

The Kalman Alignment Algorithm

Edmund Widl, Rudolf Frühwirth on behalf of the CMS Collaboration

3rd LHC Detector Alignment Workshop, CERN, 16 June 2009

Outline

- Motivation
- The Kalman Alignment Algorithm (KAA)
 - basic functionality and formulae
 - application to big systems: restricted updates
- Alignment studies
 - Monte Carlo studies with the full CMS Tracker
 - cosmic ray studies at the Tracker Integration Facility
- Current status and outlook

Motivation

- When people started thinking about aligning the CMS
 Tracker it became obvious that this was not a trivial task.
- People realized that conventional approaches might face serious problems:
 - computing times
 - memory
 - stability
- The KAA was specifically designed to circumvent these problems.
- Starting from a basic idea, overcoming problems arising from conceptual details, the algorithm is now working properly and is well understood.

Basic functionality

- The particle tracks are processed one-by-one using a specialized Kalman filter:
 - use a global track-model that parameterizes all measurements
 - track-model depends not only on the (ideal) track parameters but also the alignment constants
 - estimate and update alignment parameters and their full variancecovariance matrix at every step (Kalman filter update)
- Method accounts for all statistical correlations between the individual measurements (hits) due to multiple scattering
 - off-diagonal terms in the variance-covariance matrix of the measurements
- Method accounts for the geometrical (statistical) correlations between all detector modules
 - update is not restricted to detector modules hit by current track

Basic formulae

■ The vector of all measurements *m* depends via the track-model *f* on the track parameters *q* and the alignment constants *p*:

$$\vec{m} = \vec{f}(\vec{q}, \vec{p}) + \vec{\varepsilon}, \quad \text{cov}(\vec{\varepsilon}) = V$$

- The intrinsic detector resolution and multiple-scattering effects are accounted for in *V*, energy-loss effects (for high momentum muons) can be included into *f*.
- Using the Kalman filter formalism, update equations at step k for the estimate on the alignment parameters p_{k+1} can be derived:

$$\vec{p}_{k+1} = \vec{p}_k + K \left(\vec{m}_k - D_p \vec{p}_k - D_q \vec{q}_k + \vec{c} \right)$$

$$D_p = \partial \vec{f} / \partial \vec{p}, \quad D_q = \partial \vec{f} / \partial \vec{q}$$

- The matrix *K* is the *gain matrix* of the Kalman filter.
- Formula for the variance-covariance matrix of p_{k+1} follows from error propagation.
- By design, no inversions of large matrices required!

Introduce new concept: restricted updates

- Problems for large systems (like the CMS Tracker):
 - Non negligible IO overhead due to reading and writing of the alignment parameters and their full variance-covariance matrix at every step.
 - Potentially large amount of virtual memory needed for storing the geometrical (statistical) correlations
- Proposed solution:
 - Update only those alignment parameters at each step that are significantly correlated
- Difficulties:
 - Need a-priori knowledge of which alignables should be included
 - Incomplete update can corrupt the full variance-covariance matrix, i.e. it might not be positive definite anymore

Making the concept work ...

- No general recipe available as how to deal with these two difficulties
- However, in the case of a track-based alignment it is possible to adapt the algorithm such that these issues pose no problem
 - by bookkeeping which alignables were hit by which tracks, one can make a good guess which alignables are significantly correlated
 - storing the statistical correlations instead of the covariance entries avoids inconsistencies
 - some more minor tricks ...
- Needs tuning of a few internal parameters for a given geometrical setup
 - trade-off between precision and used memory and computing time

Monte Carlo Alignment Studies

- Monte Carlo studies have been performed to prove that the algorithm is able to align the full CMS Tracker
- Realistic startup scenario:
 - realistic start-up conditions (initial misalignment, calibration, etc.)
 - skimmed data-samples from the CMS Computing, Software and Analysis Challenge 2008 (CSA08)
 - using the resources from the CERN Analysis Facility (CAF)
 - limited amount of RAM (2GB per core)
 - used max. 10 cores parallel (fair use)
 - automated using a specialized production system (modified version of the CMS MillePede Production System)
- Results were computed within reasonable amounts of time and look good

