
Future	Higgs	Studies:	A	Theorist’s	Outlook
Howard	E.	Haber
Prospects	for	Charged	Higgs	

Discovery	at	Colliders
Uppsala,	Sweden
6 October	2016



With	the	discovery	of	the	Higgs	boson	on	
4	July	2012,	the	Standard	Model	is	triumphant.



But,	theorists	are	never	satisfied!

Instead,	we	ask:	is	that	all	there	is?



But,	be	careful	what	you	ask	for…	you	
may	be	responsible	for	a	twitter	storm!



Back	to	the	Higgs	boson…

Why	do	theorists	expect	more	than	just
the	Higgs	boson	of	the	Standard	Model?



Some fundamental microscopic phenomena must necessarily lie
outside of the purview of the Standard Model (SM).

• Neutrinos are not massless.

• Dark matter is not accounted for.

• No explanation for the baryon asymmetry of the universe.

• The solution to the strong CP puzzle lies outside of the SM.

• Gauge coupling unification fails (is this some hint?)

• No explanation for the inflationary period of the very early
universe.

• The gravitational interaction is omitted.
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A new fundamental high energy scale

New high energy scales must exist where new degrees of freedom

and/or more fundamental physics reside. Let Λ denote the

energy scale at which the SM breaks down.

Predictions made by the SM depend on a number of parameters

that must be taken as input to the theory. These parameters

are sensitive to ultraviolet (UV) physics, and since the physics at

very high energies is not known, one cannot predict their values.

However, one can determine the sensitivity of these parameters

to the UV scale Λ.



In the 1930s, it was already appreciated that a critical difference

exists between bosons and fermions. Fermion masses are

logarithmically sensitive to UV physics. Ultimately, this is due

to the chiral symmetry of massless fermions, which implies that

δmF ∼ mf ln(Λ
2/m2

F ) .

No such symmetry exists for scalar bosons∗ (in the absence

of supersymmetry), and consequently we expect quadratic

sensitivity of the scalar boson squared-mass to UV physics

δm2
B ∼ Λ2 .

∗In the case of the photon, gauge invariance (assuming no spontaneous symmetry breaking) implies that

δm2
γ = 0.





The tyranny of naturalness

In the SM the Higgs scalar potential,

V (Φ) = −µ2(Φ†Φ) + 1
2λ(Φ

†Φ)2 ,

where µ2 = 1
2λv

2 in terms of the vacuum expectation value v of the Higgs

field. The parameter µ2 is quadratically sensitive to Λ. Hence, to obtain

v = 246 GeV in a theory where v ≪ Λ requires a significant fine-tuning of

the ultraviolet parameters of the fundamental theory.

Indeed, the one-loop contribution to the squared-mass parameter µ2 would

be expected to be of order (g2/16π2)Λ2. Setting this quantity to be of order

of v2 (to avoid an unnatural fine-tuning of the tree-level parameter and the

loop contribution) yields

Λ ≃ 4πv/g ∼ O(1 TeV)

A natural theory of electroweak symmetry breaking (EWSB) would seem to

require new physics at the TeV scale to govern the EWSB dynamics.



Origin of the electroweak scale?

• Naturalness is restored by supersymmetry which ties the

bosons to the more well-behaved fermions

• The Higgs boson is an approximate Goldstone boson, the only

other known mechanism for keeping an elementary scalar light.

Example: neutral naturalness

• The Higgs boson is a composite scalar, with an inverse length

of order the TeV-scale

• The TeV-scale is chosen by some vacuum selection mechanism

• It’s just fine-tuned. Get over it!



What next at the LHC?

• Experimentalists—Of course, keep searching for new physics

beyond the Standard Model (BSM)

• Theorists—Find new ways BSM physics (which might provide

natural relief) can be hiding at the TeV-scale

But, if no signals for BSM physics emerge soon, what then?

My answer: look to the Higgs sector, of course!

After all, we have only recently discovered a most remarkable

particle that seems to be like nothing that has ever been seen

before—an elementary scalar boson. Shouldn’t we probe this

state as thoroughly as possible and explore its properties?



The three really big questions

1. Are there additional Higgs bosons to be discovered? (To

paraphrase I.I. Rabi, “Who ordered that?”) If fermionic

matter is non-minimal why shouldn’t scalar matter also be

non-minimal?

2. If we measure the Higgs properties with sufficient precision,

will deviations from SM-like Higgs behavior be revealed?

3. The operator H†H is the unique relevant operator of the SM

that is a Lorentz invariant gauge group singlet. As such, does

it provide a “Higgs portal” to BSM physics that is neutral

with respect to the SM gauge group?



Do more Higgs bosons mean more fine-tuning?

There are many examples in which natural explanations of the

EWSB scale (e.g., the MSSM with TeV-scale SUSY-breaking)

employ BSM physics with extended Higgs sectors.

If you give up on naturalness (e.g., vacuum selection), it has been

argued that it may be difficult in some cases to accommodate

more than one Higgs doublet at the electroweak scale.

However, it is possible to construct “partially natural” extended

Higgs sectors in which the electroweak vacuum expectation value

is fine-tuned (as in the SM), but additional scalar masses are

related to the electroweak scale by a symmetry.



The partially natural two-Higgs doublet model

By imposing two discrete symmetries,

Z
m
2 : Φ1 ⇐⇒ Φ2.

