TOTEM GEM assembly and quality control procedures

Timo Hildén

Helsinki Institute of Physics

Cleaning and testing of frames and skins

- cutting and finishing of the frames in a separate room next to clean room
- cleaning in ultrasonic bath (di-water+1%IPA)

 baking in an oven for several hours @
 60°C (also in vacuum if needed)

 high voltage test @ 5000 V in air before and after Nuvovern treatment

Gluing of the frames

- Araldite AY103+HD991 two component epoxy supplied by glue dispenser (mixing ratio 10:4)
- Amount of glue used is monitored

- foils streched by a special stretcher
- curing in an oven > 16 hours
- tension samples taken occasionally on ringlike laminates

Testing of GEM foils

- storage of the GEM foils in a dry atmosphere.
- parallel measurements of leakage currents of several foils.
- leakage currents are measured three times during different assembling stages (as a foil, on the frame and in the GEM).
- Optical scanning and computer based analysis of foils.

Leakage current measurements of GEM foils

- the four segments (A,B,C & D, see Fig.) of the GEM foils are measured separately by Picoamp /Voltage source device (Keithley 487).
- leakage currents measured three times during assembly (as a bare foil, after framing and after gluing into a stack). 36 measurement / detector
- current limited by 100 MΩ resistor (corresp. max current of 5 mA at 500V).
- a foil approved if current stays < 0.5
 nA for 30+ min @500V

Curing bad foils

- Several foils were found to have shorts
- Some dirty foils were discarded by visual inspection
- Some were cured in Helsinki by baking in vacuum oven at 50° for several hours

 Some bad foils were sent back to Cern to be cleaned/passivated

Optical scanning of GEM foils

- scanning with resolution of 2400 dpi
- higher resolutions possible but impractical due to file size
- blue diffuser produces a color contrast between the holes and copper surface
- produced images are large:
- ~1 GB without packing

image processing with a custom made

program

The scanned images

- Etching defects can be easily found by visual inspection, but separation from e.g. scratches and dust is tricky with image recognition by computer.
- Defect coordinates can be accurately recorded.

- Easy to visualize properties over the area of the foil
- Possible to inspect the foil in accurate coordinates (single pad)
- It is possible to measure individual hole sizes, pitch etc.

Measurements

- edge along the maximum gradient of intensity – differences in foreground brightness affect edge location
- etching defects are found by their size and shape
- measurement of hole diameter with subpixel accuracy (theoretical ~ 1 micron with 2400 dpi resolution, in practice it is worse)
- classification to good holes or one of several defect classes by object area, color and shape

Same foil scanned normally and rotated 180° before scanning. There is a shift of 1-2 pixels in measured area due to difference in foreground brightness.

High-voltage and ground sides of a foil.

There is a region of slightly smaller holes.

Capacitance measurement of readout boards

- semi-automatic capacitance measurement systems works eventually well!
- operation based on a GPIB-controlled LCR meter, XYZ table and a special fan-out card with a 130 pin mating connector.
- Measures relative capacitance variation from pin to pin.
- measurement time 10 min/conn.
- strip/pad capacitances easily measured also from an assembled GEM.

Bad readout boards

- Some readout boards had shorts (12 ROBs) – 7/18 shorts were successfully burned away
- Few broken strips were found (in 6 ROBs, 11 in total)
- Some ROBs had problems with blocked canals for gas
- Some ROBs were found to have a crystallized residue on the electrodes – cleaned at Cern

Gas tightness

- Gas sealing of chambers with thick layer of Dow Corning conformal coating
- comparison of in- and outflow / leak detector
- oxygen measurement from the outflow

Oxygen content as a function of flow

Oxygen content for one detector at 3l/h

Operation testing

- In stability testing all GEMs are kept at nominal voltage (4.15 kV) for several days
- Gain and energy resolution are scanned over active area. 17 sectors per detector to check. All of sector irradiated to see small scale variation.
- A lot of further testing was found to be necessary because of humidity problems outside the detector
- so far, only one bad detector out of 42 have been found

New HV -board

- All GEMs were equipped with new HVboards, HV-cables and aluminium/ copper shieldings – problems with humidity
- Additional layer of conformal coating (Dow Corning) supplied over the HV board and strips to prevent leakage current/pulses caused by moisture.
- New testing phase added before tests with Ar/CO2
 - Use of environmental chamber to test the detectors in 50 % humidity with nitrogen inside
 - Stability is tested for 12 hours in 4.5 kV, eventually ramped up to 5 kV for at least an hour

