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Abstract

The large track detectors of the LHC experiments require an accurate alignment with the determination of several 10 k parameters in order to allow to make use
of the potential high spatial resolution, necessary for the physics goals. The experiment-independent Millepede program performs a simultaneous fit of (global)
alignment parameters and (local) track parameters, and allows to include e.g. laser and survey data in the fit. The Millepede II version, on the web since May
2007, is improved in 2009. The 2009 version allows, in addition to equality constraints, a regularized solution in order to reduce weakly-defined modes that could
distort the result. The stability of the mathematical solution methods is increased by improved pre-conditioning, line-search and outlier treatment.
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1. Introduction

Millepede (I): Since 1998 used in H1 for Vertex det. and Central Jet Chamber; used with up to
4 800 parameters (HERAb 1999). on the web in 2000

Goal of Millepede II development: on the web 2007, 25.th May; 2009 version soon
Construct and minimize objective function F (p, q), which depends on the alignment corrections p
and all track parameters q and . . .

F (p, q) =
∑

data sets

[∑
events

(∑
tracks

(∑
hits

∆2
i /σ

2
i

))]
+
∑

[terms depending on Laser data and Survey data]

with fastest and most precise method: for up to 100 000 alignment parameters, with equality
constraints, from Millions of tracks + suppl. data

• Experiment-independent

• Simultaneous fit of all alignment and local (track, Laser, . . . ) parameters (Millepede principle)
in a single step, using large Hessian matrix,

• include detailed outlier treatment: reject or down-weight bad data (method of M-estimates).
Note: initial deviations may be large due to misalignment!

Note: standard methods would require space ∝ n2 → 80 Gbyte and cpu-time ∝ n3 → 1 year
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A reference alignment job

From talk at Ringberg 2006, June 12-16 (ATLAS meeting):
Start of development in May 2005 after discussions with Hamburg cms group, with aim:

• alignment with up to 100 000 parameters in a reasonable time on a standard PC;

What is a reasonable time? . . . hours . . .

Data for Millepede alignment using cms alignment files, shown with this colour:

1 596 489 track
47 655 alignment parameters

8 constraint equations

5 parameters/track
≤ 54 hits/track

≤ 166 global parameters/track

with outlier down-weighting in 3 iterations, requiring 3 × 1 596 489 local fits per step,
and solution of matrix equation with 47 661 × 47 661 symmetric matrix C using Minres.

. . . without regularisation
1 hour 54 min total time

471 int. iterations solution (Minres)
12 minutes of matrix equation

. . . with regularisation and pre-sigmas
1 hour 15 min total time

112 int. iterations solution (Minres)
3 minutes of matrix equation
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2. The Millepede algorithm

Optimal solution in the least squares sense of the equation Jx ∼= z, with (small) corrections x to
alignment and track parameters and residuals z from measured data y, is defined by the requirement

F (x) = ‖Jx− z‖2 = minimum

From ∂F/∂x = 0 (with covariance matrix V z of the data):

Matrix equation:
(
JTV −1

y J
)

x = JTV −1
y z to be solved

C x = b

The solution vector x is a linear transformation of the residual vector z:

x = C−1 b =
[(

JTV −1
y J

)−1 (
JTV −1

y

)]
z

Solution by inversion would be limited to small matrix dimensions n , because of cpu-time ∝ n3.

Practicable method for the solution of the matrix equation

• space: make use of sparse structure of matrix: space requirement � n2/2;

• cpu-time: make use of fast solution methods e.g. based of Krylov sequence like Minres.
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How to use Millepede

Input = sets of single measured data points from local fits (track, cosmics, halo muons, survey data,
Laser data . . . )

yi = f(xi, q, p)︸ ︷︷ ︸
fit function

+
ν∑

j=1

(
∂f

∂qj

)
∆qj︸ ︷︷ ︸

local derivatives

+
∑
`∈Ω

(
∂f

∂p`

)
∆p`︸ ︷︷ ︸

global derivatives

+ ε ε ∈ N(0, σ2
i ); ` = parameter label︸ ︷︷ ︸

positive integer

Derivatives express the change of residual zi = yi − f(xi, q, p), if qj or p` is changed by ∆qj or ∆p`.