Z
i
2 : Φ1 ⇐⇒ −Φ1, Φ2 ⇐⇒ Φ2,

the 2HDM scalar potential is given by

V = m2
(
Φ†

1Φ1 +Φ†
2Φ2

)
+ 1

2λ
[
(Φ†

1Φ1)
2 + (Φ†

2Φ2)
2
]
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

{
1
2λ5(Φ

†
1Φ2)

2 + h.c.
}
,

which requires one fine tuning of the parameter m2 (as in the

SM). However, these discrete symmetries cannot be successfully

implemented in the Higgs-fermion Yukawa interactions.



But, if one adds vector-like fermion top partners, then one can

extend the discrete symmetries such that top quarks transform

into their top partners.

To construct a successful model,† one will need to introduce a

bare mass M for the top partners, which will softly break one of

the two discrete symmetries. We assume that this soft-breaking

is generated at a cutoff scale Λ. This re-introduces some fine-

tuning (which grows with M), although it is not quadratically

sensitive to Λ. The end result is that the top partners should

not be too heavy (good for LHC discovery!).

†For details, see P. Draper, H.E. Haber and J. Ruderman, JHEP 06 (2016) 124 [arXiv:1605.03237].



Theoretical implications of a SM-like Higgs boson

We already know that the observed Higgs boson is SM-like.
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Thus any model of BSM

physics, including models of

extended Higgs sectors must

incorporate this observation.

In models of extended Higgs

sectors, a SM-like Higgs

boson can be achieved in a

particular limit of the model

called the alignment limit.



The alignment limit—approaching the SM Higgs boson

Consider an extended Higgs sector with n hypercharge-one Higgs doublets Φi

and m additional singlet Higgs fields φi.

After minimizing the scalar potential, we assume that only the neutral Higgs

fields acquire vacuum expectation values (in order to preserve U(1)EM),

〈Φ0
i 〉 = vi/

√
2 , 〈φ0

j〉 = xj .

Note that v2 ≡∑i |vi|2 = 4m2
W/g2 = (246 GeV)2.

We define new linear combinations of the hypercharge-one doublet Higgs

fields (the so-called Higgs basis). In particular,

H1 =

(
H+

1

H0
1

)
=

1

v

∑

i

v∗iΦi , 〈H0
1〉 = v/

√
2 ,

and H2,H3, . . . , Hn are the other linear combinations of doublet scalar fields

such that 〈H0
i 〉 = 0 (for I = 2, 3, . . . , n).



That is H0
1 is aligned in field space with the direction of the Higgs vacuum

expectation value (vev). Thus, if
√
2Re(H0

1) − v is a mass-eigenstate, then

the tree-level couplings of this scalar to itself, to gauge bosons and to fermions

are precisely those of the SM Higgs boson. This is the exact alignment limit.

In general,
√
2Re(H0

1)− v is not a mass-eigenstate due to mixing with other

neutral scalars. In this case, the observed Higgs boson is SM-like if either

• the elements of the scalar squared-mass matrix that govern the mixing of√
2Re(H0

1)− v with other neutral scalars are suppressed,

and/or
• the diagonal squared masses of the other scalar fields are all large compared

to the mass of the observed Higgs boson (the so-called decoupling limit).

Although the alignment limit is most naturally achieved in the decoupling

regime, it is possible to have a SM-like Higgs boson without decoupling. In

the latter case, the masses of the additional scalar states could lie below

∼ 500 GeV and be accessible to LHC searches.



Extending the SM Higgs sector with a singlet scalar

The simplest example of an extended Higgs sector adds a real scalar field S.

The most general renormalizable scalar potential (subject to a Z2 symmetry

to eliminate linear and cubic terms) is

V = −m2Φ†Φ− µ2S2 + 1
2λ1(Φ

†Φ)2 + 1
2λ2S

4 + λ3(Φ
†Φ)S2 .

After minimizing the scalar potential, 〈Φ0〉 = v/
√
2 and 〈S〉 = x/

√
2. The

squared-mass matrix of the neutral Higgs bosons is

M2 =

(
λ1v

2 λ3vx

λ3vx λ2x
2

)
.

The corresponding mass eigenstates are h and H with mh ≤ mH. An

approximate alignment limit can be realized in two different ways.

• x ≫ v. This is the decoupling limit, where h is SM-like and mH ≫ mh.

• |λ3|x ≪ v. Then h is SM-like if λ1v
2 < λ2x

2. Otherwise, H is SM-like.



The Higgs mass eigenstates are explicitly defined via
(
h

H

)
=

(
cosα − sinα

sinα cosα

)(√
2Re Φ0 − v√
2S − x

)
,

where
λ1v

2 = m2
h cos

2α+m2
H sin2α ,

λ2x
2 = m2

h sin
2α+m2

H cos2α ,

λ3xv = (m2
H −m2

h) sinα cosα .

The SM-like Higgs must be approximately
√
2Re Φ0 − v.

If h is SM-like, then m2
h ≃ λ1v

2 and

| sinα| = |λ3|vx√
(m2

H −m2
h)(m

2
H − λ1v2)

≃ |λ3|vx
m2

H −m2
h

≪ 1 ,

If H is SM-like, then m2
H ≃ λ1v

2 and

| cosα| = |λ3|vx√
(m2

H −m2
h)(λ1v2 −m2

h)
≃ |λ3|vx

m2
H −m2

h

≪ 1 .



Taken from T. Robens and T. Stefaniak, Eur. Phys. J. C75, 104 (2015).



Theoretical structure of the 2HDM

Consider the most general renormalizable 2HDM potential,

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2λ1(Φ
†
1Φ1)

2

+1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1
2λ5(Φ

†
1Φ2)

2 +
[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}
.

