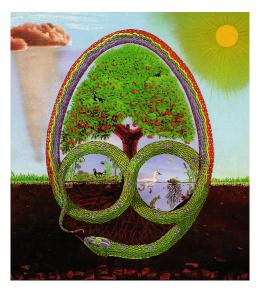
Highlights from IPCUK 2015: "Designing the World We Want"


Sergio Grancagnolo

ConCERNed for Humanity club

An introduction to permaculture Real life examples

Aranya Gardens

Permaculture - a design science for all

Aranya Gardens

I'm still identifying microclimates...

...and making good use of them

Italian Permaculture Institute – P. Zucchetti

The demonstration site – before - 2010

The demonstration site - after - 2015

Through bread making,kombucha,seedlings in the kitchen and hand washing machine Use biologic and renewable resources

I needed some ... work to do so I used pc design to make it ...

© All Rights Reserved – Permaculture Institute of Italy

....look like this

O All Rights Reserved – Permaculture Institute of Italy

Water - Keyline contour dam – feeder channels -rainwater harvesting – The same function is performed by more elements

Energy cycle – we produce soils – no pollution

See also: Soil Care Card

Appropriate technology - low energy tech that we can produce and maintain ourself

Real Life Forest Gardens – Remiarz

- Robert Hart: Vision
- Martin Crawford: Proof of concept
- Baseline survey: 127 sites
- ▶ UK >70, US \sim 20, Europe \sim 20
- $ightharpoonup \sim 50\%$ private, $\sim 25\%$ community, $\sim 25\%$ commercial
- $ightharpoonup \sim 50\%$ rural, $\sim 25\%$ farm & rural
- \blacktriangleright Size: from 5 mq to 30 ha. \sim 25% < 250 m 2 , \sim 10% > 1 ha
- Exponential growth since 1990
- Case studies: 40 sites
- ▶ Work hours: 1 hour/week to 20 hours/week

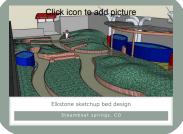
Real Life Polycultures - How plants and people interact in the forest garden

Real Life Forest Gardens

Real Life Forest Gardens - Remiarz

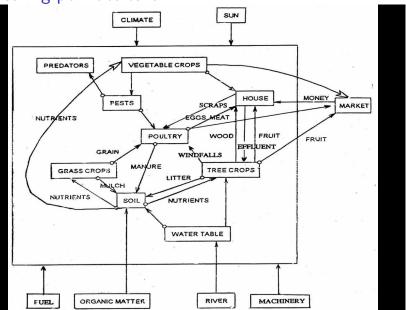
reading international solidarity centre

Real Life Forest Gardens - Remiarz



Real Life Forest Gardens – Remiarz

Bringing the Forest Garden Indoors - Osentowski



Central Rocky Mountain Permaculture Institute

Other sites

- ▶ Bullocks Permaculture Homestead
- ► Terra Phoenix
- ► East Devon Forest Garden

Measuring permaculture

Measuring sustainability practical techniques for designs and enterprises

Measuring permaculture – G. Brookman

Overview of key Indicators

- 1 Product energy/input energy ratio
- 2 Income/cost of non-renewable inputs ratio
- 3 Soil nutrient, pH, organic carbon levels and trends
- 4 Percentage of property given-over to effective biodiversity plantings and reserves
- 5 Income & yield per kilolitre of water

Measuring permaculture

Inputs and their energy costs Common insecticides per kilo 87000 Kcal

Common herbicides per kilo
 Glyphosate per kilo

Fungicide per kilo
Winter-oil per litre

Petrol per litre
 Diesel per litre

Gas per litreWood per kilo

Nitrogen per kilo
Phosphorus per kilo

Potassium per kilo

87000 Kcal

1100000 Kcal 110000 Kcal 65000 Kcal

60000 Kcal 10000 Kcal

11430 Kcal 7705 Kcal

4600 Kcal 14700 Kcal 3000 Kcal

3000 Kcal 1600 Kcal

Inputs and their energy costs

Guano per kiloRock phosphate per kilo

Rock phosphate per kilo
Electricity per Kwhr
Compost per kilo
815 Kcal

(my estimate)
Embodied energy per kilo

Tractors

HarvestersTillage equipment & seeders

Sprayers, manure spreaders, mowers

Forage equipment

3500 Kcal 3100 Kcal

1000 Kcal

2000 Kcal

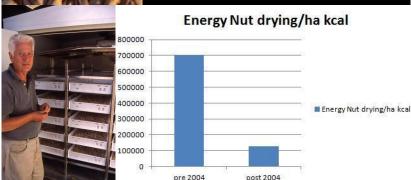
1760 Kcal 1400 Kcal

Input energy costs and yields for Almonds USA

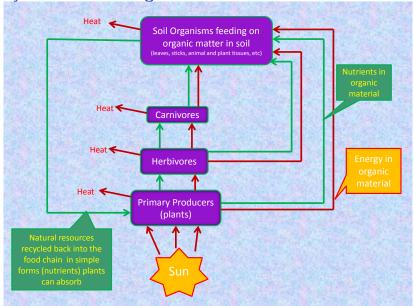
Almonds (Conventional, America) Benchmark Product Energy/Input Energy per annun (Pimentel D. 1984)

Inputs	Quantity/ha	Kcal/ha
Labour	198 hours	Not allowed for
Machinery	30kg	540000
Fuel/oil	155 litres	1413600
Elect/ Irrig	301cm	9025000
Nitrogen	224kg	3115000
Phosphorus		
Potassium		2001 CONTRACTOR
Insecticides	12.2 kg	492800
Fungicides	11.2kg	246400
Herbicides	4.5kg	255400
Gas	37 litres	2331500
Transport	3361kg	373900
Total		21,150000
Total yield	1792 kg almonds	10,719000
Product Energy / Input Energy Ratio		0.51