The Jacobian J constructed from the (local and global) derivatives, and the correction vector x
includes all corrections ∆qj or ∆p` of local and global parameters.

(1) File with zi = yi−f(xi, q, p),
σi and all derivatives written
within user program by Mille.

Allows to repeat local fit
(only last iteration) in Pede.

User program Mille-

?�� �data files

Pede program

? ?

?

�� ��� �

�� �

text files data files

text files

(2) Data files are processed in stand-alone program Pede, steered by text files.

V. Blobel – University of Hamburg 3rd LHC Detector Alignment Workshop page 5



The Millepede principle Sparse matrix storage I

The sparse matrix C of a simultaneous fit of alignment parameters (global) and track parameters
(local) is a large matrix, that can be reduced to a smaller matrix for the alignment parameters only
using Schur complements (no approximation!).
The matrix Ctotal, a 8 030 100 × 8 030 100 matrix (several 100 Tera Bytes) . . .

Ctotal =



x x x x · · ·
x x x x · · ·

x x x x · · ·
x x x x x x x · · ·

x x x x · · ·
x x x x · · ·

x x x x · · ·
x x x x · · ·

x x x x · · ·
x x x x x
x x x x x
x x x x x

x x x x x x
x x x x x x
x x x x x x

x x x x x
x x x x x
x x x x x

x x x x x x
x x x x x x
x x x x x x

...
...

...
...

...
...

...
...

...
. . .



−→ Cglobal =



x x
x x

x x
x x x x x
x x x

x x
x x x
x x x
x x x



Element (Cglobal)jk 6= 0, if parameters
j and k in same local fit.

Note: the inverse of a sparse matrix
(= covariance matrix) is dense; all pa-
rameters are correlated!

. . . is reduced to a (sparse) 47 655 × 47 655 matrix Cglobal for the global parameters.
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Optimization

Ideally one Newton step x from Cx = b is sufficient to reach the minimum, but

• solution not perfect due to round-off error in high dimension (large condition number);

• outlier treatment introduces a non-linearity.

Iteration: solve Cdk = bk for dk and line-search Φ(α) = F (xk + α · dk) = min w.r.t. α,
with xk and xk + dk forced to satisfy the constraints with high-precision.

s = dT
k bk = bT

k C−1bk = dT
k Cdk (EDM)

Φ(α)≈ Fk − αs + 1
2
α2s

Sometimes large angle (≈ 90◦) between Newton direction dk

and bk (the direction of steepest descent).
Two-dim. example (=⇒) with

• large eigenvalue (small half-axis of ellipse), and

• small eigenvalue (large half-axis of ellipse) – linear com-
bination of the two parameters corresponds to weakly
defined mode.

F (x) with large correlation

start point

Newton step
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3. Weak modes I . . . and constraints

Alignment of HEP track detectors . . . based only on track residual minimization: incomplete data!

Certain linear combinations of alignment parameters (degrees of freedom) are

• undefined: [eigenvalues zero]
a general linear transformation (3+9 parameters) will (almost) not affect the χ2 of the local fits
(3 translation-, 3 rotation-, 3 scaling-, 3 shearing-parameters)

• weakly defined: [eigenvalues small]
certain non-linear deformations.

and the detector alignment is distorted.

These problems are visible in the eigenvalue spectrum of the matrix Cglobal.

The undefined/weakly defined degrees of freedom can be

• fixed by equality constraints, and

• improved by data mixtures (tracks + survey information + Laser data + . . . ).

⇒ diagonalization of matrix Cglobal
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Solution by diagonalization

C = U Λ UT Diagonalization of symmetric matrix

with Λ diagonal, U = [u1, u1, . . . ,un] with U UT = UT U = 1. C−1 = U Λ−1 UT

eigenvalue ordering in Λ = [diag (λi)] : λ1 ≥ . . . ≥ λk ≥ λk+1 ≥ . . . λn

The solution can be expressed by Fourier coefficients cj (with
covariance matrix V c = 1):

x =
n∑

j=1

1√
λj

cjuj with cj =
1√
λj

(
bTuj

)
Fourier coefficients cj, which are insignificant (i.e. compat-
ible with zero), should follow a normal distribution N(0, 1);
they can make a large contribution to the solution x, if the
eigenvalues λj are small.