After minimizing the scalar potential, assume that 〈Φ0
i 〉 = vi (for i = 1, 2).

Define the Higgs basis fields,

H1 =

(
H+

1

H0
1

)
≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(
H+

2

H0
2

)
≡ −v2Φ1 + v1Φ2

v
,

such that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The Higgs basis is uniquely defined

up to an overall rephasing, H2 → eiχH2.



In the Higgs basis, the scalar potential is given by:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}

,

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5,

Z6 and Z7 are complex and transform under the rephasing of H2,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

Physical observables must be independent of χ.

After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Remark: Generically, the Zi are O(1) parameters.



Type I and II Higgs-quark Yukawa couplings in the 2HDM

In the Φ1–Φ2 basis, the 2HDM Higgs-quark Yukawa Lagrangian is:

−LY = ULΦ
0 ∗
i hU

i UR−DLK
†Φ−

i h
U
i UR+ULKΦ+

i h
D †
i DR+DLΦ

0
ih

D †
i DR+h.c. ,

where K is the CKM mixing matrix, and there is an implicit sum over i. The

hU,D are 3× 3 Yukawa coupling matrices.

In order to naturally eliminate tree-level Higgs-mediated FCNC, we shall

impose a discrete symmetry to restrict the structure of LY.

Under the discrete symmetry, Φ1 → +Φ1 and Φ2 → −Φ2, which restricts

the form of the scalar potential by setting m2
12 = λ6 = λ7 = 0.Two different

choices for how the discrete symmetry acts on the fermions then yield:

• Type-I Yukawa couplings: hU
1 = hD

1 = 0,

• Type-II Yukawa couplings: hU
1 = hD

2 = 0.



If the discrete symmetry is unbroken, then the scalar potential and vacuum

are automatically CP-conserving (and all scalar potential parameters and the

Higgs vevs can be chosen real).

Actually, it is sufficient for the discrete symmetry to be broken softly by

taking m2
12 6= 0. In this case, an additional source of CP-violation will be

present if Im(λ∗
5[m

2
12]

2) 6= 0. Nevertheless, Higgs-mediated FCNC effects

remain suppressed.

Note that the parameter

tanβ ≡ v2
v1

,

is now meaningful since it refers to vacuum expectation values with respect

to the basis of scalar fields where the discrete symmetry has been imposed.



The alignment limit in the CP-conserving 2HDM

In the case of a CP-conserving scalar potential, one can choose χ such that

ImZ5 = ImZ6 = ImZ7 = 0, corresponding to a real Higgs basis. We identify

the CP-odd Higgs boson as A =
√
2 ImH0

2 , withm
2
A = Y2+

1
2(Z3+Z4−Z5)v

2.

After eliminating Y2 in favor of m2
A, the CP-even Higgs squared-mass matrix

with respect to the Higgs basis states, {
√
2Re H0

1−v ,
√
2Re H0

2} is given by,

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
.

The CP-even Higgs bosons are h and H with mh ≤ mH. The couplings

of
√
2Re H0

1 − v coincide with those of the SM Higgs boson. Thus, the

alignment limit corresponds to two limiting cases:

1. m2
A ≫ (Z1 − Z5)v

2. This is the decoupling limit, where h is SM-like and

mA ∼ mH ∼ mH± ≫ mh.

2. |Z6| ≪ 1. h is SM-like if m2
A+(Z5−Z1)v

2 > 0. Otherwise, H is SM-like.



In particular, the CP-even mass eigenstates are:(
H

h

)
=

(
cβ−α −sβ−α

sβ−α cβ−α

) (√
2 Re H0

1 − v√
2Re H0

2

)
,

where cβ−α ≡ cos(β −α) and sβ−α ≡ sin(β −α) are defined in terms of the

mixing angle α that diagonalizes the CP-even Higgs squared-mass matrix when

expressed in the original basis of scalar fields, {
√
2Re Φ0

1−v1 ,
√
2Re Φ0

2−v2},
and tanβ ≡ v2/v1.

Since the SM-like Higgs must be approximately
√
2Re H0

1 −v, it follows that

• h is SM-like if |cβ−α| ≪ 1 ,

• H is SM-like if |sβ−α| ≪ 1.

Alignment without decoupling is required to have a SM-like H.

Remark: Although the tree-level couplings of
√
2Re H0

1 − v coincide with

those of the SM Higgs boson, the one-loop couplings can differ due to the

exchange of non-minimal Higgs states (if not too heavy). For example, the

H± loop contributes to the decays of the SM-like Higgs boson to γγ and γZ.



The alignment limit in equations

The CP-even Higgs squared-mass matrix yields,

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

Z5v
2 = m2

Hs2β−α +m2
hc

2
β−α −m2

A .

If h is SM-like, then m2
h ≃ Z1v

2 and

|cβ−α| =
|Z6|v2√

(m2
H −m2

h)(m
2
H − Z1v2)

≃ |Z6|v2
m2

H −m2
h

≪ 1 ,

If H is SM-like, then m2
H ≃ Z1v

2 and

|sβ−α| =
|Z6|v2√

(m2
H −m2

h)(Z1v2 −m2
h)

≃ |Z6|v2
m2

H −m2
h

≪ 1 .



