Numerical Methods for Solving Large Linear Systems

Paolo Bientinesi

AICES, RWTH Aachen
pauldj@aices.rwth-aachen.de
3rd LHC Detector Alignment Workshop June 15-16, 2009 CERN, Switzerland

Al ces ces

 RWIH
(1) High Performance Computing

(2) Sparse Matrices

(3) Linear Systems
(4) Error Analysis
(5) Eigensolvers

Cache misses. Data movement. Storage by row/columns. Data locality.AI

Linear Algebra operations decomposed into simpler operations.

Linear Algebra operations decomposed into simpler operations.

$$
\begin{array}{llc}
\text { BLAS-1: } & y:=y+\alpha x & x, y \in \mathbb{R}^{n} \\
& d o t:=\alpha+x^{T} y & \\
\text { BLAS-2: } & y:=y+A x & L \in R^{n \times n}, x, y \in R^{n} \\
& y:=A^{-1} x & L \in R^{n \times n} \wedge \text { triangular } \\
\text { BLAS-3: } & C:=C+A B & A, B, C \in R^{n \times n} \\
& C:=L^{-1} B & L \in R^{n \times n} \wedge \text { triangular }
\end{array}
$$

Linear Algebra operations decomposed into simpler operations.

$$
\begin{array}{llc}
\text { BLAS-1: } & y:=y+\alpha x & x, y \in \mathbb{R}^{n} \\
& d o t:=\alpha+x^{T} y & \\
\text { BLAS-2: } & y:=y+A x & L \in R^{n \times n}, x, y \in R^{n} \\
& y:=A^{-1} x & L \in R^{n \times n} \wedge \text { triangular } \\
\text { BLAS-3: } & C:=C+A B & A, B, C \in R^{n \times n} \\
& C:=L^{-1} B & L \in R^{n \times n} \wedge \text { triangular }
\end{array}
$$

BLAS	\#FLOPS	Mem. refs.	Ratio	Proc. use
Level 1	$2 n$	$3 n$	$\mathbf{2 / 3}$	low
Level 2	$2 n^{2}$	n^{2}	$\mathbf{2}$	medium-low
Level 3	$2 n^{3}$	$4 n^{2}$	$\boldsymbol{n} / \mathbf{2}$	very high

(1) High Performance Computing

(2) Sparse Matrices

3 Linear Systems
(4) Error Analysis
(5) Eigensolvers

What is a Sparse Matrix?

- Sparse matrix: concept of convenience.
- No formal definition in terms of number of non-zeros, patterns, properties.
- Practical definition in terms of cost: operation count, storage requirement, ...
- Sparse matrix: concept of convenience.
- No formal definition in terms of number of non-zeros, patterns, properties.
- Practical definition in terms of cost: operation count, storage requirement, ...

A matrix is sparse when is has enough zeros that pays off to exploit them
 (Wilkinson)

Objectives:

- Storage space.
- Accessing, inserting matrix elements.
- Matrix operations and fill in.

Sparse Matrices - Structured Matrices — Dense Matrices

$$
\left[\begin{array}{lllllll}
\star & & & & & \star & \\
& \star & \star & & \star & & \\
& \star & \star & & & & \star \\
& & & \star & & & \star \\
& \star & & & \star & & \\
\star & & & & & \star & \\
& & \star & \star & & & \star
\end{array}\right]\left[\begin{array}{lllllll}
\star & \star & & & & & \\
\star & \star & \star & & & & \\
& \star & \star & \star & & & \\
& & \star & \star & \star & & \\
& & & \star & \star & \star & \\
& & & & \star & \star & \star \\
& & & & & \star & \star
\end{array}\right]
$$

- Structured matrices:
bidiagonal, tridiagonal, banded, blocked, ...
Small number of non-zeros (NNZ), but known structure!

Sparsity:
interactions between particles, components, neighbors, degrees of freedom.

The finer the discretization, the higher the sparsity.