Alignment Strategy

- Due to the constraint on virtual memory the CMS Tracker was aligned in three steps:
 - start with the outer silicon micro-strip tracker (*Tracker Outer Barrel*, *Tracker Endcaps*)
 - continue with the inner silicon micro-strip tracker (*Tracker Inner Barrel*, *Tracker Inner Disks*)
 - finish with the pixel tracker
- The first two steps were done using collision data and cosmic ray data
- The final step was done using additional Z→μ⁺μ⁻ events
- Tuning of internal parameters was based on constraints regarding memory and computing time only
 - no feedback from comparison between the results and the MC-truth (which will obviously not be possible with real data)

Workflow for a single alignment step

Step 1: alignment runs on subsamples of the full data

Step 2: merge output of all alignment runs

- KAA is completely implemented within the reconstruction and analysis software framework of CMS (CMSSW)
- Use CMS-specific data-skims for alignment and calibration tasks (AICaReco format)

Alignment with CMS Monte Carlo collision data (corresponding to the first 1 pb⁻¹)

Red: misaligned geometry (startup)

Black: aligned geometry (1 pb⁻¹)

Overall precision of all detector modules in global R $\!\Delta \varphi$ is 40 $\mu m!$

Alignment with CMS Monte Carlo collision data (corresponding to the first 1 pb⁻¹)

Red: misaligned geometry (startup)

Black: aligned geometry (1 pb⁻¹)

Blue: ideal geometry

Distinct improvement in the tracking residuals.

Impact on track reconstruction

Red: misaligned geometry (startup)

Black: aligned geometry (1 pb⁻¹)

Blue: ideal geometry

Recovers the reconstruction performance to a great extent.

Alignment with CMS Monte Carlo collision data (corresponding to the first 10 pb⁻¹)

Black: aligned geometry (1 pb⁻¹)

Green: aligned geometry (10 pb⁻¹)

Processing more high momentum tracks gives further improvements.

Tracker Integration Facility

- The final assembly of the CMS silicon micro-strip tracker took place at a dedicated facility, referred to as the *Tracker Integration* Facility.
- The tracker has been operated at different temperatures, powering and reading out about 15% of all modules.
- Cosmic ray data has been recorded and used for track-based alignment.
- No magnetic field present, therefore no momentum estimate for individual tracks (and hence for effects due to multiple scattering)
- The results for the three different alignment algorithms used for the CMS tracker have been compared (HIP, MillePede, KAA).
- The quality assessment of the alignment objects was done by analyzing tracking residuals.

Alignment Strategy

- A set of 430 detector modules in the barrel region has been chosen for alignment
 - relatively small number, hence the concept of restricted updates was not applied
 - same set for all three algorithms (comparability)
- Biggest data sample recorded at a single temperature has been processed
 - rules out possible effects due to different thermal expansion at different temperatures
 - approximately 70.000 well isolated cosmic particle tracks
 - same data sample for all three algorithms (comparability)

Computed constants

- Observed large deviations from the ideal geometry
- Due to deformations of the mechanical support structure on a larger scale

Improvement of the tracking residuals

- Improved distribution of the track χ²
 - sum of the squared residuals, each normalized by the detector resolution (no uncertainties due to misalignment included)

Comparison of the tracking residuals (Tracker Inner Barrel)

Results of the three algorithms in good agreement

Comparison of the tracking residuals (Tracker Outer Barrel)

Results of the three algorithms in good agreement

Current status and outlook

- The KAA is a functional and well understood method.
- Results from detailed simulation studies show that the KAA is able to align the CMS Tracker – even under conditions expected during the LHC start-up phase.
- The associated computational effort can be kept at a reasonable level.
- For production, a dedicated production system is available.
- An analysis of the first experimental data from cosmic particle tracks, recorded at the Tracker Integration Facility, shows that the KAA is competitive to existing algorithms.
- The KAA will be used to analyze collision data in the future.