Higgs interaction 2HDM coupling approach to alignment limit

hV V sβ−α 1− 1
2c

2
β−α

hhh * 1 + 2(Z6/Z1)cβ−α

hH+H− * 1
3 [(Z3/Z1) + (Z7/Z1)cβ−α]

Hhh * −Z6/Z1 +
[
1− 2

3(Z345/Z1)
]
cβ−α

hhhh * 1 + 3(Z6/Z1)cβ−α

hDD sβ−α1+ cβ−αρ
D
R 1+ cβ−αρ

D
R

hUU sβ−α1+ cβ−αρ
U
R 1+ cβ−αρ

U
R

Type I and II 2HDM couplings of the SM-like Higgs boson h normalized to those of the SM Higgs boson, in
the alignment limit. The hH+H− and Hhh couplings given above are normalized to the SM hhh coupling
(where Z345 ≡ Z3 + Z4 + Z5). The scalar Higgs potential is taken to be CP-conserving. For the fermion
couplings, D is a column vector of three down-type fermion fields (either down-type quarks or charged leptons)
and U is a column vector of three up-type quark fields. In the third column, the first non-trivial correction to
alignment is exhibited. Finally, complete expressions for the entries marked with a * can be found in H.E. Haber
and D. O’Neil, Phys. Rev. D 74, 015018 (2006) [Erratum: ibid. D 74 (2006) 059905].

Type I : ρDR = ρUR = 1 cotβ ,

Type II : ρDR = −1 tanβ , ρUR = 1 cot β .



Constraints on Type-I and II 2HDMs from Higgs data

Direct constraints from LHC Higgs searches for Type-I (left) and Type-II (right) 2HDM with mH = 300 GeV
with mh = 125 GeV, Z4 = Z5 = −2 and Z7 = 0. Colors indicate compatibility with the observed Higgs
signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion bounds at 95% C.L. from the non-observation
of the additional Higgs states overlaid in gray. From H.E. Haber and O. St̊al, Eur. Phys. J. C 75, 491 (2015)
[Erratum: ibid., 76, 312 (2016)].



The MSSM Higgs Sector at tree-level

The MSSM Higgs sector is a CP-conserving 2HDM. The dimension-four

terms of the scalar potential constrained by supersymmetry. At tree level,

λ1 = λ2 = −λ3−λ4−λ5 =
1
4(g

2+g′ 2) , λ4 = −1
2g

2 , λ5 = λ6 = λ7 = 0 .

The corresponding real Higgs basis parameters of interest are:

Z1v
2 = m2

Zc
2
2β , Z5v

2 = m2
Zs

2
2β , Z6v

2 = −m2
Zs2βc2β .

in a convention where tanβ ≥ 0. It follows that,

cos2(β − α) =
m4

Z s22βc
2
2β

(m2
H −m2

h)(m
2
H −m2

Zc
2
2β)

.

The decoupling limit is achieved when mH ≫ mh as expected. Alignment

without decoupling is (naively) possible at tree-level when Z6 = 0, which

yields sin 4β ≃ 0. However, this limit is not phenomenologically viable. In any

case, radiative corrections are required to obtain the observed Higgs mass.



Tree-level MSSM Higgs couplings to quarks and squarks

The MSSM employs the Type–II Higgs–fermion Yukawa couplings. Employing

the more common MSSM notation, Hi
D ≡ ǫijΦ

j ∗
1 and Hi

U = Φi
2 (where

i, j = 1, 2 are weak SU(2) indices), the tree-level Yukawa couplings are:

−LYuk = ǫij
[
hbbRH

i
DQ

j
L + httRQ

i
LH

j
U

]
+ h.c. ,

which yields

mb = hbvcβ/
√
2 , mt = htvsβ/

√
2 .

The leading terms in the coupling of the Higgs bosons to third generation

squarks are proportional to the Higgs–top quark Yukawa coupling, ht,

Lint ∋ ht

[
µ∗(H†

DQ̃)Ũ+AtǫijH
i
UQ̃

jŨ+h.c.
]
−h2

t

[
H†

UHU(Q̃
†Q̃+Ũ∗Ũ)−|Q̃†HU |2

]
,

where Q̃ =

(
t̃L

b̃L

)
and Ũ ≡ t̃∗R.



In terms of the Higgs basis fields H1 and H2,

Lint ∋ htǫij
[
(sinβXtH

i
1 + cosβYtH

i
2)Q̃

jŨ + h.c.
]

−h2
t

{[
s2β|H1|2 + c2β|H2|2 + sinβ cosβ(H†

1H2 + h.c.)

]
(Q̃†Q̃+ Ũ∗Ũ)

−s2β|Q̃†H1|2 − c2β|Q̃†H2|2 − sinβ cosβ
[
(Q̃†H1)(H

†
2Q̃) + h.c.

]}
,

where

Xt ≡ At − µ∗ cotβ , Yt ≡ At + µ∗ tanβ .

Assuming CP-conservation for simplicity, we shall henceforth take µ, At real.



The radiatively corrected MSSM Higgs Sector

To illustrate the leading one-loop effects, we work in the limit where mh, mA,

mH, mH± ≪ MS, where MS is the scale of SUSY-breaking. In this case,

we can formally integrate out the squarks and generate a low-energy effective

2HDM Lagrangian (which is no longer of the tree-level MSSM form).

The dominant one-loop corrected expressions for Z1 and Z6 are given by‡

Z1v
2 = m2

Zc
2
2β +

3v2s4βh
4
t

8π2

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

Z6v
2 = −s2β

{
m2

Zc2β −
3v2s2βh

4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]}
,

where M2
S ≡ mt̃1

mt̃2
, Xt ≡ At − µ cotβ and Yt = At + µ tanβ.

