

GEM at UTA

Development of Digital Hadron Calorimeter for ILC Using GEM

Seongtae Park

HEP Group/UT Arlington

Large GEM Training/CERN (Feb.16.2009)

Contents

- Introduction /GEM-based Digital Calorimeter
- ❖ 30x30 cm² chamber at UTA
- **❖** KPiX readout electronics (SLAC)
- Chamber design
- ❖ 1x1 m² large chamber design
- Future plans
- Summary

Introduction

- * Many critical physics measurements at the ILC require precision jet quantity measurements
 - > Efficient jet separation and reconstruction
 - > Excellent jet energy resolution
 - > Excellent jet-jet mass resolution
- ❖ Particle Flow Algorithm is a solution for this
 - > Use momenta measured in trackers for charged particles
 - ➤ Measure EM and neutral hadron energies using calorimeters
 - ➤ Require fine calorimeter granularity
 - ➤ Digital (one two bit) readout a way to control costs

Why GEM's for DHCAL?

- ❖ Flexible configurations: allows small anode pads for high granularity
- ❖ Robust: survives ~10¹² particles/mm² with no performance degradations
- ❖ Fast: based on electron collection, ~few ns rise time
- \Leftrightarrow Short recovery time \Rightarrow can handle high rates
- \clubsuit Uses simple gas (Ar/CO_2) no long-term issues
- * Runs at relatively low HV (~400V across a foil)
- Stable and robust operations

GEM-based Digital Calorimeter Concept

- ➤ Passive (material) and Active (GEM) layers
- ➤ Increase spatial resolution (1 x 1 cm² readout pads)

What have been done so far?

- ❖ Bench tested with various source and cosmic ray
 - Used QPA02(32 ch, FermiLab) chip based preamp
 - Verified the signal shape, responses and gain
- ❖ Took a beam test at a high flux electron beam
 - First chamber built with 3M's 30x30cm² GEM
 - Used QPA02 chip based preamp
 - Verified that the chamber can survive
- ❖ Took two beam tests at FNAL's MTBF
 - Used QPA02 chip based preamp
 - ➤ 8 GeV pion beams and 120GeV proton beams
 - Measured chamber responses, efficiencies and gain
- Multiple channel readout w/ Analog KPiX chips

Currently running chamber structure

- \checkmark 30x30 cm² foils(3M)
- ✓ Used fishing lines as spacers
- ✓ 256(16x16) readout pads in DCAL board
- ✓ 64(8x8) readout pads in KPiX board; 10x10 mm² pads with 0.2 mm gap
- ✓ Constructed with plastic as the frame materials → weak to noise
- ✓ Use additional metal enclosure to shield from noise

KPiX board

Analog signal test

- ✓ In order to check analog signal from the chamber, external charge sensitive preamplifier (FermiLab, QPA02) was used.
- ✓ One of the readout pads was directly connected to the input of the QPA02. In this test the KPiX system was inactivated.
- ✓ The output was monitored with a oscilloscope.

Gas flow test result

How long time should we wait for the gas to be stable?

- → Measured counting rates of the signals with gas flow time.
- ✓ Sometimes environmental noise affected the counting and this increased the counting uncertainty, however from this test we could estimate the approximate time to wait before doing measurement.

Q1: Should we really wait for 3 hrs to get the stable system?

Q2: Where the noise comes from? Can we block off the noise by modifying the structure of the chamber?

→ New chamber design is needed.

Readout electronics / KPiX(SLAC)

➤ 1024 pixels / ROC → Thus working name KPiX

❖FPGA Control Board

- ■USB Interface to PC
- ■Interface To External Logic
 - •Beam Line Triggers
 - •Scintillators
 - •Laser Triggers
- **❖**Optically Isolated To **KPIX Interface Board**
- ❖C++ API Under Linux

Software drive acquisition results in ~24 cycles per second

KPiX Readout scheme

Calibrations/Range selection

- Gain Calibration depends on user choosing fit range to decide the slope of ADC/fC line
 - For normal gain, range is usually 0~130 fC
- The current method to determine this range is to look at the gain graph to find the range where the line best overlaps all the data points
 - Note: if range extends to 200fC (0.2pC), the line drops because graph curves slightly starting at 150 fC
- Note: the low end is very important to fit accurately

Fit range study

❖ In an attempt to make the range choice for fitting calibrations more systematic. -**Jacob**-

• Graph shows that ranges up to 200 fC, excluding 0~10 range, have at most a 12% error to mean, even up to 150 fC, the error is only 2% to mean, at 0~130fC range error to mean is 0.4%

☞ 0~130 fC range is a good selection!

