Numerical Methods for Solving Large Linear Systems

Paolo Bientinesi

AICES, RWTH Aachen pauldj@aices.rwth-aachen.de

3rd LHC Detector Alignment Workshop June 15-16, 2009 CERN, Switzerland

- High Performance Computing
- Sparse Matrices
- 3 Linear Systems
- Error Analysis
- 5 Eigensolvers

Memory Hierarchy

Cache misses. Data movement. Storage by row/columns. Data locality.

Modularity and Data Movement

Linear Algebra operations decomposed into simpler operations.

Modularity and Data Movement

Linear Algebra operations decomposed into simpler operations.

$$\begin{array}{lll} \text{BLAS-1:} & y:=y+\alpha x & x,y\in\mathbb{R}^n\\ & dot:=\alpha+x^Ty & & & \\ \text{BLAS-2:} & y:=y+Ax & L\in R^{n\times n},\ x,y\in R^n\\ & y:=A^{-1}x & L\in R^{n\times n}\wedge \text{triangular} \\ \\ \text{BLAS-3:} & C:=C+AB & A,B,C\in R^{n\times n}\\ & C:=L^{-1}B & L\in R^{n\times n}\wedge \text{triangular} \end{array}$$

Modularity and Data Movement

Linear Algebra operations decomposed into simpler operations.

$$\begin{array}{lll} \text{BLAS-1:} & y:=y+\alpha x & x,y\in\mathbb{R}^n\\ & dot:=\alpha+x^Ty & & \\ \text{BLAS-2:} & y:=y+Ax & L\in R^{n\times n},\ x,y\in R^n\\ & y:=A^{-1}x & L\in R^{n\times n}\wedge \text{triangular} \\ \\ \text{BLAS-3:} & C:=C+AB & A,B,C\in R^{n\times n}\\ & C:=L^{-1}B & L\in R^{n\times n}\wedge \text{triangular} \end{array}$$

BLAS	#FLOPS	Mem. refs.	Ratio	Proc. use
Level 1	2n	3n	2/3	low
Level 2	$2n^2$	n^2	2	medium-low
Level 3	$2n^3$	$4n^2$	n/2	very high

- High Performance Computing
- Sparse Matrices
- Linear Systems
- Error Analysis
- 5 Eigensolvers

What is a Sparse Matrix?

- Sparse matrix: concept of convenience.
- No formal definition in terms of number of non-zeros, patterns, properties.
- Practical definition in terms of cost: operation count, storage requirement, ...

What is a Sparse Matrix?

- Sparse matrix: concept of convenience.
- No formal definition in terms of number of non-zeros, patterns, properties.
- Practical definition in terms of cost: operation count, storage requirement, ...

A matrix is sparse when is has enough zeros that pays off to exploit them (Wilkinson)

Objectives:

- Storage space.
- Accessing, inserting matrix elements.
- Matrix operations and fill in.

Sparse Matrices

Sparse Matrices — Structured Matrices — Dense Matrices

 Structured matrices: bidiagonal, tridiagonal, banded, blocked, ...

Small number of non-zeros (NNZ), but known structure!

Sparse Matrices

Sparsity:

interactions between particles, components, neighbors, degrees of freedom.

The finer the discretization, the higher the sparsity.

- 50% of NNZ → NOT a sparse matrix.
- 10% of NNZ: if n=100.000, then 10.000 interations per row. Still not very sparse.
- Large sparse matrices: NNZ ≪ 1%.

- High Performance Computing
- Sparse Matrices
- 3 Linear Systems
- 4 Error Analysis
- 5 Eigensolvers

Linear Systems

Direct methods: LU factorization, Cholesky,

Iterative methods: Gauss-Seidel, Conjugate Gradient, GMRES,

Linear Systems

Direct methods: LU factorization, Cholesky,

Iterative methods: Gauss-Seidel, Conjugate Gradient, GMRES,

Dense vs. Sparse (vs. Structured)

Direct Methods vs. Iterative Methods

Iterative

- Accuracy: fixed (cond num)
- Matrix-matrix operations
- Cost: $O(n^3)$, predictable

- Factorization re-use: multiple right-hand sides
- Fill-in, reordering

- Variable accuracy
- Matrix-vector operations
- Cost not known: $k O(n^2)$ Convergence (spectrum) Preconditioning Stopping criteria
- Single/few right-hand sides
- Exploit sparsity

Direct Methods vs. Iterative Methods

Direct

- Accuracy: fixed (cond num)
- Matrix-matrix operations
- Cost: $O(n^3)$, predictable

- Factorization re-use: multiple right-hand sides
- Fill-in, reordering

BLAS, LAPACK, FLAME & PETSc HSL, MUMPS, UMFPACK, . . .

Iterative

- Variable accuracy
- Matrix-vector operations
- Cost not known: $k O(n^2)$ Convergence (spectrum) Preconditioning Stopping criteria
- Single/few right-hand sides
- Exploit sparsity

PETSc, Trilinos, ...

