses.
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Forward spin polarizability sum rules:

O. Gryniuk et al., Phys. Rev. D 92 (2015) 074031; ibid. 94 (2016) 034043

0.0 0.5 1.0 1.5 2.0

�6

�4

�2

0

2

4

Reg
Img
MAMI + ELSA

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

�6

�4

�2

0

2

cPT Reg
cPT Img

⌫ [GeV]

g
[µ

b
·G

eV
]

HC2NP, Tenerife, Spain, 30.09.2016 

BChPT: 
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4π2
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γ̄0 ¼ −
1

4π2

Z
∞
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In what follows, we assess the empirical helicity-
difference cross section and evaluate gðνÞ, IGDH, γ0, γ0
from the above integrals.

III. FIT OF THE POLARIZED
PHOTOABSORPTION CROSS SECTION

Webeginwith performing a smooth fit of the experimental
helicity-difference cross section of total photoabsorption on
the proton. The fitting procedure is similar to the one applied
for the unpolarized photoabsorption cross section σabs [4].
The integration domain is divided into three regions:

(i) low energy, ν ∈ ½ν0; ν1Þ;
(ii) medium energy, ν ∈ ½ν1; 2 GeVÞ;
(iii) high energy, ν ∈ ½2 GeV;∞Þ;

where ν0 (≈0.145 GeV) and ν1 (≈0.309 GeV) are thresholds
for the single- and double-pion photoproduction, respec-
tively. A smooth transition between the regions is implied.
In the low-energy region, we use the cross sections

generated by MAID [22] (single-pion production only).
Unfortunately, the MAID analysis does not provide any
indication of its uncertainty. In our error estimate, we
judiciously apply a 2% uncertainty to the MAID values.
In the medium-energy region, a fit to the data from

the MAMI (Mainz) and ELSA (Bonn) experiments of the
GDH and A2 collaborations [8–11] is applied in the form of
a sum of six nonrelativistic Breit-Wigner resonances,

ΔσresðWÞ ¼
X6

i¼1

Ai

1
4Γ

2
i

ðW −MiÞ2 þ 1
4Γ

2
i
; ð10Þ

where W ¼
ffiffiffi
s

p
is the invariant mass of the γp system.

Widths (Γ), masses (M), and couplings (A) are treated as
free fitting parameters. The resulting values are given in
Table II.
In the high-energy region, a function of the following

Regge form is used:

ΔσReggeðWÞ ¼ C1Wp1 þ C2Wp2 : ð11Þ

For W in GeV and the cross section in μb, we use the
following fixed parameters [13]:

C1 ¼ −17.05& 2.85; C2 ¼ 104.7& 14.5;

p1 ¼ −1.16& 0.46; p2 ¼ −3.32& 0.44:

The cross section fitting and the sum rule evaluations
are accomplished with the help of the SCIPY package

TABLE II. Fitted resonances parameters entering Eq. (10).

i Mi (MeV) Γi (MeV) Ai · 14Γ
2
i (nb · GeV2)

1 1210.2 119.3 1047.3
2 1405.0 493.5 −9008.4
3 1460.8 239.8 1964.0
4 1585.5 111.7 −226.9
5 1616.4 360.7 3829.3
6 1752.5 105.0 −103.4

FIG. 1. Fit of experimental data for the helicity-difference cross section of total photoproduction on the proton. The solid curve shows
our fit. The other curves, according to the legend, show the Born contribution (single-pion production on a pointlike proton), as well as
the results of MAID [22] and SAID [25] multipole analyses.
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Caution:  
in the dispersive approach 


the subtraction function 

is modelled!