Efficiency vs Threshold

FNAL experiment

Reponses to Source – GEM-KPiX

New chamber design

- * Two main problems with current chamber
 - More effective gas distribution required.
 - \triangleright Weak to environmental noise \rightarrow need additional shielding enclosure.

- New design
 - Use specially designed spacers for an effective gas distribution
 - Complete enclosure the entire detector system with metal box
 - ✓ No additional shielding box required
 - ✓ The chamber will have several feed through for HV/LV power, signal and data transmission between KPiX chip and interface board.
 - ✓ Effective HV distribution
 - ➤ Don't use glues, all components reusable → makes maintenance easy

Dimensions

- ➤ GEM Foils(3M)
 - 310x310 mm²
 - Active area: 280x280 mm²
- > Chamber
 - 410x410 x40.6 mm³
 - Material : Aluminum or Stainless
 - → Chamber will completely enclosure the KPiX system
 - → Don't need metal enclosure for shielding

- > Active gas room
 - $350x350x6 \text{ mm}^3 \rightarrow \text{For } 3/1/1 \text{ gaps}$

Feed through and gas connectors

HV and Gas

➤ HV supply: from bottom to top, resister network will be set under the bottom side of the chamber, electrodes will stand vertically

HV connector

Gas flow: from top to bottom; gas will be injected into the drift region and flows through the GEM foils, finally it is exhausted through the hole on the bottom of the chamber

Fixing the system

- ➤ Easy access from the bottom side: in case of problems with the KPiX readout board, it is accessible from the bottom side to fix the problems.
- ➤ The KPiX board is supported by 8 pieces of brackets
- ➤ The chamber is easily assembled and disassembled with 16 screws

Spacer/drift

* Thickness: 3 mm

❖ Material : Epoxy glass (PERMAGLAS ME 730, Resarm)

→ Low dust emission

Spacer/transfer, induction

❖ Thickness: 1 mm

❖ Material : Epoxy glass (PERMAGLAS ME 730, Resarm)

→ Low dust emission

Future work / 1x1 m² large chamber

Rui is preparing production of large GEM(33x100 cm²) for this work.

GEM DHCAL Plans - I

- ❖ Jan. 2009 Summer 2009
 - ➤ 30cmx30cm chamber
 - Construct a new chamber with optimal gas flow design
 - Characterize the chamber with sources and cosmic rays using 64 channel KPiX v7 at UTA
 - Characterize the chamber in particle beams
 - Responses, noise characteristics, efficiencies, gains, etc
 - ➤ 33cmx100cm unit chamber
 - Finalize 33cmx100cm (32cmx96cm active area) large GEM foil silkscreen design

GEM DHCAL Plans - II

- ❖ Spring 2009 Late 2009
 - ➤ 33cmx100cm thin GEM unit chambers
 - Production and certification of 33cmx100cm foils
 - Characterization of 256 channel v8 KPiX chips
 - Available in late spring 2009
 - Use 30cmx30cm STP chamber
 - Construction and characterization of 33cmx100cm thin GEM unit chamber
- **♦** Late 2009 Mid 2011
 - > 33cmx100cm thin GEM unit chambers
 - Complete production of 15 33cmx100cm unit chambers
 - Construct five 100cmx100cm GEM DHCAL planes
 - Using DCAL or KPiX readout chips
 - **Beam test GEM DHCAL planes in the CALICE beam test stack together with RPC**

Summary

- ❖ Construct 30x30 cm² GEM chamber for DHCAL
- Calibration study on the KPiX system
- **❖** Beam/source test
- Chamber design for optimal gas flow and noise shielding
- ❖ Future plans with 1x1 m² large GEM

GEM at UTA

Thank you!