

3rd LHC Detector Alignment Workshop

Impact of misalignment on track and heavy-flavour reconstruction with the ALICE detector

Andrea Dainese
INFN – Padova
for the ALICE Collaboration

Contents

- ALICE heavy flavour program in a nutshell
- Inner Tracking System alignment
 - impact on tracking resolution
 - residual misalignment in view of results from cosmics
 - impact on charm measurement
 - impact on beauty measurement
- Muon spectrometer alignment and quarkonia
- Summary

ALICE heavy flavour potential

- Combine electronic (|η|<0.9), muonic (-4<η<-2.5), hadronic (|η|<0.9) channels
- Cover central region (with precise vertexing) and forward region
- Cover also low-p_t region (low x/X₀ & low field 0.5T, OR forward η)

Heavy quarks as probes of the Quark-Gluon Plasma medium

- A high-density QCD medium is expected to be formed in high-energy heavy-ion collisions → deconfined Quark-Gluon Plasma
- RHIC experiments have discovered jet quenching -> explore medium properties via its effect on calibrated probes (hard partons)

u,d,s: mass~0 colour triplet gluon: mass=0 colour octet c,b: high mass colour triplet QCD medium

Parton Energy Loss, mainly by medium-induced gluon radiation

QCD:
$$\Delta E\left(\mathcal{E}_{QGP} \; ; C_R, m \, / \, E, L \right) \\ \Delta E_g > \Delta E_{c \approx q} > \Delta E_b$$

$$\Delta E_g > \Delta E_{c \approx q} > \Delta E_b$$

Test mass dependence of QCD energy loss at LHC

- \rightarrow precise measurement of c and b hadrons p_t distr.
- → alignment of the Inner Tracking System (ITS)

Quarkonia in Pb-Pb at LHC

J/ψ dissociation (colour screening in a deconfined medium) & regeneration (in-medium coalescence of charm quarks)?

- ◆ Y expected to dissociate only at LHC (hotter medium)
- Less tightly bound Υ' expected to dissociate at same temp as J/ψ

Y family separation is crucial

- → di-lepton mass resolution
- \rightarrow alignment of the Muon Spectrometer ($\mu^+\mu^-$)
- → alignment of the ITS (e+e-)

	SPD (r = 4 & 7 cm)	SDD (r = 14 & 24 cm)	SSD (r = 39 & 44 cm)
nom. resolutions $\mathbf{x}_{loc} \times \mathbf{z}_{loc} [\mu m^2]$	11 × 100	35 × 25	20 × 830
residual mis. (shifts) x _{loc} ×y _{loc} × <mark>z_{loc} [μm³]</mark>	8 × 10 × 20	20 × 20 × 20	15 × 15 × 100
full mis. "20 μm" (shifts)	20 × 20 × 20	45 × 45 × 45	30 × 30 × 100
full mis. "30 μm" (shifts) x _{loc} ×y _{loc} ×z _{loc} [μm³] random misal	30 × 30 × 30	45 × 45 × 45	30 × 30 × 100

 Target Residual Misalignment: expected misalignment left after realignment, taken ~0.7×resol. → ~20% degradation of the resolution

Impact of ITS misalignment on ITS+TPC tracking resolutions

 Effect of misalignment on track impact parameter to the primary vertex (d₀), p_t, vertex resolutions studied

effect of misalignment:

- → large worsening
- → factor 2 at high p_t
- \rightarrow plus 5 μ m

effect of misalignment only above 10 GeV/c

Impact of ITS misalignment on primary vertex resolution

- Primary vertex reconstructed using tracks with ≥5/6 points in ITS
- Small deterioration (10-20%) with random misalignments <20 μm
- Significant loss of resolution for high multiplicity events with misalignments >30 μm

Alignment of the Inner Tracking System with cosmics (Summer 2008)

- Millepede alignment SPD+SSD (4 layers)
- Difficult to conclude on resolution (p_t unknown)

But close to target of residual misalignment

Alignment of the Inner Tracking System with cosmics (prospects for Summer 2009)

ALICE plans to collect cosmics with B=±0.5T (and B=0)

 \rightarrow Study resolution VS p_{t}

Impact on charm measurement: $D^0 \rightarrow K\pi$

- Main selection: displaced-vertex topology
 - good pointing of reconstructed D⁰ momentum to the primary vertex $(\cos\theta_{pointing} \rightarrow 1)$
 - pair of opposite-charge tracks with large impact parameters (product of the two impact parameters $d_0^K x d_0^{\pi} << 0$)