T1(⌫, Q
2) = T1(0, Q

2) +
32⇡Z2
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2
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4

ˆ 1

0
dx
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0
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[2] A. Martynenko, Phys. Atom. Nucl. 69 (2006) 1309–1316 
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low-energy expansion: Pachucki Martynenko Carlson & Birse & Gorchtein
Vanderhaeghen McGovern et al.a

�M1

1.56(57) 1.9(5) 3.4(1.2) 3.1(5)

�E(subt)

2S 1.9 2.3 5.3(1.9) 4.2(1.0) �2.3(4.6)

�E(inel)

2S �13.9 �16.1 �12.7(5) �12.7(5)b �13.0(6)

�E(pol)

2S �12(2) �13.8(2.9) �7.4(2.0) �8.5(1.1) �15.3(4.6)

�E(el)

2S �23.2(1.0)

8
><

>:

�27.8

�29.5(1.3)

�30.8

�24.7(1.6)c �24.5(1.2)

�E
2S �35.2(2.2) �36.9(2.4) �33(2) �39.8(4.8)

a
Adjusted values; the original values, �E

(subt)
2S = 3.3 and �E

(el)
2S = �30.1, are based on a

di↵erent decomposition into the “elastic” and polarizability contributions.

b
taken from Carlson & Vanderhaeghen

c
Result taken from Carlson & Vanderhaeghen with reinstated “non-pole” Born piece.

Table 1: Summary of available dispersive calculations for the TPE correction to
the Lamb shift in µH. Energy shifts are given in µeV, �M1

is given as ⇥10�4 fm3.

modelled Q2 behavior: [1,2]
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wave function 
at the origin
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Nevado & Pineda Alarcón et al. Alarcón et al. Peset & Pineda
HB�PT B�PT HB�PT HB�PTa

�E(subt)

2S �3.0 1.3

�E(inel)

2S �5.2 �19.1

�E(pol)

2S �18.5(9.3) �8.2(+1.2
�2.5) �17.85 �26.2(10.0)

�E(el)

2S �10.1(5.1) �8.3(4.3)

�E
2S �28.6 �34.4(12.5)

aprediction at LO and NLO (including pions and deltas)

Table 1: Summary of available �PT calculations for the TPE correction to the
Lamb shift in µH. Energy shifts are given in µeV, �M1

is given as ⇥10�4 fm3.

D. Nevado, A. Pineda, Phys. Rev. C 77 (2008) 035202 
A. Pineda, Phys. Rev. C 71 (2005) 065205   
C. Peset, A. Pineda (2014) 

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852 

2γ in μH Lamb Shift: 
ChPT vs. Dispersive Approach
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BChPT result is in 
good agreement with 
calculations based on 
dispersive sum rules!
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Fermi - Energy:

EF (nS) =

8

3

Z↵

a3
1 + 

mM

1

n3

with

Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.
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A. Antognini, et al., Science 339 (2013) 417–420

A. Antognini, et al., Annals Phys. 331 (2013) 127–145 

�EHFS(nS) = [1 +�QED +�weak +�FSE]EF (nS)

�
FSE

= �Z +�
recoil

+�
pol

HC2NP, Tenerife, Spain, 30.09.2016 



2γ in μH HFS

18

polarizability contribution is given by the non-Born part of 
the spin-dependent amplitudes 

Franziska Hagelstein, Uni Mainz
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2γ effect on the HFS is completely 
constrained by empirical information

a ChPT calculation of the HFS in μH will 
put the reliability of both ChPT and 
dispersive calculations to the test

• leading chiral logarithms motivate the relative 
order of the Zemach and polarizability corrections

2γ in μH HFS
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Chiral Dynamics (LO)
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Electroproduction Cross Sections
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I. �N ! ⇡N CROSS SECTION

(A) (B) (C)

FIG. 1: Graphs contributing to the �N ! ⇡N cross section at leading order.

In what follows we give expressions for the diagrams shown in fig. ??.
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pion-production cross section:

improved cutoff behavior after adding the pion 
form factor Fππɣ (Q²)

�1 = �18 ppm

�2 = 8ppm

F⇡⇡� =

✓
1 +

Q2

⇤2
⇡

◆�1

⇤2
⇡ = 0.462GeV2with

E(⇡N loops)
HFS (2S) = �0.23+1.08

�0.23µeV
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Fig. 1 The two-photon
exchange diagrams of elastic
lepton–nucleon scattering
calculated in this work in the
zero-energy (threshold)
kinematics. Diagrams obtained
from these by crossing and
time-reversal symmetry are
included but not drawn

(b) (c)(a)

(d) (e) (f)

(g) (h) (j)

of two scalar amplitudes:

T µν(P, q) = −gµν T1(ν
2, Q2) + Pµ Pν

M2
p

T2(ν
2, Q2), (5)

with P the proton 4-momentum, ν = P ·q/Mp, Q2 = −q2,
P2 = M2

p. Note that the scalar amplitudes T1,2 are even
functions of both the photon energy ν and the virtuality Q.
Terms proportional to qµ or qν are omitted because they
vanish upon contraction with the lepton tensor.