Environmental chamber

"good" detector

reacts to humidity increase

"bad" detector, high base frequency of pulses

reacts to humidity, small frequency left

Assembling of a T2 GEM detector

1.	Sandwich		9.	Leakage current tests of the GEM stack	8 h
	- ready made by CERN	0 h			
			10.	Readout board	
2.	Preparation of frames			- glued to sandwich by CERN	0 h
	- cleaning/grinding	1 h		- visual inspection	1 h
	- ultrasonic cleaning	1 h		- soldering of the connectors	8 h
	- drying in oven	4 h		- capacitance measurements	4 h
	- nuvovern varnishing	½ h		- burning of the shorts	4 h ?
	- curing in oven	2 h			
	- HV test	½ h	11.	Gluing the readout board to the GEM stack	1 h
				- gluing the gas adapters	
3.	GEM foils (3 pcs.)			- curing in oven	16 h
	- visual inspection	1 h		- removal of the central disk of the ROB	
	- optical scanning	1 h			
			12.	Sealing the GEM	
4.	Leakage current tests of the GEM foils			- Araldite/Dow Corning	2 h
	- 3 foils, 12 segments in total	8 h		- curing in oven	16 h
5.	Framing of the GEM foils (3pcs.)		13.	Finishing work	
	- stretching and gluing	3 h		- assembling of the voltage divider pcb	2 h
	- curing in oven	16 h		- assembling the HV cable	1 h
	- finishin the framed foils			- connecting the gas connector	
6.	Leakage current tests of the framed foils	8 h	14.	Tests	5 days
	-			- gas leaks?	-
7.	Gluing the drift foil to the sandwich		- environmental chamber, HV-tests		
	1 h			- electronic tests	
	- curing in oven	16 h			
				total:	2-3 weeks
8.	Assembling of the GEM stack			Assuming all the components are available and	
	- gluing the three framed foils	2 h		storage in dry atmosphere!	
	- curing in oven	16 h			

GEM foil statistics

- ~150 GEM foils handled so far
- On the whole the foil quality was found to be very good
- Some foils with different defects were assembled for later testing
- some foils were discarded
 - failure in glueing to the frame (2 pcs)
 - large leakage current + numerous blocked holes (1 pcs)
 - accidents in handling (1 pcs)

16G foil 2, HV side Some examples of defects

HG5 foil 2, HV side

found with optical scanning system

ROB statistics

- 43 ROBs handled so far
- Some ROBs sent back to Cern to be cleaned
- All ROBs have been assembled for later testing.

	broken strips	short circuits (green = burned)	gas channel blocked	alignment holes of the	Others
	PS5/62	(groon = barriou)	Bioditou		Othloro
	PS10/77	PS1/82-84-86			
	PS13/8	PS4/14-16			
HG1	PS13/44	PS12/81-82			
		SS4/28-PS13/88			
		SS3/109-PS13/12			
		PS1/38-39			
		PS1/55-59			
HG2		PS9/95-96			
HG3		PS6/83-SS2/43			
HG4					
HG5					
HG6					
HG7					
HG8					
HG9					
HG10					
HG11					
HG12					
HG13					
HG14	PS9/98				
HG15		SS3/77-PS8/58			
HG16		PS12/118-120			
HG17					
	SS3/45				
	SS3/61				
HG18	SS3/85	PS12/105-SS3/45/61/85 ?			
HG19				PS8, PS9, PS10,PS13	
HG20				PS9, PS10, PS11	
HG21					
HG22				SS1	
				SS1, SS2, PS1, PS2,	PS10/W50
HG23		SS4/5-PS10/38		PS3, PS4, SS3,SS4	hole in metal
HG24	DO 1/10	PS10/31-PS10/33	right one	D00 D04 D05	
HG25	PS4/43	SS4/92-PS13/96		PS3, PS4, PS5	
11000			atales and	SS1, SS2, PS8, PS12,	
HG26			right one	PS13, SS3, SS4 PS5, PS7, PS8,	
11007			hath ana	PS9, PS11	
HG27 HG28			both ones	P39, P311	
HG29		+		SS3,SS4	
HG29		+		333,334	large
					capacitance
HG30	SS1/96			PS9	PS10/54
HG31	JJ 1/80	+	both ones	PS10	1 310/34
HG32	+	+	right one	1 510	
HG33	PS5/43	SS4/80-PS13/46	right one	SS4	
HG34	1 00/40	SS3/13-PS11/78	right one	PS3, PS4	
HG35	+	000/10-1 011/70	Ingrit one	SS1, SS2	
11033				001, 002	