LHCb T-Station Alignment with Cosmics

Marc Deissenroth

Physikalisches Institut, Universität Heidelberg

on behalf of the LHCb collaboration

3rd LHC Detector Alignment Workshop CERN, 15-16 June 2009

LHCb detector

Outer Tracker

- 3 stations, 2 halves per station
- 2 support frames per half (movable)
- 9 modules per frame: half layer
- half layer angle w.r.t. y axis:
 x(0°),u(-5°),v(+5°),x(0°)
- main measurement direction: x
- y information via rotated half layers

Straw tubes

Profile of module with straw tubes

straw tube = drift cell

two monolayers per module:
≤ 2 hit per cluster

resolution

with drift time : $200 \mu m$

without : $\frac{5 \text{ mm}}{\sqrt{12}} = 1.44 \text{ mm}$

Data & Tracks

- no magnetic field
- triggered with ECal + Muon St.
- 20000 tracks for alignment
- extreme slopes compared to pp collision data

OT Alignment

Two competitive alignment approaches:

- both minimize the χ^2 w.r.t. local track and global alignment parameters simultaneously
 - 1. standalone track fit; math based on Millepede algorithm
 - 2. standard LHCb Kalman filter track fit
- OT alignment with both algorithms:
 - results comparable
 - following results from approach 1
- alignment without using drift times:
 - track fit stable & no iterations needed (no hit ambiguity) & independent from calibration
 - $\rightarrow \sigma_{\text{meas}} = 1.44 \text{mm}$

Alignment of OT I

Align for half layers

 △x: main measurement direction, linear d.o.f. → no alignment iterations required

Plot the 'convergence' parameter

•
$$\xi = \Delta x_i - \Delta x_{i-1}$$
 ($i = iteration$)

no convergence $(\xi=0)$ after 1st iteration

effect of the pattern recognition

Effect of pattern recognition

- tracks with multi hit clusters
- χ² minimization: alignment constants depend on track and its residual
- pattern recognition selects different hits in subsequent alignment iterations → alignment constants change

Alignment of OT II

• following results with tracks comprising only ≤ 2 hit cluster

D.o.f. & Constraints

Align for

- △x: main measurement direction
- Δz : z-scale important for correct momentum estimate
- $\Delta \gamma$: angle w.r.t. y axis

Constraints to avoid overall shift and rotations

- △x: fix 1st and last parameter of x layers
 fix 1st and last parameter of rotated layers (constrain y direction)
- Δz : fix 2 parameters to set scale
- $\Delta \gamma$: same as for Δx

Results for alignment of half layers, then for modules

Half layer alignment Δx

- shifts of up to 1 mm (relative to the fixed layers)
- frame support of half layer evident
- clear improvement of unbiased track residual, e.g. for first *x* layer of station 2:

$$m_{misalign} = 0.68 \text{ mm} \rightarrow m_{align} = 0.0 \text{ mm}$$

$$\sigma_{misalign} = 1.60 \text{ mm} \rightarrow \sigma_{align} = 1.5 \text{ mm}$$

Half layer alignment Δz

- compare software alignment results with survey
- survey measures 1st and 5th C-frames,i.e. halflayer (0,1) and (8,9) to be at $\Delta z = (0\pm0.5)$ mm
- constrain halflayer 0 and 9 to surveyed position

Half layer alignment Δz

- compare software alignment results with survey
- survey measures 1st and 5th C-frames,i.e. halflayer (0,1) and (8,9) to be at $\Delta z = (0\pm0.5)$ mm
- constrain halflayer 0 and 9 to surveyed position

good agreement between survey and software results!

Module alignment

- using geometry obtained after half layer alignment
- align for Δx , Δz , $\Delta \gamma$ (rotation around z)
- mean of residuals improve significantly (subsample of alignment sample used for following plots):

Alignment accuracy

Compare results of approaches

- 1. standalone track fit; math based on Millepede algorithm
- 2. standard LHCb Kalman filter track fit

difference of results < 100 µm

 $\sigma_{\text{mean}} \approx 70 \ \mu\text{m}$

alignment accuracy $\sigma_{align} \approx 100 \ \mu m$

(including systematics and statistics)

Detector calibration

 validate alignment constants with calibration of space drift time relation (DOCA vs drift time)

Summary

- 2 implementations for the LHCb Outer Tracker alignment which give comparable results
- 20000 cosmics tracks for alignment
- hierarchic alignment for most sensitive d.o.f. Δx , Δz , $\Delta \gamma$
 - half layers
 - modules
- significant improvement of track residuals, alignment accuracy $\sigma_{align} \approx 100~\mu m$
- survey measurements confirmed by software alignment
- validation of alignment constants by calibration of space drift time function
- ✓ Outer Tracker alignment software ready for data from first collisions