Impact on charm measurement: $D^0 \rightarrow K\pi$

- Main selection: displaced-vertex topology
 - good pointing of reconstructed D⁰ momentum to the primary vertex
 (cosθ_{pointing} → 1)
 - pair of opposite-charge tracks with large impact parameters (product of the two impact parameters $d_0^K \times d_0^{\pi} << 0$)

INFN $D^0 \rightarrow K\pi$: Product of impact parameters

$D^0 \rightarrow K\pi$: selection variables

$D^0 \rightarrow K\pi$: Effect on S/B and significance

- Target residual misalignment (10 μm): negligible effect
- 30 μm misalignment: 30% worsening of statistical errors
 - warning: this is much better than "no-realignment"

Impact on beauty measurement: displaced single electrons method

Mesurement strategy:

- 1) Electron PID (TPC+TRD): reject most of the hadrons
- 2) d_0 cut ~200 μ m: reduce charm and bkg electrons (Dalitz, γ conv.)
- 3) Subtract (small) residual background (ALICE data + MC)

B→e+X: impact parameters (5<pt<7 GeV/c)

- Impact parameter distributions become broader with misalignment
 - negligible for target residual misal
- Shape charm and background approaches that of beauty for misaligment > 30 μm

B -> e+X: cross section errors vs p,

- For a misalignment of 30 μ m in SPD, the performance at high $p_{\rm t}$ (>10 GeV/c) deteriorates significantly
 - statistical error on b signal
 - systematic error from misidentified π subtraction \Box
- For the target residual misalignment (<10 μm in SPD),
 there is no deterioration of the performance

Muon spectrometer alignment

- Expected mounting precision (survey+photogrammetry):
 - chambers x,y,z ~ 1 mm
 - detection elements x,y,z ~ 500 μm
- Alignment requirements: x, y < 50 μm
- Geometrical Monitoring System:
 - chambers x,y,z ~ 20 μm
- Track-based alignment with Millepede:

INFN Muon spectrometer alignment: p₁ resolution

Muon spectrometer alignment: Y

Muon spectrometer alignment: J/ψ

hlnvMassAll

6593 3.052

0.09256

Entries

Mean

3.2

3.6

3.8

- → Residual misal ~ 100 µm seems satisfactory
- \rightarrow Residual misal \sim 50 μ m perfect

Iu+Mu- invariant mass (GeV/c2)

000

Summary

- Heavy flavour measurements have a central role in ALICE Physics program
 - heavy quark energy loss in high-density QCD matter
 - quarkonia as a termometer of the QGP
- Importance of detector alignment
- Inner Tracking System:
 - promising results from cosmics, target residual misal ~10 μm seems realistic
 - \rightarrow < 5 µm effect on track position resolution (d₀)
 - \rightarrow negligible effect for benchmark channels D⁰ \rightarrow K π and B \rightarrow e+X
 - * 30 μ m misalignment would deteriorate significantly the performance at high p_t (important for energy loss study)
- Forward muon spectrometer:
 - <50 μm residual misalignment needed to prevent worsening of mass resolution and to allow good separation of Υ family

EXTRA SLIDES

ALICE heavy-flavour potential

CERN/LHCC 2005-014

 ALICE combines electronic (|η|<0.9), muonic (-4<η<-2.5), hadronic (|η|<0.9) channels

- ALICE covers central and forward regions
- Precise vertexing in the central region to identify
 D (cτ ~ 100-300 μm) and
 B (cτ ~ 500 μm) decays
- ALICE covers the low-p_t region (B=0.5T)

A.Dainese (ALICE) M.Smizanska (ATLAS) C.Weiser (CMS) U.Uwer (LHCb)

Inner Tracking System (ITS)

Silicon Pixel Detector (SPD):

- ~10M channels
- 240 alignable vol. (60 ladders)

Silicon Drift Detector (SDD):

- ~133k channels
- 260 alignable vol. (36 ladders)

Silicon Strip Detector (SSD):

- ~2.6M channels
- 1698 alignable vol. (72 ladders)

ITS total:
2198 alignable
sensitive
volumes
→ 13188 d.o.f.