Going back to the energy shift one obtains [12]:

"EnS = αem φ2
n

4π3mℓ

1
i

∫
d3q

∞∫

0

dν

× (Q2 − 2ν2) T1(ν
2, Q2) − (Q2 + ν2) T2(ν

2, Q2)

Q4[(Q4/4m2
ℓ) − ν2] . (6)

In this work we calculate the functions T1 and T2 by
extending the BχPT calculation of real Compton scatter-
ing [26] to the case of virtual photons. We then split the
amplitudes into the Born (B) and non-Born (NB) pieces:

Ti = T (B)
i + T (NB)

i . (7)

The Born part is defined in terms of the elastic nucleon form
factors as in, e.g. [13,27]:

T (B)
1 = 4παem

Mp

[
Q4(FD(Q2)+FP (Q2))2

Q4−4M2
pν

2 −F2
D(Q2)

]

, (8a)

T (B)
2 = 16παem Mp Q2

Q4 − 4M2
pν

2

[

F2
D(Q2)+ Q2

4M2
p

F2
P (Q2)

]

. (8b)

In our calculation the Born part was separated by subtract-
ing the on-shell γ N N pion loop vertex in the one-particle-
reducible VVCS graphs; see diagrams (b) and (c) in Fig. 1.

Focusing on the O(p3) corrections (i.e., the VVCS amplitude
corresponding to the graphs in Fig. 1) we have explicitly ver-
ified that the resulting NB amplitudes satisfy the dispersive
sum rules [28]:

T (NB)
1 (ν2, Q2)

= T (NB)
1 (0, Q2) + 2ν2

π

∞∫

ν0

dν′ σT (ν′, Q2)

ν′2 − ν2 , (9a)

T (NB)
2 (ν2, Q2)

= 2
π

∞∫

ν0

dν′ ν′ 2 Q2

ν′2 + Q2

σT (ν′, Q2) + σL(ν′, Q2)

ν′2 − ν2 , (9b)

with ν0 = mπ + (m2
π + Q2)/(2Mp) the pion-production

threshold, mπ the pion mass, and σT (L) the tree-level cross
section of pion production off the proton induced by trans-
verse (longitudinal) virtual photons, cf. Appendix B. We
hence establish that one is to calculate the ‘elastic’ con-
tribution from the Born part of the VVCS amplitudes and
the ‘polarizability’ contribution from the non-Born part,
in accordance with the procedure advocated by Birse and
McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (6) we
obtain the following value for the polarizability correction:

"E (pol)
2S = −8.16 µeV. (10)

This is quite different from the corresponding HBχPT result
for this effect obtained by Nevado and Pineda [11]:

"E (pol)
2S (LO-HBχPT) = −18.45 µeV. (11)

We postpone a detailed discussion of this difference till
Sect. 4.
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the Δ-contribution to the Lamb shift is small                    
compared to the leading order πN-loops


• expected since βM1 is suppressed  
 


multipole ratios are small, the result is dominated by (G*M)2
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2γ with Δ-Excitation (NLO)

J. M. Alarcon, V. Lensky, V. Pascalutsa,  
Eur. Phys. J. C 74 (2014) 2852

�1 = 34ppm

�2 = �71 ppm

E(�)
LS = 0.65± 0.49µeV

E(�)
HFS(2S) = �0.86± 0.65µeV

Eur. Phys. J. C (2014) 74:2852 Page 5 of 10 2852

Fig. 3 The !(1232)-excitation mechanism. Double line represents the
propagator of the !

!E (inel)
nS = −αem

π
φ2

n

∞∫

0

dQ
Q2 w(τℓ) T (NB)

2 (0, Q2)
n=2= −5.2 µeV.

(17b)

This looks very different from the dispersive calculation,
cf. Table 1. The main reason for this is the !(1232)-
resonance excitation mechanism shown by the graph in
Fig. 3.