‡CP-violating phases that could appear in the MSSM parameters such as µ and At are neglected. The above

expression for Z6 was first written down in M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner,

Phys. Rev. D 91, 035003 (2015).
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Ũ

Q̃

H1

H1

∝ s3βcβXtYt

Example: One-loop threshold corrections to Z6



Note that m2
h ≃ Z1v

2 is consistent with mh ≃ 125 GeV for suitable choices

for MS and Xt. Exact alignment (i.e., Z6 = 0) can now be achieved due to

an accidental cancellation between tree-level and loop contributions,

m2
Zc2β =

3v2s2βh
4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]
.

That is, Z6 ≃ 0 for particular choices of tanβ. The alignment condition is

then achieved by (numerically) solving a 7th order polynomial equation for

positive real solutions of tβ ≡ tan β (where Ât ≡ At/MS and µ̂ ≡ µ/MS),

m2
Zt

4
β(1−t2β)−Z1v

2t4β(1+t2β)+
3m4

t µ̂(Âttβ − µ̂)(1 + t2β)
2

4π2v2
[
1
6(Âttβ−µ̂)2−t2β

]
= 0 .

REMARK: Typically, we identify h as the SM-like Higgs boson. However, in

the alignment limit there exist parameter regimes, corresponding to the case

of m2
A + (Z5 − Z1)v

2 < 0 (where the radiatively corrected Z1 and Z5 are

employed), in which H is the SM-like Higgs boson. In either case, Z1v
2 is

the (approximate) squared mass of the SM-like Higgs boson.



Top panels: Contours of tanβ corresponding to exact alignment, Z6 = 0, in the (µ/MS, At/MS) plane,

in the one-loop approximation. Z1 is adjusted to give the correct Higgs mass. Taking the three top panels

together, one can immediately discern the regions of zero, one, two and three values of tanβ in which exact

alignment is realized. In the overlaid blue regions we have (unstable) values of |Xt/MS| ≥ 3.

Bottom panels: Contours of the top squark mass parameter MS , which depends on the values of µ/MS and

At/MS, needed to obtain the correct Higgs squared-mass in the alignment limit, Z1v
2 = 125 GeV. The

three figures correspond to the three tanβ solutions of exact alignment previously exhibited.



Leading two-loop corrections of O(αsh
2
t )

Leading two-loop corrections of O(αsh
2
t ) can be obtained from the

leading one-loop corrected results by replacing ht with ht(λ), where

λ ≡
[
mt(mt)MS

]1/2
in the one-loop leading log pieces and λ ≡ MS in

the leading threshold corrections. Imposing Z6 = 0 now leads to a 11th order

polynomial equation in tβ that can be solved numerically.§

In the region of interest in the (µ/MS, At/MS) plane, we find that the

previous one-loop real tanβ solutions are still present (appropriately perturbed

at the two-loop level). In addition, another real tanβ solution emerges with

|Xt/MS| >∼ 3, and is therefore discarded.

§P. Bechtle, H.E. Haber, S. Heinemeyer, O. St̊al, T. Stefaniak, G. Weiglein and L. Zeune, arXiv:1608.00638

[hep-ph], and in preparation.



Comparing the one-loop results for tanβ solutions at exact alignment (top

panels) to the corresponding two-loop improved results (bottom panels).

Contours of tanβ corresponding to exact alignment, Z6 = 0, in the (µ/MS, At/MS) plane. Z1 is adjusted
to give the correct Higgs mass. Top panels: Approximate one-loop result. Bottom panels: Two-loop improved

result. Taking the top (bottom) three panels together, one can immediately discern the regions of zero, one,
two and three values of tanβ in which exact alignment is realized. In the overlaid blue regions we have
(unstable) values of |Xt/MS| ≥ 3.



How well do the approximate two-loop results for the exact alignment limit¶

match a comprehensive scan over the MSSM parameter space? In a recent

paper,‖ an 8-parameter pMSSM scan was performed to determine allowed

parameter regimes which contain a light CP-odd Higgs boson A. Typically, h

is SM-like, although one cannot yet rule out the possibility of a SM-like H.

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

Higgs mass ⊕ Higgs rates

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

Higgs mass ⊕ Higgs rates ⊕ h/H/A → ττ exclusion

Preferred points of the pMSSM-8 scan with low mA ≤ 350 GeV for different selections of observables. The

points are within the (approximate) 95% CL region, based on the following observables. Left panel: only Higgs

mass and signal rates; Right panel: Higgs mass, signal rates and h/H/A → τ+τ− exclusion likelihood.

¶Of course, the precision Higgs data only requires that the condition of alignment is approximately satisfied.
‖P. Bechtle, H.E. Haber, S. Heinemeyer, O. St̊al, T. Stefaniak, G. Weiglein and L. Zeune, arXiv:1608.00638.



Including additional constraints from SUSY particle searches and the impact

of SUSY radiative corrections on SM observables, the allowed parameter

regions of the pMSSM-8 scan shrinks further. For example, results from the

SuperIso program show that the negative µ region is mostly disfavored by

BR(B → Xsγ), whereas negative At is disfavored by BR(Bs → µ+µ−).

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

all observables except aµ

• 20 ≤ tanβ
• 15 ≤ tanβ ≤ 20
• 10 ≤ tanβ ≤ 15
• 5 ≤ tanβ ≤ 10
• tanβ ≤ 5

all observables

Preferred points of the pMSSM-8 scan with low mA ≤ 350 GeV for all observables except aµ (left panel),

and for all observables (right panel).