- 50% of NNZ \rightarrow NOT a sparse matrix.
- 10% of NNZ: if $n=100.000$, then 10.000 interations per row. Still not very sparse.
- Large sparse matrices: $\mathrm{NNZ} \ll 1 \%$.

(1) High Performance Computing

- Sparse Matrices
(3) Linear Systems
(4) Error Analysis
(5) Eigensolvers

Direct methods: LU factorization, Cholesky,
Iterative methods: Gauss-Seidel, Conjugate Gradient, GMRES,

Direct methods: LU factorization, Cholesky,
Iterative methods: Gauss-Seidel, Conjugate Gradient, GMRES,
Dense vs. Sparse (vs. Structured)

Direct Methods vs. Iterative Methods
Direct

Iterative

- Accuracy: fixed (cond num)
- Matrix-matrix operations
- Cost: $O\left(n^{3}\right)$, predictable
- Factorization re-use: multiple right-hand sides
- Fill-in, reordering
- Variable accuracy
- Matrix-vector operations
- Cost not known: $k O\left(n^{2}\right)$

Convergence (spectrum)
Preconditioning
Stopping criteria

- Single/few right-hand sides
- Exploit sparsity

Direct Methods vs. Iterative Methods

Direct
Iterative

- Accuracy: fixed (cond num)
- Matrix-matrix operations
- Cost: $O\left(n^{3}\right)$, predictable
- Factorization re-use: multiple right-hand sides
- Fill-in, reordering

BLAS, LAPACK, FLAME \& PETSc HSL, MUMPS, UMFPACK, ...

- Variable accuracy
- Matrix-vector operations
- Cost not known: $k O\left(n^{2}\right)$

Convergence (spectrum)
Preconditioning
Stopping criteria

- Single/few right-hand sides
- Exploit sparsity

PETSc, Trilinos, ...

Google: "Linear Algebra Software"
Survey of freely available libraries

Parallelism — Multi-cores

30k, 1 core
 Memory: 7GB
 LU fact: 1640 secs (28m)
 $\mathrm{Ax}=\mathrm{b}: \quad 1.9 \mathrm{secs}$ (1 rhs)
 AX = B: $\quad 172$ secs (2 k rhs)

Parallelism — Multi-cores

30k, 1 core
 Memory: 7GB
 LU fact: 1640 secs (28m)
 $\mathrm{Ax}=\mathrm{b}: \quad 1.9 \mathrm{secs}$ (1 rhs)
 AX = B: $\quad 172$ secs (2 k rhs)

40k, 8-core

$$
\begin{array}{ll}
\hline \text { Memory: } & \text { 12GB } \\
\text { LU fact: } & 513 \operatorname{secs}(9 \mathrm{~m}) \\
\text { Ax = b: } & 2.1 \text { secs } \\
\text { AX = B: } & 93.5 \text { secs }
\end{array}
$$

30k, 1 core

Memory: 7GB
LU fact: 1640 secs (28m)
$\mathrm{Ax}=\mathrm{b}: \quad 1.9 \mathrm{secs}$ (1 rhs)
$A X=B: \quad 172$ secs (2 k rhs)

40k, 8-core

Memory:	12GB
LU fact:	513 secs (9m)
Ax = b:	2.1 secs
AX = B:	93.5 secs

LU fact: $\quad 513$ secs (9 m)
Ax = b: 2.1 secs
$A X=B: \quad 93.5$ secs

100k - extrapolating:

Memory	80 GB
\# of 8-cores	8 with 10-12GB each
LU fact	20 minutes

(1) High Performance Computing

(2) Sparse Matrices
(3) Linear Systems
(4) Error Analysis
(5) Eigensolvers

Perturbation Results

$$
A x=b
$$

- Acquisition and representation errors:

$$
\begin{aligned}
& A \rightarrow \hat{A}=A+\delta A \quad b \rightarrow \hat{b}=b+\delta b \\
& (A+\delta A) \hat{x}=b+\varnothing \\
& \text { - } \hat{x}=x+\delta x \\
& \text { - } \frac{\|\delta x\|}{\|x\|}=\mu(A) \frac{\|\delta A\| /\|A\|+\|\delta b\| /\|b\|}{1-\mu(A)\|\delta A\| /\|A\|} \\
& \text { - } \mu(A)=\|A\|\left\|A^{-1}\right\| \text { is the condition number of } A
\end{aligned}
$$

Sensitivity to perturbations. Independent of the solution method. Well vs. ill conditioned problems.

$$
f: X \rightarrow Y \quad \hat{f} \text { is an implementation of } f
$$

- Question: $|f-\hat{f}|$?