We have checked that the dominant, magnetic-dipole
(M1), part of electromagnetic nucleon-to-! transition is
strongly suppressed here, as is the entire magnetic polar-
izability (βM1) contribution, cf. discussion below Eq. (15). It
is not suppressed in the ‘inelastic’ and ‘subtraction’ contri-
bution separately, but it cancels out in the total. Thus, even
though it is well justified to neglect the graph in Fig. 3 at
the current level of precision, the split into ‘inelastic’ and
‘subtraction’ looks unfair without it.

In most of the dispersive calculations the cancelation of
the ! excitation, as well as of the entire contribution of
βM1, occurs too, because the subtraction function is at low
Q expressed though the empirical value for βM1. Even the
HBχPT-inspired calculation of the subtraction function [13],
which does not include the !(1232) explicitly, is not an
exception, as a low-energy constant from O(p4) is cho-
sen to achieve the empirical value for βM1. Even at O(p3)

HBχPT, the chiral-loop contribution to βM1 is—somewhat
counterintuitively—paramagnetic and not too far from the
empirical value, leading to a reasonable result for the ‘sub-
traction’ contribution. We take a closer look at the HBχPT
prediction for the various Lamb-shift contributions in the fol-
lowing section.

The central value for the ‘subtraction’ contribution obtained
by Gorchtein et al. [14] is negative, even though the !-
excitation is included in their ‘inelastic’ piece. The quoted
uncertainty of their subtraction value, however, is too large
to point out any contradiction of this result with the other
studies.

4 Heavy-baryon expansion

The heavy-baryon expansion, or HBχPT [20,29], was called
to salvage “consistent power counting” which seemed to be
lost in BχPT, i.e. the straightforward, manifestly Lorentz-

invariant formulation of χPT in the baryon sector [16]. How-
ever, as pointed out by Gegelia et al. [30,31], the “power-
counting violating terms” are renormalization scheme depen-
dent and as such do not alter physical quantities. Furthermore,
in HBχPT they are absent only in dimensional regularization.
If a cutoff regularization is used the terms which superficially
violate power counting arise in HBχPT as well, and must be
handled in the same way as they are handled nowadays in
BχPT—by renormalization.

In this work for example, all such (superficially power-
counting-violating) terms, together with ultraviolet divergen-
cies, are removed in the course of renormalization of the pro-
ton field, charge, anomalous magnetic moment, and mass.
We use the physical values for these parameters and hence
the on-mass-shell (OMS) scheme. This is different from the
extended on-mass-shell scheme (EOMS) [17], where one
starts with the parameters in the chiral limit. The physical
observables, such as the Lamb shift in this case, would of
course come out exactly the same in both schemes, pro-
vided the parameters in the EOMS calculation are cho-
sen to yield the physical proton mass at the physical pion
mass.

Coming back to HBχPT. Despite the above-mentioned
developments the HBχPT is still often in use. The two EFT
studies of proton structure corrections done until now [11,13]
are done in fact within HBχPT. We next examine these results
from the BχPT perspective.

One of the advantages of having worked out a BχPT result
is that the one of HBχPT can easily be recovered. We do it by
expanding the expressions of Appendix A in µ = mπ/MN ,
while keeping the ratio of light scales τπ = Q2/4m2

π fixed.
For the leading term the Feynman-parameter integrations are
elementary and we thus obtain the following heavy-baryon
expressions:

T (NB)
1 (0, Q2)

HB= αemg2
A

4 f 2
π

mπ

(
1− 1√

τπ
arctan

√
τπ

)
,

(18a)

T (NB)
2 (0, Q2)

HB=−αemg2
A

4 f 2
π

mπ

(
1 − 1 + 4τπ√

τπ
arctan

√
τπ

)
.

(18b)

The first expression reproduces the result of Birse and
McGovern (cf. T

(3)
1 in the appendix of [13]1). We have

also verified that these amplitudes correspond to the ones

1 At subleading order in the heavy-baryon expansion, we obtain

T
NB (4)
1

HB= αem g2
A

12π f 2
π MN

m2
π

{
3 − 50τπ + 48τπ (1+τπ )−3√

τπ (1+τπ )
arcsinh

√
τπ

+18τπ

[
7 + 4 log

(
mπ
MN

)]}
.