Simple one-dimensional alignment example (⇒) without
equality constraints:  2 eigenvalue ≈ 0 and matrix
Cglobal singular!

180 190 200
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-10
-1
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-0.01

0

0.01
0.1

1
10

100
1000

10000
100000

1E6
0.01E9

eigenvalues
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Minimization with equality constraints

Constraint equations for m linear (equality) constraints described by Ax = c (A has m rows)
Task: minimize F (x) subject to Ax = c instead of minimize F (x)

Constraint equations e.g.:
∑

∆x` = 0;
∑

∆y` = 0;
∑

∆z` = 0; no overall rotation . . .

Calculation of x with Lagrange method: introduce m multi-
pliers λ

L(x) = F (x) + λT (Ax− c)

From ∂L/∂x = 0 and ∂L/∂λ = 0:

C ×

 x

λ

 =

 Cglobal AT

A 0

×

 x

λ

 =

 b

c


Unique solution (for sufficient constraints), matrix C not pos-
itive definite.

Simple one-dimensional alignment example (⇒) with 2
equality constraints:  larger positive eigenvalues and 2
negative eigenvalues!

Constraints essential for acceptable solution.
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Significances . . . one dimensional alignment example

Significances (standard deviations = 1, independent) can be defined by |cj|

180 190 200
0

0.01

0.1

1

10

100

1000
significances

without constraints

180 190 200
0

0.01

0.1

1

10

100

1000
significances

with constraints

Remember: x =
n∑

j=1

1√
λj

cjuj

Contribution to solution x corresponding to very small eigenvalues is cj, divided by 1/
√

eigenvalue.
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Pre-sigmas

Small (positive) eigenvalues of matrix C correspond to a large condition number (“ill-conditioning”)
with an unstable solution!

Proposal by Levenberg (1944) and Marquardt (1963):

add to Cglobal a “suitable chosen” multiple of the unit matrix, that stabilizes the matrix,
but requires more iterations (to get the same solution).∗

Millepede (I and II): define, for each parameter `, an a-
priori accuracy called pre-sigma σpre

` , which defines a stabiliz-
ing diagonal matrix Dpre:

(Dpre)`` =
1

(σpre
` )2(

Cglobal
)

x = b ⇒
(
Cglobal + Dpre

)
x = b

Simple one-dimensional alignment example (⇒) with pre-
sigma σpre = 0.1, without constraints:
 small (and all) eigenvalues increased by 1/0.12 = 100.

Constraints still essential for acceptable solution.
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∗ V. B., Mlfit: A Program to Find Maxima of Likelihood Functions, Report DESY 71/18
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4. Outliers and line-search

Least-squares: influence of residual z is proportional to its size |z|. The presence of outliers in the
data will deteriorate the alignment result.

Initial mis-alignment can fake outliers – no initial rejects allowed, but in Millepede immediately
after the first step, which usually makes a huge improvement.

M-estimates. The square is replaced in M-estimates by a dependence with reduced influence for
larger residuals (used in local fits).

influence function add. weight
z = residual/std. deviation ψ(z) = dρ(z)/dz ω(z) = ψ(z)/z

Least squares = z = 1

Cauchy(c = 2.3849) =
z

1 + (z/c)2
=

1
1 + (z/c)2

Huber

{
if |z| ≤ c = 1.345
if |z| > c = 1.345

=

{
z

c · sign (z)
=

{
1
c/|z|

-10 0 10
-2

0

2 Influence function

least squares

Cauchy

Tukey

Initially only fits with huge χ2 rejected, later χ2-cut is reduced to value corresponding to 3σ (should
correspond to � 0.17% of the cases; large %-values indicate problems in e.g. track parametrization).
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Line search and slopes

Original line-search requirement Φ(α) = min difficult, because Φ(α) is discontinous due to outlier-
downweighting and -rejection.

s = dT
k bk = bT

k C−1bk = dT
k Cdk (called EDM in Minuit)

Φ(α)≈ Fk − αs + 1
2
α2s (≈ parabolic)

Replaced in Millepede 2009 by line-search slope requirement

Φ′(α) = 0 ,

insensitive to outliers. Eventually, in difficult cases, re-definition of matrix C after outlier treatment.

