CMS Tracker Alignment Strategy with Cosmic Muons

Andrei Gritsan

Johns Hopkins University

FOR
CMS Tracker Alignment Group

$$
\text { June 15, } 2009
$$

3rd LHC Alignment Workshop, CERN, Switzerland

Tracker in the CMS Detector

Outline / Acknowledgment

- Input to CMS Tracker alignment algorithms:
- Laser Alignment System
- optical survey
- tracks from cosmic muon runs \Rightarrow ultimate precision

Tracker Integration Facility (TIF) with partial Tracker in 2007 CMS at Point-5 ("CRAFT" cosmic run) with full Tracker in 2008

- Detailed results in the next talk (by E. Migliore)
- Alignment is a big project, but only the final step in commissioning

part of the CMS tracker alignment team "on the ground"

CMS Tracker Alignment Goal

- Alignment goal: nail down (few $\mu \mathrm{m}$) all 16,588 modules ($\times 6$ dof)

Tracker Inner Barrel (TIB)
Tracker Inner Disk (TID)

Tracker Endcap (TEC)
Tracker Outer Barrel (TOB)

- Minimize residuals

$$
\chi^{2}\left(\mathbf{p}_{\text {modules }}, \mathbf{q}_{\text {tracks }}\right)=\sum_{i=1}^{\mathrm{N}_{\text {residuals }}} r_{i}^{T} \mathbf{V}_{i}^{-1} r_{i}
$$

Laser Alignment System (LAS)

- See talk at 2nd LHC alignment workshop (June 2007):
B. Wittmer "The Laser Alignment System of the CMS Tracker"
- Connect large structures (8 sectors in ϕ): TIB - TOB - TEC
- Cosmic runs for commissioning: standalone $\sim 100 \mu \mathrm{~m}$, relative $\sim 20 \mu \mathrm{~m}$
- Tracker geometry: note 2D (100 mrad strip angle) and 1D modules

Optical Survey of CMS Tracker

- See talk at 2nd LHC alignment workshop (June 2007):
A.G. "First CMS Alignment Geometry: Survey Data and Their Implementation"

Barrels:

PXB - modules (2D only)
TIB - modules and up
TOB - barrel
Endcaps:
PXF - modules and up
TID - modules and up
TEC - disks and endcap

- Tracks + Survey in "local algorithm", to constrain all 6 dof:

$$
\chi_{\text {module }}^{2}=\sum_{i}^{\text {hits }} r_{i}^{T}\left(\mathbf{p}_{\mathrm{m}}\right) \mathbf{V}_{i}^{-1} r_{i}\left(\mathbf{p}_{\mathrm{m}}\right)+\sum_{j}^{\text {survey }} r_{* j}^{T}\left(\mathbf{p}_{\mathrm{m}}\right) \mathbf{V}_{* j}^{-1} r_{* j}\left(\mathbf{p}_{\mathrm{m}}\right)
$$

following BABAR implementation: arXiv:0809.3823

Statistical Methods in CMS Tracker Alignment

- Local iterative method ("Hits \& Impact Points") CMS-NOTE-2006/018

$$
\mathbf{p}_{m}=\left[\sum_{i} \mathbf{J}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{J}_{i}\right]^{-1}\left[\sum_{i} \mathbf{J}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{r}_{i}\right]
$$

pros	full Kalman Filter track model	simple implementation, all dof
cons	ignore correlations in one iteration	large CPU with many iterations

- Global method ("Millepede II") NIM A 566, 5 (2006), talk by V. Blobel

$$
\chi^{2}(\mathbf{p}, \mathbf{q})=\sum_{j}^{\text {tracks }} \sum_{i} \frac{\left(y_{j i}-f_{j i}\left(\mathbf{p}, \mathbf{q}_{j}\right)\right)^{2}}{\sigma_{j i}^{2}}
$$

CMS implementation

pros	model module correlations	less CPU with one or few iterations
cons	simple helix trajectory model	large matrix may limit N parameters

- Kalman filter algorithm with MC and TIF data: see talk by E. Widl

Tracker Alignment at Integration Facility

- First integrated tracker: spring-summer 2007 arXiv:0904.1220 $\sim 15 \%$ of strip tracker only no B-field, assume $p=1 \mathrm{GeV} / c$ \Rightarrow multiple scattering cannot be predicted per event
- Reach $\sim 50 / 80 \mu \mathrm{~m}$ in TOB/TIB

Alignment at Point-5 without Magnetic Field

- First experience with full Tracker: summer 2008 ~600k cosmic tracks for Tracker alignment still no B-field
- Achieved $\sim 30-40 \mu \mathrm{~m}$ in TIB/TOB low statistics in Pixels and Endcaps
- Measure of alignment precision

Distribution of Mean of the Residuals ("DMR", more later)

Alignment at Point-5 with Magnetic Field

- Best data for alignment of CMS Tracker: fall 2008 ("CRAFT")
$\sim 4 \mathrm{M}$ cosmic tracks for Tracker alignment
B-field $=3.8 \mathrm{~T} \Rightarrow$ account for multiple scattering, $p>4 \mathrm{GeV} / c$
- Require good quality tracks and hits:
clean hits, outlier hit rejection, χ^{2} cut, min hits, 2D hits accept all good tracks (statistics limited): only $3 \%+1.5 \%$ in Pixels

Alignment Strategy during "CRAFT"

- Multi-step approach by both algorithms to address CMS geometry:
- large structure movement: coherent v alignment of 1D modules
- alignment of two sides of 2D strip modules (units): u, w, γ
- Global method: 3 steps from "design"
(1) large structures (6 dof) \& units (3 dof)

(2) module alignment: add α, β for TIB; 6 dof for PXB
(3) repeat (1); note above: keep $<46,300$ parameters, use pre-sigma
- Local method: 5 steps from survey; ~50 iterations each
(1) large structures (u, v, w, γ)
(2),(3) Strip: modules (6 dof) with survey; units (3 dof)
(4),(5) Pixels: ladders (6 dof); modules (6 dof)

Alignment Strategy: Merging Algorithms

- Combined method
(1) run global method \Rightarrow solve global correlations efficiently
(2) run local method \Rightarrow solve locally to match track model in all dof
- All three results are compatible, but combined is the best also compare to "not aligned"

Alignment Position Errors (APE) set for combined see next talk

- Reference system: center-of-gravity and rotation move to design

Example: Pixel Residuals (local, global, combined)

- Residuals \Leftarrow multiple scattering + hit errors + alignment errors (random) (random) (systematic)

$r \phi$ pixel hit errors $\sim 19 \mu \mathrm{~m}$ here

Median of the Residuals

- Again global + local \rightarrow best combined for example: PXB better local transverse, global longitudinal

Summary

- CMS Tracker alignment with first data:

Tracker construction \& survey in 2006-2008
Tracker integration cosmic run in 2007 global CMS cosmic runs in 2008

- Successful CMS Tracker alignment algorithms:
several complementary statistical methods best combination of global \& local combine track + survey (done) and LAS (in progress) data
- Result in successful CMS Tracker alignment with cosmics
but far from being done: cosmic and beam runs in 2009-2010 cosmics alone has limitations, see next talk...

BACKUP

Data Delivery: Alignment Workflow

- Track reco data: reduced skim "AICaReco" for alignment see talk by G. Flucke about workflow tomorrow
- Result: 16,588 module Positions (6D) and Alignment Position Errors (APE, 3D)