This expression reproduces the g2
A terms of T

(4)
1 in the appendix of

Ref. [13], apart from the terms inside the square brackets. These terms
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Neutral-Pion Exchange (NLO)
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Prog. Part. Nucl. Phys. 88 (2016) 29-97

l

N

π
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N. T. Huong, E. Kou, B. Moussallam, Phys. Rev. D 93 (2016) 114005

E(⇡0)
2S HFS = �(0.09± 0.06)µeVE(⇡0)

HFS(2S) = 0.02± 0.04µeV

 "(!6) contribution from off-forward scattering

 result for muonic hydrogen:
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predictions of the polarizability contribution to the HFS based 
on BChPT disagree with the dispersive results  

→ changes the Zemach radius into RZ = 1.025 fm (smaller)

  compared to RZ = 1.082 fm (μH) and RZ = 1.022 fm [1] or RZ = 1.065 — 1.108 fm [2] (FF)


empirical information on spin structure functions is limited (especially for g2) 


problem in BChPT? next step: include πΔ-loops


the low-Q region is very important
Franziska Hagelstein, Uni Mainz

3

(A) (B) (C)

FIG. 2: Graphs contributing to the �N ! ⇡� cross section at leading order.
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TABLE II: Isospin factors for the �N ! ⇡N graphs, here C = ihA
f⇡M�

.

III. FEYNMAN RULES

– propagators:

– scalar propagator: �(k) =
1

k2 �M2
+ i0+

; (3)

– spin-1/2 propagator: �(k) =
/k +M

k2 �M2
+ i0+

; (4)

– vertices:

– ⇡NN vertex: �⇡NN = ig�5 ⇥

8
><

>:

1 p ! ⇡0pp
2 p ! ⇡+n, n ! ⇡�p

�1 n ! ⇡0n

with g = �gA
f⇡

MN ; (5)

– �NN vertex: �

µ
�NN =

e/2 �µ
(12 + ⌧3) =

(
e �µ p

0 n
, (6)

with e = 1, 602 176 6208(98) · 10�19
C;

– �ll vertex: �

µ
�ll = el �

µ (7)

where el is the lepton’s charge;

– �⇡⇡ vertex: �

µ
�⇡⇡(k, k

0
) = ±e⇡(k + k0)µ, (8)

where e⇡ is the pion’s charge and k(k0) is the incoming (outgoing) pion four-momentum;

– ⇡+µ+⌫µ vertex: �⇡+µ+⌫µ
=

Gf⇡mµ

2

(14 � �5) (9)

– external lines:

Summary: 2ɣ in HFS

E(⇡0)
HFS(2S) = 0.02± 0.04µeV

E(�)
HFS(2S) = �0.86± 0.65µeV

E(⇡N loops)
HFS (2S) = �0.23+1.08

�0.23µeV

E(pol)
HFS (2S) = �1.07+1.26

�0.69µeV

[1] R. Faustov, E. Cherednikova, A. Martynenko, Nuclear Phys. A 703 (2002) 365–377. 
[2] C. E. Carlson, et al., Phys. Rev. A 78 (2008) 022517  
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Nuclear Polarizability Effect at (Z!)6 ln(Z!)
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off-forward 2ɣ: 

(Z#)6 ln(Z#) effect in the Lamb shift is expressed entirely in terms 
of the static electric dipole polarizability 

• no contribution from the magnetic dipole polarizability or the 
lowest order spin polarizabilities, i.e., not present in the HFS

t-channel cut

ImM (p2t ) ⇡ � 2⇡↵m

(1� ⌧)7/2
p
⌧ arccos

p
⌧ ↵E1 +O(⌧)

EnS = �4(Z↵mr)4↵↵E1

n3
ln

Z↵mr

2nm



(Z!)6 ln(Z!) Polarizability Effect in μH
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↵E1 = 11.2± 0.4⇥ 10�4 fm3

�M1 = 2.5⌥ 0.4⇥ 10�4 fm3

PDG 2014:
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Eth
LS(µH) = 206.0668(25)� 5.2275(10) (Rp/fm)2

A. Antognini et al., Annals Phys. 331 (2013) 127-145

E(↵5)
LS = �8.2+1.2

�2.5 µeV

off-forward 2ɣ:

E(↵6 ln↵)
LS (µH) = �0.79± 0.03µeV

forward 2ɣ:

total Lamb shift:

talk by

V. Lensky



(Z!)6 ln(Z!) Polarizability Effect  
in muonic atoms: μ3H, μ3He+ and μ4He+ 
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ELS(µ
4He+) = 1572.186(205)� 106.358(7)(R↵/fm)2

total Lamb shift in μ4He+ [in meV]: [5]

5

TABLE I: Summary of our numerical results for the polarizability
contribution to the Lamb shift of light muonic atoms.