0 0.5 1

-0.02E9

-0.01E9

0

Parabolic behaviour for large ∆F .

0 0.5 1
-4

-2

0

Improvement for medium ∆F .

0 0.5 1

-0.04

-0.02

0

0.02

Large fluctuations for small ∆F .
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5. Solution of large systems

C x = b

C is symmetric and indefinite (i.e. not positive-definite), very large and sparse.
Standard method in Millepede 2009: Minres∗) = Minimal Residual, for symmetric matrix.
Iterative: the iterate xk minimizes

‖C x− b‖2 over the set Sk = x0 + span{r0, Cr0, . . . ,C
k−1r0} ,

where r0 = initial residual r0 = b−Cx0 (Krylov subspace, with orthogonalization).
Algorithm needs only product C × vector (see next page); convergence speed

• depends on eigenvalue spectrum (improved by pre-sigma/regularization);

• convergence is accelerated by preconditioning (see after next page).

solution takes 12 or 3 min (factor ≈ 104 faster than inversion) for 47 661 pa-
rameters, depending on use of pre-sigmas/regularization.
 cpu-time is not a problem!

Minres is special form of Gmres-Algorithm ∗∗) (= Generalized Minimal Residual) for non-symmetric
matrices, which requires more memory space (and a restart procedure)
Other methods for large matrix equations: GMRES, BiCG, CGS, BICGSTAB, TFQMR, QMRCGSTAB, . . .
∗)

C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12(4), pp. 617-629.

www.stanford.edu/group/SOL/software/minres.html Software MINRES from July 2003

∗∗)
Y. Saad and M.H. Schultz, 1986
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Sparse matrix storage II

The used solution method for the matrix equation never modifies the matrix C and needs only the

product C × vector ⇒ vector

The 47 655 × 47 655 matrix Cglobal for the global parameters is sparse . . .

The indexed storage scheme in Millepede for the symmetric matrix requires, in addition to space
(8 Bytes) for the Nnon-zero non-zero matrix elements, also Nnon-zero integer words (4 Bytes) and is
optimized for the product C × vector (only 9 lines of code).

Sparse-matrix storage requires more time than a simple matrix array:

• Array size limited to (231 − 1) 32-bit words on 64-bit system ≡ 8.5 Giga Bytes
Symm. matrix (n2 + n)/2 > 231 − 1 = 2 147 483 647 already for n = 216 = 65 536 – but
Millepede code allows larger n, if matrix sparse.

From total 4.1× 109 index-pairs find set of 0.23× 109 distinct index-pairs.
Only 19.9 % of the off-diagonal elements are non-zero, requiring 2.7 Giga Bytes of
memory, instead of 18 Giga Bytes/9 Giga Bytes of double precision words.

• During matrix generation (sums): find the location for an index pair (j, k) (using row-pointer +
binary search)
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Preconditioning

The convergence rate of iterative methods depends on the spectral properties of the matrix. A trans-
formation called Preconditioning∗ may improve the spectral properties:

instead of C x = b solve
(
M−1C

)
x = M−1b for x

(same solution as original system, but condition number of
(
M−1C

)
smaller). This requires an

approximate solution of the equation without using too much extra memory space and computing
time.

Method in Millepede 2009: constraint preconditioner, approximating symmetric Cglobal by D (di-
agonal elments only), but keeping the constraints unmodified:

(
Cglobal AT

A 0

)
⇒

(
D AT

A 0

)
≡
(

D1/2 0

AD−1/2 L

)(
D1/2 D−1/2AT

0 −LT

)
Cholesky decomposition of AD−1AT = LLT

The solution x from the two left/right-triangular matrices is determined in two loops.

