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IPreamblej

• The muon spectrometer has a complex optical

(hardware) alignment system, complementing the usual

track-based alignment methods

• At this moment, the analysis of the optical alignment

system data is more advanced than the track-based

alignment algorithms (more true in endcap than barrel)

• In this talk I will therefore focus on the muon

optical alignment system and its validation with cosmics

• Sufficiently mature track-based-alignment results from

cosmic muons will also be shown

• I will not discuss muon-spectrometer-vs-inner-detector

alignment, work-in-progress, Monte-Carlo studies,

software concepts, frameworks, and toolboxes, etc
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IThe ATLAS Detector j

≈ 25 m length

muon spectrometer barrel

muon spectrometer toroid magnets tile calorimeter liquid argon calorimeter

solenoid magnet transition radiation tracker silicon tracker pixel detector
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IThe ATLAS Detector j
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IThe ATLAS Muon Spectrometerj

Longitudinal beam

In-plane alignment

Multilayer

Cross plate

����� �����	

��	
�
�����	

�� ������	

• ATLAS muon spectrometer:

1150 MDT (monitored drift tube)
and 32 CSC (cathode strip chamber)
high-precision muon tracking chambers

2 × 3 or 2 × 4 tube layers, d = 30 mm,
L = 0.9–6.2m, 5500m2 covered area

measure momentum stand-alone
to ΔpT /pT = 10% at pT =1 TeV, i.e.

measure sagitta of 500 µm
with an accuracy of 50 µm

for this you need:

• high resolution of tubes/chambers (80 µm/
√

6)

• accurately placed tubes in a chamber (20 µm)

• good knowledge of chamber positions (30–40 µm)

→ alignment system to continuously measure
muon chamber positions and deformations during
ATLAS data-taking (no adjustment, only monitoring)

based on optical sensors (to measure positions)
and temperature sensors (to deduce expansion)
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IThe ATLAS Muon Spectrometerj
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IOptical Alignment System Principlej

alignment sensors

sagitta

track
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• Track detection/reconstruction:

muon tracks are detected in three
equally spaced MDT chambers

track momentum ( = curvature in magnetic
field) is derived from a 3-point measurement

deviation from straightness (sagitta, s) is

directly related to momentum, p: s ∝ 1/p

• Optical alignment sensors:

chamber misalignment affects the
measured sagitta, by adding an
apparent (false) sagitta to it

measure chamber misalignment
and correct measured sagitta

in track reconstruction software

implementation (conceptual): 3-point
straightness monitors at the chamber
corners, sensitive to deviations from
straightness = false sagitta
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IOptical Alignment System Principlej

alignment sensors
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• Track detection/reconstruction:

muon tracks are detected in three
equally spaced MDT chambers

track momentum ( = curvature in magnetic
field) is derived from a 3-point measurement

deviation from straightness (sagitta, s) is

directly related to momentum, p: s ∝ 1/p

• Optical alignment sensors:

chamber misalignment affects the
measured sagitta, by adding an
apparent (false) sagitta to it

measure chamber misalignment
and correct measured sagitta

in track reconstruction software

implementation (conceptual): 3-point
straightness monitors at the chamber
corners, sensitive to deviations from
straightness = false sagitta
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IOptical Alignment System Principlej

• Relative alignment concept:

use difference in optical sensor
measurements between times t1
and t2 to determine changes in
chamber positions from t1 to t2

requires a method to determine
initial chamber positions – usually
using straight tracks (magnets off)

does typically not require alignment
sensors to be accurately calibrated

use the alignment system to take
out the time-dependence

if absolute alignment works, get
relative alignment for free

in ATLAS, long-term stability of
muon spectrometer at 30–40µm
level is not guaranteed – need at
least a relative alignment system
(e.g. switching magnets off → on
moves chambers by up to 4 mm)

• Absolute alignment concept:

use optical sensor measurements
at time t to determine actual
chamber positions at time t

no tracks needed – can use tracks
as independent cross-check, with
and without magnetic field

requires alignment sensors to be
calibrated with high accuracy
(i.e. positions of sensors w.r.t.
active detector elements known)

use the alignment system as a
(near) real-time surveying system

many potential problems affect
only the “absolute” functionality

ATLAS muon alignment system
is designed as an absolute
alignment system; relative

alignment is the fall-back solution
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IAlignment System Layout – Barrelj

3 barrel layers
656 MDT chambers

≈ 6000 sensors
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• Barrel system elements:

SaCam: CMOS camera views 4 LEDs

RASNIK: CMOS sensor views coded
chessboard mask through lens
(coarse position information encoded
in “wrong”-colored squares)
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IAlignment System Layout – Barrelj

projective RASNIKs

align chambers
between layers

praxial RASNIKs

align chambers
within a layer

axial RASNIKs

align chambers
within a layer

reference SaCams

align chambers
between inner layers
and between sectors

in-plane RASNIKs

measure chamber
deformations

temperature sensors

measure expansion
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IAlignment System Layout – Endcapj

CSC Alignment Sources

Proximity Mask
Survey Ring with Targets

BCAM (cover removed)

Bar Mount

Bar Head
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• Endcap system elements:

BCAM: CCD camera views two
laser diodes on another BCAM

RASNIK: CCD camera views
coded chessboard mask

Alignment bars: Aluminum tubes,
L = 1.9–9.6m, d = 80–85mm,
with ≈ 10–50 sensors on them
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IAlignment System Layout – Endcapj

azimuthal BCAMs

align bars within a wheel

align bars to other wheels

chamber sources

align chambers to bars

RASNIK proximity sensors

align chambers to bars

align chamber pairs

in−plane RASNIKs
measure deformations

in−bar RASNIKs

measure deformations

temperature sensors

measure expansion

polar BCAMs

2 endcaps
2×4 wheels

494 MDT chambers
32 CSC chambers
96 alignment bars

≈ 6000 sensors
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IAlignment System Commissioningj

• Installation/commissioning in 2005–08:

• mounting and testing alignment sensors

• installing and positioning chambers to O(5 mm)

• problem-solving (remove obstacles, replace

� damaged sensors, work around mistakes)

“Natural enemies” of optical alignment systems:

• cables, pipes, covers, support structures

• drilling and cutting, dust and dirt

• humans in the detector

• Status in 2008:

over 99% of relevant
sensors working

very few sensors failed
during running period

degradation due to
missing sensors negligible
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IAlignment Reconstruction Softwarej

platform

global
coordinate

system

e.g. ATLAS
system

calibration

bar system

corrects platform system
bar shape function

system

calibration
from bar

position unknown

from BCAM
BCAM system

for alignment bar deformation
(including thermal expansion)

• Alignment problem:

many local coordinate systems
(one for each object to be
aligned), and bar/chamber
deformation parameters

alignment sensors provide
measurements depending
on their location

• Reconstruction software:

reconstruct the alignment by
varying the unknown positions,
rotations, and deformations of
chambers and auxiliary objects

calculate sensor measurements
for an assumed parameter set,
compare to actual values from
detector, minimize χ2 = difference

χ2 =
∑

i,j

(Xij,measured − Xij,calculated)
2

σ2
ij,absolute + σ2

ij,relative + σ2
ij,intrinsic
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IAlignment Simulation Software, tooj

• Monte-Carlo

simulation:

for many (100–1000)
incarnations of ATLAS,
smear simulated sensor
measurements according
to their accuracies and
resolutions, reconstruct
chamber positions,
compare to truth

figure of merit: width of
false sagitta distribution

small insert shows false
sagitta distribution, large
plot shows (color-coded)
local variations of width

a simulation like this was
used to determine design
accuracy and resolutions
of the alignment sensors
(some 10–15 years ago)
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IAlignment Data Analysisj
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• Alignment result:

reconstructed chamber positions,
rotations, and deformations – plus
diagnostic information (→ next slide)

� ��������� 	�
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example: displacements from nominal
position in one of the endcap wheels ↑

confirmed by survey, chamber distance
measurements etc at O(100–500 µm) level
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IAlignment Data Analysisj

Endcaps A+C − all sensors
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χ2/ndf
= 1.4

χ2/ndf
= 1.0

• Alignment quality:

χ2/ndf is the most global measure of
goodness of the alignment reconstruction fit

if observed = assumed sensor resolutions σij,
expect χ2/ndf = 1 (for O(104) d.o.f. – the
alignment system is highly redundant)

individual contributions to χ2: sensor pulls

(χ2 =
∑

pull2) endcap pull distribution and χ2 →

expect approximately Gaussian distribution with
unit width (slightly modified by correlations etc)

outliers → damaged, poorly mounted, . . . ?
checked/fixed in detector (where possible)

break down pull distribution by sensor types,
tune assumed sensor resolutions until pull
distributions agree with simulation

yields observed sensor resolutions → feed
back into simulation to estimate observed
alignment performance → next slides
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IDesign vs Observed Performancej
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• Endcap alignment:

endcap system designed for
40 µm sagitta accuracy in
large and small sectors

only one significant issue
(CSC sensor mounts/calibration)