Bottom line: mA values as low as 200 GeV are still allowed in the MSSM.

Preferred parameter regions in the (MA, tan β) plane (left) and (MA, µAt/M
2
S) plane

(right), where M2
S = mt̃1

mt̃2
and h is the SM-like Higgs boson, in a pMSSM-8 scan.

Points that do not pass the direct constraints from Higgs searches from HiggsBounds and

from LHC SUSY particle searches from CheckMATE are shown in gray. Applying a global

likelihood analysis to the points that pass the direct constraints, the color code employed

is red for ∆χ2
h < 2.3, yellow for ∆χ2

h < 5.99 and blue otherwise. The best fit point is

indicated by a black star.



Beyond singlets and doublets

If one considers a scalar sector with triplet Higgs fields, then one must include

addition Higgs multiplets in such a way that ρ ≃ 1.

Georgi and Machacek constructed an amusing model in which ρ = 1 at tree-

level due to a well chosen scalar potential that respects custodial symmetry.

The model contains a complex Y = 1 doublet, a complex Y = 2 triplet and

a real Y = 0 singlet. Without going into details, there is a doublet vev, vφ,

and a common triplet vev, vχ, with v2 ≡ v2φ + 8v2χ = (246 GeV)2.

The physical scalars make up custodial SU(2) multiplets: a 5-plet of states

(H±±
5 , H±

5 and H0
5) with common mass m5, a triplet (H±

3 , H0
3) with

common mass m3, and custodial singlets that mix with squared-mass matrix

M2 =

(
Z11v

2
φ vφvχ(Z12 − 2

√
3m2

3/v
2)

vφvχ(Z12 − 2
√
3m2

3/v
2) 3

2m
2
3 − 1

2m
2
5 + v2χ(Z22 − 12m2

3/v
2)

)
,

where the Zij depend on dimensionless quartic couplings.



The custodial singlet CP-even Higgs bosons are h and H with mh ≤ mH.

An approximate alignment limit can be realized in two different ways.

1. In the decoupling limit, h is SM-like and mH ≃ m3 ≃ m5 ≫ mh.
∗∗

2. vχ ≪ v. Then h is SM-like if Z11v
2 < 3

2m
2
3 − 1

2m
2
5. Otherwise, H is

SM-like.

Remark: Implications of a modified unitarity sum rule

In the Georgi-Machacek model, the existence of doubly-charged Higgs bosons

implies that

∑

i

g2hiW+W− = g2m2
W +

∑

k

|gφ++
k

W−W−|2 ,

where the sum is taken over all CP-even Higgs bosons of the model. The

presence on the last term on the right hand side above means that individual

hiV V couplings can exceed the corresponding coupling of the SM.
∗∗For details, see K. Hartling, K. Kumar, and H.E. Logan, Phys. Rev. D90, 015007 (2014).



It is convenient to write cH ≡ cos θH = vφ/(v
2
φ + 8v2χ)

1/2 , and sH ≡ sin θH.

Then, the following couplings are noteworthy:

H0
1W

+W− : gcHmW , H ′ 0
1 W+W− :

√
8/3gmWsH ,

H0
5W

+W− :
√
1/3gmWsH , H++

5 W−W− :
√
2gmWsH ,

where H0
1 and H ′ 0

1 are the custodial singlet interaction eigenstates. Note

that H ′ 0
1 and H0

5 , H
++
5 have no coupling to fermions, whereas

H0
1ff̄ :

gmq

2mW cH
.

In the absence of H0
1–H

′ 0
1 mixing, cH = 1 corresponds to the alignment limit.

But consider the strange case of sH =
√
3/8. In this case, the H ′ 0

1 coupling

to W+W− matches that of the SM. Nevertheless, this does not saturate the

HWW sum rule! Moreover, it is possible that the H ′ 0
1 W+W− coupling

is larger than gmW , without violating the HWW sum rule. Including

H0
1–H

′ 0
1 mixing allows for even more baroque possibilities not possible in a

multi-doublet extension of the SM.



Conclusions

Pursuing	Higgs	physics	
into	the	future	by	
theorists	and	
experimentalists	is	
likely	to	lead	to	
profound	insights	into	
the	fundamental	
theory	of	particles	and	
their	interactions.



Backup Slides



The alignment limit in the general 2HDM

The neutral Higgs mass-eigenstates, denoted by {h1, h2, h3}, are linear

combinations of {
√
2ReH0

1 − v ,
√
2ReH0

2 ,
√
2 ImH0

2}, and are determined

by diagonalizing the 3× 3 real symmetric squared-mass matrix,

M2 = v2









Z1 Re(Z6) −Im(Z6)

Re(Z6)
1
2Z345 + Y2/v

2 −1
2Im(Z5)

−Im(Z6) −1
2Im(Z5)

1
2Z345 − Re(Z5) + Y2/v

2









,

where Z345 ≡ Z3 + Z4 + Re(Z5). The diagonalizing matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23, such that

θ12 and θ13 are invariant whereas θ23 → θ23 − χ under the rephasing of H2.
∗

The couplings of
√
2Re H0

1 − v coincide with those of the SM Higgs boson.

Thus, the alignment limit corresponds to two limiting cases:

1. Y2 ≫ v2, corresponding to the decoupling limit.

2. |Z6| ≪ 1, corresponding to alignment with or without decoupling.

