Read-out boards

Rui de Oliveira 16/02/2009 RD51 WG1 workshop Geneva

Content

- PCB structures
- 1 direction read out board
- 2 directions
- 3 directions
- PAD
- Pixel
- Special
 - Active read out board
 - Grounding and capacitive couplings
 - Resistive spark protection
 - Resistive sharing

Single sided

CERN max size: 2000 x 600

Board thickness: 12um to 6mm

Metal: 2um to 200um

Limitation : exposure 2000x600

dev, etch: 600 width

Materials: rigid glass epoxy etc...

flex

Double sided +PTH

Drilling: 0.2 mm CNC min , 50um micro-vias

CERN max size: 1200 x 600 rigid boards

1600 x 600 flex boards

Limitation due to plating baths Board thickness: 12um to 6mm

Metal: 15um to 200um in the holes, 2 um min elsewhere

Materials: glass epoxy, polyimide

Multi layer + PTH

Drilling: 0.2 mm CNC min CERN max size: 600 x 600

Board thickness : 6mm max

Metal:15um to 200um

Limitation due to: press and plating

Number of layers up to 20

Thickness of one layer: 12um min

Materials: Epoxy, Kapton ...

Multi layer + burried Vias +PTH

Same limitations as multi layers boards Burried vias: 50um min Chemical, and 0.2mm for CNC drilling

Multi layer + burried Vias +blind vias

Same limitations as multi layers boards

Burried vias: 50um min for Chemical vias and 0.2mm for CNC drilling

Blind vias: hole diameter/ hole depth > 1

Hermetic by process

Multi layer + burried Vias +blind vias+ PTH

Hole and via filling Conductive or Dielectric resin Not gas tight

Readout Circuits

Demin experiment

Multilayer + PTH+ Burried +blind

Single direction read out board with shielding and reduced copper in the active region.

Max size 600mm x 600mm

ATLAS Muon detector Upgrade test Single side rigid epoxy board 17um copper on 2mm glass epoxy 1500mm x 500 mm

area of X and Y adjusted To share the signals

area of X = area of Y

Readout active area

2D readout board glued on low intrinsic radiation Plexiglas substrate CAST experiment 400 um pitch min 600mm x 450mm max size

Compass experiment 33cm x 33cm active area

NA 49 half cylindrical detector.

Max size: 600 x 450

Limited by raw material, press and plating baths

Minimum thickness: 35 to 50 um Kapton + 5um

copper + Honey comb structure

400 um pitch X and Y

TOTEM experiment

Max size for this technology: 600mm x 450mm

PAD

Alice HMPID cell made of 2 PCBs

- -Hermetic by design
- -Special NI/AU and polishing for CSI deposition
- -Front end electronics in the back
- Max size : 600 x 500 per board

Example of sharing for larger read out board

Pixel

1024 pads on a diameter of 35mm 8 layer PCB INFN PISA GEM detector

Close-up view Pad: 1mm Pitch: 1.05mm

Biggest problems:

-Line width

-layer count

Limitations:

- 600mm x 450mm Process

- Density of connections 3cm x 3cm

Pixel read-out: an example, the PCB approach

• Read out pitch: 260 µm

512 electronic channels from a few mm² active area are individually read out by means of a multi-layer PCB fan out

PCB approach

- 6 layers SBU (sequential build up) with 40um microvias.
- Minimum track width and space 40um

- Crosstalk between adjacent channels (signals traveling close to each other for several cm).
- Not negligible noise (high input capacitance to the preamplifiers).

ACTIVE read-out

Micro-groove

12 x 10cm groove detector Close to a MSGC INFN PISA/CERN

Close-up view

Micro-well

Close-up view

Micromegas Bulk and Micro-Bulk

T2K experiment, 84 Modules in production at CERN

Grounding and capacitive couplings

any effect?
One example

T2K bulk detector Inner layer

MM1-001 results: Capacity correction

Capacitance depends on length of connecting lines Capacitance changes gain

MM1-001 results: Gain

Gain variation: 4%

Distribution of the mean

MM1-001 results: Gain corrected

$$G_{corr} = \frac{G_i}{G_{fec}(x)} \times G_{moy}(14)$$

Gain variation: 2.2%

Distribution of the mean

Gain: ~1550

Resistive spark protection

R: Serial resistor limiting max current
High enough to limit energy of spark?
Low enough to remove charges
C: Serial parasitic capacitor High pass filter
High enough to transfert signal charges
Dielectric quality--> spark protection?

C or R doing spark protection?

Dot architecture

-Min: 0.15mm diameter

-Pitch: 0.25mm

-Possibility to avoid alignment

between track and dots

Pad architecture -needs alignment

Resistive spreading

Nuclear instruments and Methods in Physics Research A 523 (2004) 287-301

Copper
Prepreg defining the capacitor dielectric
FR4
resistive layer for charge spreading

200mm x 150mm Bulk micromegas with Resistive spreading

resistive layer polarization

For details contact Paul Colas

Thank you