� ����� 
�
����

affects small CSC chambers
(innermost region, 2.0 < |η| < 2.7)

observed sensor resolutions
indicate current performance
around 45 µm sagitta accuracy

everywhere (except small CSC)
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IDesign vs Observed Performancej
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• Barrel alignment:

barrel system designed for
30 µm/300 µm sagitta accuracy

in large/small sectors

small sectors to be aligned w.r.t. large
sectors using tracks in overlap region

however several known issues
(inaccurate sensor mounting,
mount and sensor calibrations)

observed sensor resolutions
indicate current performance

around 200 µm/1 mm sagitta

accuracy in large/small sectors

to reach ultimate goal of 30µm
(design) accuracy: will need to
use muon tracks to determine
initial chamber positions (in
both large and small sectors)
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IValidation Using Cosmic Muonsj

• Straight tracks in ATLAS:

2008 ATLAS cosmic running
with magnetic field off –
108 muon-triggered events

track

sagitta

M
D

T

M
D

T

M
D

T

a “gold-plated” event
run 91351 event 262222

sagitta changes from

• s = +18448 µm to

• s = −56 µm

when optical alignment
corrections are applied
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IValidation Using Cosmic Muonsj

0

25

50

75

100

125

150

175

200

-25 -20 -15 -10 -5 0 5 10 15 20 25

Mean
RMS

-0.113
  4.463

  49.37    /    39
Constant   145.1
Mean -0.015
Sigma 1  0.925
Sigma 2   3.870

ATLAS preliminary

0

25

50

75

100

125

150

175

200

-25 -20 -15 -10 -5 0 5 10 15 20 25

Mean
RMS

  3.374
  8.533

  229.6    /    94
Constant   31.24
Mean   3.969
Sigma   8.659

track sagitta (mm)

after alignment correctionsnominal chamber positionsnominal chamber positions

0

25

50

75

100

-20 -10 0 10 20

Mean
RMS

 0.167
  4.054

  27.04    /    37
Constant   69.34
Mean  0.002
Sigma 1  0.949
Sigma 2   3.905

0

25

50

75

100

-20 -10 0 10 20

Mean
RMS

  8.803
  7.765

  153.5    /    79
Constant   19.12
Mean   10.95
Sigma   6.189

side A only   sagitta (mm)

0

25

50

75

100

-20 -10 0 10 20

Mean
RMS

-0.363
  4.785

  37.13    /    39
Constant   74.77
Mean -0.049
Sigma 1  0.894
Sigma 2   3.809

0

25

50

75

100

-20 -10 0 10 20

Mean
RMS

 -1.410
  5.914

  109.7    /    77
Constant   32.01
Mean  -1.430
Sigma   4.513

side C only   sagitta (mm)

• Endcap straight tracks:

calculate sagitta from
triplets of segments
on a track�

sagitta

M
D

T

M
D

T

M
D

T

local track segments

for perfect alignment: expect
zero mean, width dominated
by multiple scattering

endcap: mean = −15 ± 42 µm
using optical alignment corrections

histogram is significant fraction
of full 2008 data, both endcaps
together – nearly horizontal
cosmic μ’s are very rare . . .
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IValidation Using Cosmic Muonsj
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• Endcap straight tracks:

MDT segments contain both
position & direction info –
compare to direction of track

angle

M
D

T

M
D

T

M
D

T

local track segments

calculate difference in pointing
direction between each of the
segments and a straight line

accuracy of segment direction
dominated by MDT resolution

width: expect 0.3 mrad × ≈ 2
deterioration for cosmics from
“time jitter” due to unknown
arrival time w.r.t. 25 ns clock
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IValidation Using Cosmic Muonsj
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6• Barrel straight tracks:

calculate sagitta from track fit to MDT
hits with middle chamber excluded

top/bottom (03–07, 11–15) barrel sectors
have sufficient statistics to break sagitta
plot down by towers ( = chamber triplets);
insufficient number of tracks in side sectors

↓ plots of all mean values ↓ two examples →
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using optical alignment corrections
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INow: Alignment Using Cosmic Muonsj
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6• Barrel straight tracks:

next step: use cosmics for performing
track-based alignment, instead of
(only) validating optical alignment

all 2/3-chamber tracks used for alignment,
only (approximately) IP-pointing 3-chamber
tracks for making sagitta plots

↓ plots of all mean values ↓ two examples →
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barrel (large): ≈ ±30 µm typical mean value
barrel (small): ≈ ±50 µm (one sector only)

using alignment corrections from tracks
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IBarrel: Recovering the Design Resolutionj