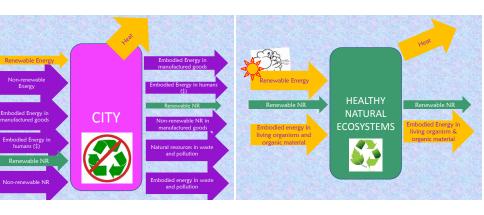
Input energy costs and yields for Pistachios at The Food Forest


Pistachios (Organic) at The Food Forest, Product Energy / Input Energy per annum

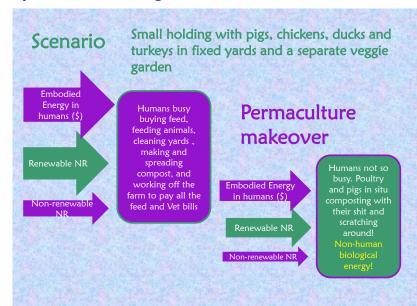
Product Energy / Input Energy Ratio		1.27	
Total yield	250kg pistachio nuts	1,548250 Kcal (food energy)	
Total inputs		1,223762 Kcal inputs	
Electricity (drying)	116 kWhr	126133	
Herbicides		-	
Fungicides - Cuprous oxide	0.5kg	50000	
Insecticides – winter oil	10 kg	600000	
Potassium - ash	100kg	byproduct	
Phosphorus + Nitrogen etc – composted byproducts	224 kg	182560	
Elect/irrig (notional)	6cm	100000	
Fuel/oil	15.5 litres	141360	
Light machinery	20 kg	340200	
Labour	198 hours	Not allowed for	
Inputs	Quantity/ha	Kcal/ha	


Measuring permaculture

Effect of change to drying on site with locally-built, ultra-efficient electric dehydrator. Figures include the energy cost of transport



Ecosystem based design – Seabrook



Using Ecosystem based design to enhance our Sustainability Outcomes

Ecosystem based design

Ecosystem based design

Ecosystem based design

Households as permaculture nodes - Nzira

A Promising Sustainable Living System for Communities in Eastern and Southern Africa Households as permaculture nodes

Permaculture and Development - McKenzie, Henriques

Harnessing the Potential of Permaculture for Sustainable Development and Resilience

See also: Black Permaculture Network

Permaculture and Development

Permaculture and Development

Permaculture and Development

From a few terraces many terraces grow

Many More Relevant Projects

Permaculture International Research Network

Conclusions

"We have the skills to heal the earth, now it is time to scale up"

'Oil' - Formidable Vegetable Sound System

Readings I

Lydia et Claude Bourguignon. Le sol, la terre et les champs. Sang de la terre, 2008.

Dale Allen Pfeiffer.

Eating fossil fuels.

New Society Publishers, 2006.

Oscar Perone.

Making a Perone Hive.

Monochrome Printer version, 2012.

Masanobu Fukuoka.

The One-Straw Revolution.

Other India Press, eighth edition, 2001.

Readings II

P. Zucchetti.

Interview to O. Belussi, Istituto Italiano di Permacultura.

http://www.permaculturaitalia.com, 2010. [Online; accessed 12-Feb-2015].

World Bank datasets.

Arable land (hectares per person).

http://data.worldbank.org/indicator/AG.LND.ARBL.

HA.PC/countries?display=graph, 2012.

[Online; accessed 3-May-2015].

Jelle Bruinsma.

The resources outlook: by how much do land, water and crop yields need to increase by 2050?

Proceedings of the Expert Meeting on How to Feed the World in 2050, 2009.

Readings III

Folke Guenther.

Ruralisation: A possible way to alleviate our current vulnerability problems.

IV Biennial Workshop Advances in Energy Studies: Ecology, pages 37 - 64, 2004.

Sacha Guégan et al.

Maraîchage biologique permaculturel et performance économique – Rapport d'étape n 4.

http://bit.ly/1ICBhss, 2014. [Online: accessed 3-May-2015].

Ken Yeomans.

Water for Every Farm - Yeomans Keyline Plan. CreateSpace Independent Publishing Platform, 2008.

Readings IV

Bill Mollison.

Introduction to Permaculture.

Tagari Publications, 1997.

Patrick Whitefield.

How to Make a Forest Garden.

Permanent Publications, 2002.

Robert Hart.

Forest Gardening: Cultivating an Edible Landscape.

Chelsea Green Publishing, 1996.

🔒 Aranya.

Permaculture Design: A Step-by-Step Guide.

Permanent Publications, 2012.

Readings V

A Year on the Garden Path: A 52-Week Organic Gardening Guide.

Harbour, 2011.

Permaculture: A Designers' Manual.

Tagari Publications, 1988.

John Jeavons.

How to Grow More Vegetables and Fruits.

Ten Speed Press, 2002.

QGIS.

A Free and Open Source Geographic Information System.

http://www.qgis.org, unpublished manuscript. [Online; accessed 3-May-2015].

Readings VI

Plants For A Future.

A resource and information centre for edible and otherwise useful plants.

```
http://www.pfaf.org/user/AboutUs.aspx. [Online; accessed 3-May-2015].
```


Luigi Compagnoni.

Lombricolture.

http://www.lombricolturacompagnoni.it/. [Online; accessed 12-Feb-2015].

WWOOF.

World Wide Opportunities on Organic Farms.

```
http://www.wwoof.it/.
[Online; accessed 12-Feb-2015].
```

Readings VII

S. Agostinelli et al.

GEANT4: A Simulation toolkit.

Nucl.Instrum.Meth., A506:250-303, 2003.