We identify the SM-like Higgs boson, h1 ≃
√
2ReH0

1 − v, with m2
h ≃ Z1v

2.
∗See H.E. Haber and D. O’Neil, Phys. Rev. D74, 015018 (2006) [Erratum: ibid., D74, 059905 (2006)].



The alignment limit of the general 2HDM in equations

To obtain the conditions in which h1 is the SM-like Higgs boson, noting that:

gh1V V

ghSMV V
= c12c13 , where V = W or Z ,

where hSM is the SM Higgs boson, we demand that

s12 , s13 ≪ 1 .

Here, s12 ≡ sin θ12, c12 ≡ cos θ12, etc. We denote the masses of the neutral

Higgs mass eigenstates by m1, m2 and m3. It follows that:

Z1v
2 = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 ,

Re(Z6 e
−iθ23) v2 = c13s12c12(m

2
2 −m2

1) ,

Im(Z6 e
−iθ23) v2 = s13c13(c

2
12m

2
1 + s212m

2
2 −m2

3) ,

Re(Z5 e
−2iθ23) v2 = m2

1(s
2
12 − c212s

2
13) +m2

2(c
2
12 − s212s

2
13)−m2

3c
2
13 ,

Im(Z5 e
−2iθ23) v2 = 2s12c12s13(m

2
2 −m2

1) .



Assuming no mass degeneracies in the neutral scalar sector, it then follows

that in the alignment limit,

s12 ≡ sin θ12 ≃
Re(Z6e

−iθ23)v2

m2
2 −m2

1

≪ 1 ,

s13 ≡ sin θ13 ≃ −Im(Z6e
−iθ23)v2

m2
3 −m2

1

≪ 1 ,

One additional small quantity characterizes the alignment limit,

Im(Z5e
−2iθ23) ≃ (m2

2 −m2
1)s12s13

v2
≃ −2 Im(Z2

6e
−2iθ23)v2

m2
3 −m2

1

≪ 1 .

Finally, the following mass relations in the alignment limit are noteworthy,

m2
1 ≃ Z1v

2 ,

m2
2 −m2

3 ≃ Re(Z5e
−2iθ23)v2 .



A symmetry origin for alignment without decoupling

For simplicity, we examine the CP-conserving 2HDM, for which one can

rephase the Higgs basis field H2 such that Z5, Z6 and Z7 are real. Given a

scalar potential in the Φ1–Φ2 basis, one can derive

Z6 = −1
2

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
s2β + λ6cβc3β + λ7sβs.eps3β ,

Z7 = −1
2

[
λ1s

2
β − λ2c

2
β + λ345c2β

]
s2β + λ6sβs3β + λ7cβc3β .

If the alignment condition Z6 = 0 holds independently of tanβ, then it

follows that†

λ1 = λ2 = λ345 , λ6 = λ7 = 0 .

where λ345 ≡ λ3 + λ4 + λ5. The above natural alignment condition can be

achieved by imposing a particular Higgs flavor or generalized CP symmetry.

Note that the natural alignment condition also sets Z7 = 0. Indeed, if the

natural alignment condition holds in one basis, then it holds in any basis.
†See P.S. Bhupal Dev and A. Pilaftsis, JHEP 1412, 024 (2014) 024 [Erratum: ibid. 1511, 147 (2015)].



The natural alignment condition can be relaxed. It is sufficient to impose

a discrete Z2 symmetry where the Higgs basis field H1 is unchanged but

H2 → −H2. It then follows that

Y3 = Z6 = Z7 = 0 .

Note that the minimum condition Y3 = −1
2Z6v

2 requires that Y3 = 0 if

Z6 = 0, so this Z2 symmetry cannot be softly broken.

No conditions are imposed on Z1, . . . , Z5. The natural alignment condition

is a special case where Z1 = Z2 = Z345.

Having imposed the above Z2 symmetry in the bosonic sector of the theory,

we can extend it to the Yukawa interactions. If we demand that all fermions

are even under the Z2 symmetry, then the H1 couplings to fermions are those

of the SM Higgs boson and the Yukawa couplings of H2 to the fermions are

absent. This is the inert doublet model (IDM).



Further details on the IDM

By imposing the discrete Z2 symmetry, the scalar potential is CP-conserving.

The SM Higgs state is h =
√
2Re H0

1 − v. The inert doublet is

H2 =

(
H+

(H + iA)/
√
2

)
,

where the mass eigenstates consist of two neutral scalars, H, A and a charged

Higgs pair. The physical Higgs masses are

m2
h = Z1v

2 , m2
H± = Y2 +

1
2Z3v

2 ,

m2
H,A = m2

H± + 1
2(Z4 ± |Z5|)v2 .

H and A have opposite CP-quantum numbers, but there is no interaction

that can determine separate CP quantum number for these states. The

lighter of these two states will henceforth be denoted as HL.

The lightest Z2–odd particle (LOP) is stable. If Z4 < |Z5| (in which case HL

is lighter than H±), then the LOP is a neutral scalar.



The LOP is a candidate for dark matter. Including the exclusion limits

from the current dark matter direct detection experiments, a cosmologically

relevant LOP is ruled out by Goudelis, Herrmann and St̊al for all LOP masses

below 500 GeV except for a narrow window around 1
2mh.

The viable IDM parameter space projected on the (MLOP , λL,S) plane imposing only the upper limit (left) and the upper and

lower limits (right) of the WMAP range, 0.1018 ≤ MLOPh2 ≤ 0.1234. The green points correspond to all valid points in the
scan, while the red and black regions show the points which remain valid when the model satisfies stability and perturbativity up to

a scale Λ = 104 GeV and the GUT scale Λ = 1016 GeV, respectively. Above, λL,S ≡ 1
2(Z3 + Z4 ∓ |Z5|); when multiplied

by v the latter corresponds to the hHLHL coupling. Taken from A. Goudelis, B. Herrmann and O. St̊al, JHEP 1309 (2013) 106.