• Cosmic muons (before LHC run):

good alignment for top and bottom sectors; large side sectors
have only 200 µm optical alignment, small side sectors at 1 mm

+ =

• Straight muon tracks from collisions:

at L = 1031 s−1 cm−2, even a short (2–3 hours) magnet-off run
yields O(30,000) muons and O(100 µm) alignment in all sectors

+ =
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ISummaryj

• The muon spectrometer has an optical

alignment system, designed to provide muon tracking

chamber positions with a sagitta accuracy of 30–40µm

• After 3 years of installation and commissioning, the

alignment system was completed in 2008, in time for

the and start-up

• The analysis of the data is well advanced, performance

estimates indicate a sagitta accuracy of 45µm (endcap)

and 200 µm/1 mm (barrel-large/small sectors)

• Using straight tracks as a cross-check confirms the

chamber positions within the estimated sagitta errors

• Results from track-based alignment of a few barrel

sectors make us confident that the design sagitta

accuracy will eventually also be reached in the barrel
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IBackup Slidesj
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IAlignment Sensors and Mountsj

-��
����

����

����	�� �� �����	 �����

���

��
��
	
�
��
�
�

��
��
	
�
��
�
�

��
�
�

• Alignment sensor mounting:

alignment sensors are kinematically mounted
on a sensor mount, to obtain a well-defined and
reproducible positioning

example: 3 stainless-steel spheres on the mount,
cone/slot/flat-shaped depressions in sensor base

sensor mount defines a local coordinate system

• Mount calibration:

mount calibration = determine position of mount
coordinate system with respect to local coordinate
system of detector component under the mount
(muon chamber, reference plate, alignment bar)

• Sensor calibration:

determine the positions of the optical elements
(image sensor, lens, source) with respect to the
mount coordinate system

typically required: 20 µm and 50 µrad for sensor ⊕
mount, less stringent for some coordinates/types
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IAlignment Sensors and Mountsj
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• Alignment sensors:

calibrated by measurements
with a source at different
distances and/or rotations
on a calibration stand

geometry of calibration
stand obtained from CMM
(coordinate-measuring
machine) measurements

• Mounts on chambers:

calibrated by dedicated
calibration tools measuring
the mounts with respect
to the MDT tube surfaces

• Mounts on alignment bars

and reference plates:

calibrated by CMM measurements

complete alignment system geometry
comprises O(105) calibration constants
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IAlignment Data Acquisitionj

• Alignment sensor readout:

image acquisition → image analysis → measured coordinates
(and diagnostic information) written to DB (≈ 0.1 KB/image);
only some fraction of full images stored (≈ 100KB/image)

alignment sensors organized in several disjoint groups
(i.e. groups that do not share any hardware components)

sensors within a group are read out sequentially;
where possible, several groups are read out in parallel

one readout cycle (all sensors) takes ≈ 30–60 minutes,
at a rate of a few images per second and per group

this makes the alignment system sensitive to slow detector
movements occurring at a timescale of hours or more

alignment system readout integrated with ATLAS DCS
(detector control system, aka “slow control”)

O(104) sensor images per hour: need image analysis to be
highly reliable (accurately analyze good images, and
correctly recognize bad images), fast, and robust
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IAlignment Sensor Imagesj

excellent
BCAM image

ok – source very
close to camera

bad – optical line
partially blocked

bad – reflections,
source out of range

bad – reflections,
optical line blocked

excellent
RASNIK image ok – hair on mask ok – dust on CCD

ok – lots of
dust on CCD

bad – too much
dust on CCD

ok – close to edge
of dynamic range

bad – out of range,
too few squares
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IOutlook – What Remains To Be Donej

• External alignment with tracks:

both optical alignment system and alignment using muon-
spectrometer stand-alone tracks provide only the internal
alignment – and separately for barrel and the two endcaps

external alignment = determine positions and rotations of
barrel and endcaps with respect to the inner detector (which,
by convention, defines the ATLAS global coordinate system)

muon barrel and endcaps by default positioned by alignment
reconstruction according to survey measurements, and inner
detector as well – expect muon-spectrometer-vs-inner-detector
alignment to be ok at the level of survey accuracy + stability

first (very recent) results are compatible with this (1–2mm)

• Internal alignment with tracks:

some alignment aspects cannot be dealt with by the optical
system alone: barrel chambers in small sectors have to be
aligned to neighboring large sectors using tracks, some other
types of chambers have no sensors at all, few barrel chambers
need to be aligned with respect to the endcaps
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