Now standard method in Millepede, improving the speed of MINRES-solutions.

Only 0.1 % of total Cpu-time

∗ Preconditioning is an option in MINRES.
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6. Weak modes II . . . and regularization

Is there a method to suppress the contributions of weak modes?

Regularization: control the norm of the residuals and, simultaneously, the norm of the solution x.

Fτ (x) = ‖Jx− y‖2 + τ ‖x‖2 = minimum

Matrix equation: (x ⇒ x + ∆x)
(
JTV −1

y J + τ · 1
)

x = JTV −1
y yx −τx to be solved for ∆x(

Cglobal + τ · 1
)

x = bx −τx

The effect of regularization is clearly visible in the solution by diagonalization:

x =
n∑

j=1

fj
1√
λj

cjuj with cj =
1√
λj

(
bTuj

)
and filter factors fj =

(
λj

λj + τ

)

 only the (not significant) linear combinations with small eigenvalues are suppressed by the fj.

Solution of course does not require diagonalization (and it is even faster than without regularization).

Millepede 2009: τ replaced by τ ·Dpre to take into account the different a-priori accuracies.

V. Blobel – University of Hamburg 3rd LHC Detector Alignment Workshop page 18



Use of survey data

Millepede II allows to use different data, e.g. survey data of pixel barrel structure using photographic
techniques (H. Kästli, F.Meier, PSI) in order to improve weakly defined degrees of freedom.

• Cross-hair marks on sensor surface of module (precision of distance between marks on a sensor
known better than 0.5 µm).

• Each (of seven) photos covers 2 (of 8) adjoining modules, markers measured precisely (2 µm).

Fit transformation from global aligment parameters xsensor, ysensor

and γsensor to measured marker coordinates on the photos:

7 photos with 2× 4 measured values = 56

local fit with 4 parameters/photo = 28

global fit with 3 alignment parameters/sensor = 24

56 - 28 - 24 = 4 degrees of freedom left
 stand-alone fit with 3 constraints possible!

Accuracy in xsensor ± 2 µm

ysensor ± 15 µm

γsensor ± 0.2 mrad

(if used in Millepede no extra constraints necessary.) Photograph as used in survey
⇒more
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Summary

Alignment and calibration parameters with (experiment-independent) Millepede II:

• simultaneous fit of all global (alignment) and local parameters;

• include calibration of e.g. Lorentz angle, local values of drift velocity, coefficients for correction
functions (e.g. in H1);

• include beam parameters: vertex position, beam direction;

• linear equality constraints to fix undefined degrees of freedom (translation, rotation)

• simultaneous use of all available data types: vertex tracks, cosmics (also B = 0), halo muons,
Laser data, survey data to fix weakly defined degrees of freedom + regularization;

• outlier rejection and down-weighting of bad single hits

Now: Support of Millepede II by the “Statistical Tools Group” of

Analysis Centre of the Helmholtz Alliance ”Physics at the Tera Scale”
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Transformation fit use of survey data

The global alignment parameters xsensor, ysensor and γsensor are determined by the fit of a transformation
to the measured marker positions on the photographies.

Real marker coordinates are

xmarker = xsensor − vmarker · cos γsensor + umarker · sin γsensor

ymarker = ysensor + vmarker · sin γsensor + umarker · cos γsensor ,

where vmarker, umarker are the precisely known coordinates of the marker on the sensor, and
xsensor, ysensor and γsensor are the real sensor coordinates and orientation angle, which have to be
determined in the fit.

Transformation from real marker coordinates to measured marker coordinates on the photography is

xmeas = a1 + a3 · xmarker + a4 · ymarker

ymeas = a2 − a4 · xmarker + a3 · ymarker

where the parameters a1 . . . a4 are to be determined in the transformation fit (assuming one scaling
and one rotation parameter per photo) to the photo.

Constraints:
∑

∆xsensor = 0
∑

∆ysensor = 0
∑

∆γsensor = 0

. . . omitting all indices. ⇐back
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