
Numerical Methods for
Solving Large Linear Systems

Paolo Bientinesi

AICES, RWTH Aachen
pauldj@aices.rwth-aachen.de

3rd LHC Detector Alignment Workshop
June 15-16, 2009

CERN, Switzerland

Paolo Bientinesi (AICES, RWTH Aachen) Solving Large Linear Systems June 15th, 2009 1 / 17



1 High Performance Computing

2 Sparse Matrices

3 Linear Systems

4 Error Analysis

5 Eigensolvers

Paolo Bientinesi (AICES, RWTH Aachen) Solving Large Linear Systems June 15th, 2009 2 / 17



Memory Hierarchy

Cache misses. Data movement. Storage by row/columns. Data locality.
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Modularity and Data Movement

Linear Algebra operations decomposed into simpler operations.

BLAS-1: y := y + αx x, y ∈ Rn

dot :=α + xT y

BLAS-2: y := y + Ax L ∈ Rn×n, x, y ∈ Rn

y :=A−1x L ∈ Rn×n∧ triangular

BLAS-3: C :=C + AB A,B, C ∈ Rn×n

C :=L−1B L ∈ Rn×n∧ triangular

BLAS #FLOPS Mem. refs. Ratio Proc. use
Level 1 2n 3n 2/3 low

Level 2 2n2 n2 2 medium-low

Level 3 2n3 4n2 n/2 very high
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What is a Sparse Matrix?

Sparse matrix: concept of convenience.

No formal definition in terms of number of non-zeros, patterns, properties.

Practical definition in terms of cost:
operation count, storage requirement, . . .

A matrix is sparse when is has enough zeros
that pays off to exploit them (Wilkinson)

Objectives:
Storage space.
Accessing, inserting matrix elements.
Matrix operations and fill in.
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Sparse Matrices

Sparse Matrices — Structured Matrices — Dense Matrices
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Structured matrices:
bidiagonal, tridiagonal, banded, blocked, . . .

Small number of non-zeros (NNZ), but known structure!
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Sparse Matrices

Sparsity:
interactions between particles, components, neighbors, degrees of freedom.

•0 •1 •2 •3 •4

•5 •6 •7 •8 •9

•10 •11 F12 •13 •14

•15 •16 •17 •18 •19

The finer the discretization, the higher the sparsity.

50% of NNZ → NOT a sparse matrix.
10% of NNZ: if n = 100.000, then 10.000 interations per row.
Still not very sparse.
Large sparse matrices: NNZ � 1%.
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Linear Systems

Direct methods: LU factorization, Cholesky, . . . .

Iterative methods: Gauss-Seidel, Conjugate Gradient, GMRES, . . . .

Dense vs. Sparse (vs. Structured)

Dense
matrices

Sparse
matrices

Direct
methods

Iterative
methods
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Direct Methods vs. Iterative Methods

Direct Iterative

Accuracy: fixed (cond num)
Matrix-matrix operations
Cost: O(n3), predictable

Factorization re-use: multiple
right-hand sides
Fill-in, reordering

Variable accuracy
Matrix-vector operations
Cost not known: k O(n2)
Convergence (spectrum)
Preconditioning
Stopping criteria
Single/few right-hand sides

Exploit sparsity

BLAS, LAPACK, FLAME & PETSc
HSL, MUMPS, UMFPACK, . . . PETSc, Trilinos, . . .

Google: “Linear Algebra Software”
Survey of freely available libraries
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Parallelism — Multi-cores

30k, 1 core
Memory: 7GB
LU fact: 1640 secs (28m)
Ax = b: 1.9 secs (1 rhs)
AX = B: 172 secs (2k rhs)

40k, 8-core
Memory: 12GB
LU fact: 513secs (9m)
Ax = b: 2.1secs
AX = B: 93.5secs

100k — extrapolating:
Memory 80GB
# of 8-cores 8 with 10-12GB each
LU fact 20 minutes
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Perturbation Results

Ax = b

Acquisition and representation errors:

A → Â = A + δA b → b̂ = b + δb

(A + δA)x̂ = b + δb

x̂ = x + δx

‖δx‖
‖x‖

= µ(A)
‖δA‖/‖A‖+ ‖δb‖/‖b‖
1− µ(A)‖δA‖/‖A‖

µ(A) = ‖A‖‖A−1‖ is the condition number of A

Sensitivity to perturbations. Independent of the solution method.
Well vs. ill conditioned problems.
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Backward/Forward Stability

f : X → Y f̂ is an implementation of f

Question: |f − f̂ | ?

Exact arithmetic Floating point arithmetic
x → f(x) x → f̂(x)

(x̂ → f̂(x̂))

Forward stability: ∀x ‖f(x)− f̂(x)‖ is small.

Let x̄ be such that f̂(x) = f(x̄). Exact sol. to a different probl.
Backward stability: ∀x ∃x̄ . ‖x− x̄‖ is small.

Factorizations are backward stable.
Iterative methods → convergence & convergence rate.
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Symmetric Eigenproblem

AV = V Λ

Three stages:
1) Reduction to tridiagonal form
2) Tridiagonal eigensolver (TZ = ZΛ)
3) Backtransformation

Reduction: O(n3), perfectly stable, destroys sparsity.
Backtransformation: matrix-matrix multiplication, O(n3), perfectly stable.
Tridiagonal eigensolvers: MR3, QR, D&C, . . .

Cost: O(n2) — O(n3)

Accuracy: ‖ZT Z − I‖ ≤ c nε ∧ ‖TZ − ZΛ‖ ≤ c nε‖T‖

Eigenvalues AND(?) eigenvectors? How many? Accuracy?
LAPACK, PMR3, ScaLAPACK. Sparse solver: ARPACK.
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Future?

Exploiting structures, properties.
Knowledge from applications.

Massive parallelism:
hybrid multi-core + distributed architectures.

Thank you!

For more information: pauldj@aices.rwth-aachen.de

Paolo Bientinesi (AICES, RWTH Aachen) Solving Large Linear Systems June 15th, 2009 17 / 17



Future?

Exploiting structures, properties.
Knowledge from applications.

Massive parallelism:
hybrid multi-core + distributed architectures.

Thank you!

For more information: pauldj@aices.rwth-aachen.de

Paolo Bientinesi (AICES, RWTH Aachen) Solving Large Linear Systems June 15th, 2009 17 / 17


	High Performance Computing
	Sparse Matrices
	Linear Systems
	Error Analysis
	Eigensolvers