Exact arithmetic

$$
x \rightarrow f(x)
$$

Floating point arithmetic

$$
\begin{aligned}
& x \rightarrow \hat{f}(x) \\
& (\hat{x} \rightarrow \hat{f}(\hat{x}))
\end{aligned}
$$

$$
f: X \rightarrow Y \quad \hat{f} \text { is an implementation of } f
$$

- Question: $|f-\hat{f}|$?

Exact arithmetic

$$
x \rightarrow f(x)
$$

Floating point arithmetic

$$
\begin{aligned}
& x \rightarrow \hat{f}(x) \\
& (\hat{x} \rightarrow \hat{f}(\hat{x}))
\end{aligned}
$$

- Forward stability: $\quad \forall x\|f(x)-\hat{f}(x)\|$ is small.
- Let \bar{x} be such that $\hat{f}(x)=f(\bar{x})$. Exact sol. to a different probl. Backward stability: $\quad \forall x \exists \bar{x} .\|x-\bar{x}\|$ is small.

Factorizations are backward stable. Iterative methods \rightarrow convergence \& convergence rate.

Symmetric Eigenproblem

$$
A V=V \Lambda
$$

$$
A V=V \Lambda
$$

- Three stages:

1) Reduction to tridiagonal form
2) Tridiagonal eigensolver $(T Z=Z \Lambda)$
3) Backtransformation

$$
A V=V \Lambda
$$

- Three stages:

1) Reduction to tridiagonal form
2) Tridiagonal eigensolver $(T Z=Z \Lambda)$
3) Backtransformation

- Reduction: $O\left(n^{3}\right)$, perfectly stable, destroys sparsity.
- Backtransformation: matrix-matrix multiplication, $O\left(n^{3}\right)$, perfectly stable.
- Tridiagonal eigensolvers: MR^{3}, $\mathrm{QR}, \mathrm{D} \& \mathrm{C}, \ldots$

Cost: $O\left(n^{2}\right)-O\left(n^{3}\right)$
Accuracy: $\left\|Z^{T} Z-I\right\| \leq c n \epsilon \quad \wedge \quad\|T Z-Z \Lambda\| \leq c n \epsilon\|T\|$

$$
A V=V \Lambda
$$

- Three stages:

1) Reduction to tridiagonal form
2) Tridiagonal eigensolver $(T Z=Z \Lambda)$
3) Backtransformation

- Reduction: $O\left(n^{3}\right)$, perfectly stable, destroys sparsity.
- Backtransformation: matrix-matrix multiplication, $O\left(n^{3}\right)$, perfectly stable.
- Tridiagonal eigensolvers: $\mathrm{MR}^{3}, \mathrm{QR}, \mathrm{D} \& \mathrm{C}, \ldots$

Cost: $O\left(n^{2}\right)-O\left(n^{3}\right)$
Accuracy: $\left\|Z^{T} Z-I\right\| \leq c n \epsilon \quad \wedge \quad\|T Z-Z \Lambda\| \leq c n \epsilon\|T\|$

- Eigenvalues AND(?) eigenvectors? How many? Accuracy?
- LAPACK, PMR3, ScaLAPACK. Sparse solver: ARPACK.
- Exploiting structures, properties.
- Knowledge from applications.
- Massive parallelism: hybrid multi-core + distributed architectures.
- Exploiting structures, properties.
- Knowledge from applications.
- Massive parallelism: hybrid multi-core + distributed architectures.

Thank you!

For more information: pauldj@aices.rwth-aachen.de

