

Alignment of the CMS muon system with beam halo and cosmic muon tracks

Jim Pivarski

Texas A&M University

on behalf of the CMS Collaboration

15 June, 2009

- Quick overview of the CMS muon system
- ▶ Alignment of endcap chambers with LHC beam-halo tracks
- ▶ Alignment of barrel chambers with CRAFT cosmic rays

CMS muon system

Jim Pivarski

- ▶ Tracking in modular chambers: 6 to 12 layers each
- ▶ Global track formed from chambers' segments and the silicon tracker

Barrel
 (drift tube)
 chambers
 grouped into
 4 radial stations,
 5 longitudinal
 wheels

3/15

- Endcap
 (cathode strip)
 chambers
 grouped into
 8 rings per
 endcap
- This talk will be about aligning the individual chambers
- ▶ Target for alignment is scale of $r\phi$ hit resolutions: $\mathcal{O}(100-300 \ \mu\text{m})$

- ► Endcap muon chambers were designed with a small overlap region for alignment
- Tracks passing through overlap region connect chambers without any intervening scattering material or long-distance propagation

- High-precision relative alignment of chamber pairs
- ▶ Propagate pair corrections around each ring with a simultaneous solution of 18 (36) equations × 3 parameters (1 translation, 2 angles)

 Followed by rigid-body alignment of internally-aligned ring with global tracks, to connect ring's coordinate system to silicon tracker

Test of method in Monte Carlo

Jim Pivarski

▶ Procedure applied to Monte Carlo sample with statistics comparable to 2008 LHC single-beam run

- Plot aligned-minus-true value for each of the 3 parameters, for every chamber (histogram entries are chambers)
 - RMS is the accuracy predicted by MC

- ► Procedure applied to September 2008 LHC beam-halo dataset
- ► ME-2/1 and ME-3/1 only (highest statistics from beam-2)
- Narrows and centers residuals distribution (left)
- ▶ Verified by independent photogrammetry: alignment from a literal photograph of the detector
- Both saw corrections relative to the design description, with high correlation

2008 LHC beam-halo data

Jim Pivarski

7/15

- ► Chamber-by-chamber comparisons with photogrammetry (PG):
 - \blacktriangleright agreement with 270 μm position and 0.35 mrad angular accuracy
 - lacktriangleright close to the 166 μ m intrinsic hit uncertainty (for these chambers)
 - ▶ 33,000 events from a 9-minute long run $(\frac{3}{4}$ of 2008 beam data)

Global muon alignment

Goal

 Obtain consistent, CMS-wide coordinate system in one step

Method

- Select tracks that pass through muon chambers and tracker
- Fit track using tracker information only
- Align chamber to optimize residuals
- ▶ Can be applied to all chambers using collisions muons, and most barrel chambers with CRAFT cosmic rays (central wheels -1, 0, +1, all sectors except the horizontal ones: 1 and 7)

Chamber residuals

Jim Pivarski 9/15

- Chamber measures 2-D position and direction: 4-component residuals
- ► Access to 6 rigid-body alignment parameters (3 translation, 3 rotation) through a 6 × 4 derivatives matrix

Alignment fit

- Single fit function for each chamber, including all geometric and propagation effects
- Project 8-dimensional, 16-parameter fit onto all coordinates for validation

Sample fit results: MC

Jim Pivarski 10/15

- ► Projection of fits (all parameters = 0 other than the one shown) overlaid on *simulated* data (profile plots) for one chamber
- Method works well in Monte Carlo

Sample fit results: CRAFT data Jim Pivarski 11/15

- ▶ Projection of fits (all parameters = 0 other than the one shown) overlaid on real data (profile plots) for the same chamber
- Largely the same behavior in data; studying small discrepancies

- ▶ Plot aligned-minus-true value of each of the 6 parameters for every chamber (histogram entries are chambers)
 - predicted resolution for local x (global $r\phi$) is 200 μ m
 - CRAFT and MC are both systematics dominated
- ▶ MC tracker geometry is ideal: this demonstrates the reach of the muon alignment method, given a well-aligned tracker

Data-driven p_T resolution

Jim Pivarski 13/15

- ▶ Split $p_T \ge 200$ GeV cosmic rays into upper and lower halves, refit each half independently and compare the results
- ► Two track-fits for each cosmic ray: any mismatch is instrumental

Before muon alignment

After muon alignment

Comparison with expectations Jim Pivarski

14/15

- \triangleright MC resolution vs. p_T with different alignment scenarios
- Track reconstruction method optimized by p_T (at high p_T , use only first muon station to avoid hit confusion from muon showering)

- MC simulations yield much better results than early estimates
- Cosmic ray splitting is close to MC simulations at 200 GeV

- ► Track-based alignment methods were successfully applied to 2008 LHC beam-halo and CRAFT cosmic ray muons
- ► High resolution predicted by Monte Carlo, supported by data-driven measurements
- Pre-collisions alignments offer significantly improved tracking for the 2009 start-up
- They also demonstrate that tools and procedures are ready for alignment with collisions muons