Google: "Linear Algebra Software"

Survey of freely available libraries

Parallelism — Multi-cores

30k, 1 core

Memory: 7GB

LU fact: 1640 secs (28m) Ax = b: 1.9 secs (1 rhs) AX = B: 172 secs (2k rhs)

Parallelism — Multi-cores

30k, 1 core

Memory: 7GB

LU fact: 1640 secs (28m)Ax = b: 1.9 secs (1 rhs)

AX = B: 1.3 secs (1 ms)

40k, 8-core

Memory: 12GB

LU fact: 513secs (9m)

Ax = b: 2.1secs

AX = B: 93.5secs

Parallelism — Multi-cores

30k, 1 core

Memory: 7GB

LU fact: 1640 secs (28m) Ax = b: 1.9 secs (1 rhs)

AX = B: 172 secs (2k rhs)

40k. 8-core

12GB Memory:

LU fact: 513secs (9m)

Ax = b: 2.1secs

AX = B: 93.5secs

100k — extrapolating:

Memory 80GB

of 8-cores 8 with 10-12GB each

LU fact 20 minutes

- High Performance Computing
- Sparse Matrices
- 3 Linear Systems
- 4 Error Analysis
- 5 Eigensolvers

Perturbation Results

$$Ax = b$$

Acquisition and representation errors:

$$A \to \hat{A} = A + \delta A$$
 $b \to \hat{b} = b + \delta b$

$$(A + \delta A)\hat{x} = b + \delta b$$

- $\bullet \ \hat{x} = x + \delta x$
- $\frac{\|\delta x\|}{\|x\|} = \mu(A) \frac{\|\delta A\|/\|A\| + \|\delta b\|/\|b\|}{1 \mu(A)\|\delta A\|/\|A\|}$
- $\mu(A) = ||A|| ||A^{-1}||$ is the **condition number** of A

Sensitivity to perturbations. Independent of the solution method. Well vs. ill conditioned problems.

Backward/Forward Stability

$$f:X \to Y$$
 \hat{f} is an implementation of f

• Question: $|f - \hat{f}|$?

Exact arithmetic

$$x \to f(x)$$

Floating point arithmetic

$$x \to \hat{f}(x)$$
$$(\hat{x} \to \hat{f}(\hat{x}))$$

Backward/Forward Stability

$$f:X o Y$$
 \hat{f} is an implementation of f

• Question: $|f - \hat{f}|$?

Exact arithmetic Floating point arithmetic
$$x \to f(x)$$
 $x \to \hat{f}(x)$ $(\hat{x} \to \hat{f}(\hat{x}))$

- Forward stability: $\forall x \ \|f(x) \hat{f}(x)\|$ is small.
- Let \bar{x} be such that $\hat{f}(x) = f(\bar{x})$. Exact sol. to a different probl. Backward stability: $\forall x \ \exists \bar{x} \ . \ \|x \bar{x}\|$ is small.

Factorizations are backward stable. Iterative methods \rightarrow convergence & convergence rate.

$$AV=V\Lambda$$

$$AV = V\Lambda$$

- Three stages:
 - 1) Reduction to tridiagonal form
 - 2) Tridiagonal eigensolver ($TZ = Z\Lambda$)
 - 3) Backtransformation

$$AV = V\Lambda$$

- Three stages:
 - 1) Reduction to tridiagonal form
 - 2) Tridiagonal eigensolver ($TZ = Z\Lambda$)
 - 3) Backtransformation
- Reduction: $O(n^3)$, perfectly stable, destroys sparsity.
- \bullet Backtransformation: matrix-matrix multiplication, $O(n^3),$ perfectly stable.
- Tridiagonal eigensolvers: MR³, QR, D&C, ...

Accuracy:
$$\|Z^TZ - I\| \le c \ n\epsilon \quad \land \quad \|TZ - Z\Lambda\| \le c \ n\epsilon \|T\|$$

$$AV = V\Lambda$$

- Three stages:
 - 1) Reduction to tridiagonal form
 - 2) Tridiagonal eigensolver ($TZ = Z\Lambda$)
 - 3) Backtransformation
- Reduction: $O(n^3)$, perfectly stable, destroys sparsity.
- ullet Backtransformation: matrix-matrix multiplication, $O(n^3)$, perfectly stable.
- Tridiagonal eigensolvers: MR3, QR, D&C, ...

Accuracy:
$$||Z^TZ - I|| \le c \ n\epsilon \quad \land \quad ||TZ - Z\Lambda|| \le c \ n\epsilon ||T||$$

- Eigenvalues AND(?) eigenvectors? How many? Accuracy?
- LAPACK, PMR3, ScaLAPACK. Sparse solver: ARPACK.

Future?

- Exploiting structures, properties.
- Knowledge from applications.
- Massive parallelism: hybrid multi-core + distributed architectures.

Future?

- Exploiting structures, properties.
- Knowledge from applications.
- Massive parallelism: hybrid multi-core + distributed architectures.

Thank you!

For more information: pauldj@aices.rwth-aachen.de