The MSSM Higgs sector in light of precision Higgs data

The observed Higgs boson at 125 GeV is SM-like (to within roughly an

accuracy of 20%). The common wisdom is that this observation implies

that additional Higgs states of the MSSM Higgs sector must be rather heavy

(corresponding to the decoupling limit).

Indeed, ATLAS has claimed to rule out mA <∼ 400 GeV based on Run 1

precision Higgs data. But, one needs to be careful about the underlying

assumptions...

For example, in the so called MSSM malt
h benchmark scenario introduced in

M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Phys. Rev.

D 91, 035003 (2015), the Run 1 precision Higgs data places virtually no

bound on mA if tan β ∼ 10. This is a consequence of the alignment limit

without decoupling, which is achieved in the malt
h benchmark scenario when

tanβ ≃ 10.
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obtained with HiggsSignals, in the alignment benchmark scenario of Carena et al. (op. cit.).

From P. Bechtle, S. Heinemeyer, O. St̊al, T. Stefaniak and G. Weiglein, EPJC 75, 421 (2015).



Direct searches for the additional Higgs states also suggest that these states

must be heavy, although the sensitivity of these searches are limited if

tanβ <∼ 10.
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Adding a Higgs singlet to the 2HDM

Consider a Higgs sector that consists of two hypercharge-one complex doublet

and a complex neutral singlet S. We can define the doublet fields of the

Higgs basis, H1 and H2 as before. The relevant scalar potential is more

complicated than that of the 2HDM. Here we focus on the terms that are

relevant for the scalar squared-mass matrices.

V ∋ . . . + 1
2Z1(H

†
1H1)

2
+ . . . +

[

1
2Z5(H

†
1H2)

2
+ Z6(H

†
1H1)H

†
1H2 + h.c.

]

+ . . .

+S
†
S
[

Zs1H
†
1H1 + . . . + (Zs3H

†
1H2 + h.c.) + Zs4S

†
S
]

+
{

Zs5H
†
1H1S

2 + . . . + Zs7H
†
1H2S

2 + Zs8H
†
2H1S

2 + Zs9S
†S S2 + Zs10S

4 + h.c.
}

+
[

C1H
†
1H1S + . . . + C3H

†
1H2S + C4H

†
2H1S + C5(S

†
S)S + C6S

3
+ h.c.

]

.

For simplicity, we shall assume that the scalar potential is CP-invariant. We

then write the squared-mass matrix of the CP-even Higgs bosons with respect

to the basis {
√
2Re H0

1 − v ,
√
2Re H0

2 ,
√
2 (Re S − vs)}.



The squared-mass matrix for the CP-even scalars is a real symmetric matrix,

M2
S =

















Z1v
2 Z6v

2
√
2 v

[

C1 + (Zs1 + 2Zs5)vs

]

M
2

A + Z5v
2 v

√
2

[

C3 + C4 + 2(Zs3 + Zs7 + Zs8)vs

]

−C1

v2

2vs

+ 3(C5 + C6)vs + 4(Zs4 + 2Zs9 + 2Zs10)v
2
s

















,

where M 2
A is the 11 element of the CP-odd squared-mass matrix with respect

to the basis {
√
2 Im H0

2 ,
√
2 Im S}.

Exact alignment occurs when (M2
S)12 = (M2

S)13 = 0. That is,

Z6 = 0 , C1 + (Zs1 + 2Zs5)vs = 0 .

The decoupling limit corresponds to MA ≫ v and vs ≫ v and yields

approximate alignment.

Approximate alignment can also be achieved with a combination of a subset

of the above conditions. For example, C1+(Zs1+2Zs5)vs ≃ 0 and MA ≫ v

[with Z6 ∼ O(1)] yields approximate alignment.



The alignment limit of the Higgs sector of the NMSSM

In the NMSSM, including the leading one-loop radiative corrections,

Z1v
2 = (m2

Z − 1
2λ

2v2)c22β + 1
2λ

2v2 +
3v2s4βh

4
t

8π2

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
,

Z6v
2 = −s2β

{
(m2

Z − 1
2λ

2v2)c2β −
3v2s2βh

4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]}
.

The exact alignment limit requires that Z6 = 0 and C1+(Zs1+2Zs5)vs = 0.

In the NMSSM, the latter condition yields

M
2

As
2
2β

4µ2
+

κs2β
2λ

= 1 ,

where M 2
A ≡ 2µ(Aλ + κvs)/s2β and µ ≡ λvs. Note that κ governs the

self-coupling of the singlet scalar field.



In contrast to the MSSM, in the NMSSM one can set Z6 = 0 and obtain

mh = 125 GeV, with only small contributions from the one-loop radiative

corrections. This leads to a preferred choice of NMSSM parameters,‡

λ ∼ 0.65 , tanβ ∼ 2 .

Β

Λ

Λ = ±

=

±
=

=

Β

H
L

Λ =

‡See M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Phys. Rev. D 93, 035013 (2016).



The second alignment limit condition leads to further correlations of the

NMSSM parameter space.

H L

H
L

Λ Κ = Λ �

H L Β = =

Near the alignment limit, we have mA ≃ mH ≃ MA.