µH µ3H µ3He+ µ4He+

M [GeV] 0.938 272 0813(58) [2] 2.808 921 112(17) [2] 2.808 391 586(17) [2] 3.727 379 378(23) [2]
↵E1 [fm3] 11.2(0.4)⇥ 10�4 [18] 0.139(2) [21] 0.149(5) [21] 0.0683(8)(14) [21]

presently accounted for
E(↵5)

LS = �8.2+1.2
�2.5 ⇥ 10�3 [7] �A

pol = �0.476(10)(13) [13] �A
pol = �4.16(06)(16) [13] �A

pol = �2.47(15) [26]
nucl. pol. effect [meV]

this work: �0.79(3)⇥ 10�3 (24) �0.128(2) (27a) �1.950(65) (27b) �0.925(22) (27c)
E(↵6 ln↵)

LS [meV]

TABLE II: Summary of our numerical results for the polarizability contribution to the Lamb shift of light muonic atoms.

µ3H µ3He+ µ4He+

M [GeV] 2.808 921 112(17) [1] 2.808 391 586(17) [1] 3.727 379 378(23) [1]

↵E1 [fm3] 0.139(2) [2] 0.149(5) [2] 0.0683(8)(14) [2]

presently accounted for
�A

pol = �0.476(10)(13) [3] �A
pol = �4.16(06)(16) [3] �A

pol = �2.47(15) [4]
nucl. pol. effect [meV]

this work: �0.128(2) �1.950(65) �0.925(22)
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Here, T1 and T2 are the spin-independent VVCS amplitudes, contributing to the Lamb shift, whereas S1 and S2 are the spin-
dependent VVCS amplitudes, contributing to the HFS. EF is the Fermi energy and �

2
n = 1/(⇡n

3
a

3
) is the wave function

squared at the origin. A comparison of Eqs. (28a) and (28b) shows that the t-channel cut, 1/Q4, is present in the former but
absent in the later. Therefore, the HFS has no TPE contribution at order (Z↵)

5
lnZ↵. Similarly, one finds that there is no

(Z↵)

6
lnZ↵ contribution from off-forward TPE to the HFS.

The contribution of the lowest spin polarizabilities, �E1E1, �M1M1, �M1E2 and �E1M2, to the nuclear VVCS, i.e., the lower
part of Fig. 1, is [24]:
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with the forward spin polarizability �0 = �(�E1E1 + �M1M1 + �M1E2 + �E1M2). This tensor is even under photon crossing
and gauge invariant.

As for the Lamb shift, cf. Section II, the tensor describing
VVCS off the nucleus, Eq. (29), has to be contracted with the
Lepton tensor, Eq. (4). Again, terms proportional to q

2 or q0 2
are neglected, since they do not contribute to the t-channel
cut enhancement, and the same Feynman trick is applied, cf.
Eq. (5) and paragraph above.

The major complication is that we are now dealing with the
spin dependence of both, the leptonic and the nuclear part. In
general, we encounter the following set of gamma matrices
between the spinors of the spin-1/2 nucleus and the lepton,
respectively:
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E(pol)
HFS (2S) = �1.07+1.26

�0.69µeV
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the finite-size effects are up to “soft” effects, Q ~ #mr, 
expandable in the moments of charge distribution


(forward 2ɣ) polarizability contribution to the HFS:


• predictions of the polarizability contribution to the HFS based on BChPT 
disagree with the dispersive results                                                              
→ changes the Zemach radius into RZ = 1.025 fm (smaller)


(Z#)6 ln(Z#) nuclear polarizability effect in the Lamb shift of 
muonic atoms is non-negligible

EnS = �4(Z↵mr)4↵↵E1

n3
ln

Z↵mr

2nm
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