Duke Atlas Tier 3 Site

Doug Benjamin (Duke University)

Duke Atlas Group

Personnel

- 4 Tenured Faculty
- 1 Research Professor, 2 Research Scientists
- 3 PostDocs (located at CERN)
- 1 PostDoc (who will eventually transition from CDF at the Tevatron to Atlas)

Several students

Thus our Tier 3 has to be configured with to handle 4 separate analyses at once

Duke Tier 3 site (current HW configuration)

- 3 TB Fileserver (Centos 4.6 64 bit OS)
 - Data and user home areas exported to other nodes in cluster
 - Grid Storage Element (Bestman-gateway with local FS)
- 2 interactive nodes
 - 2 dual core AMD, SL4.4 (32bit) 500 GB local storage
- One worker node class machine (32 bit SL 4.4)
 - Atlas code server
 - Bestman-gateway/Xrootdfs/Fuse
- Xen hypervisor SL5.2 with two virtual machines
 - Gums server (up and running but not really used)
 - Condor Master machine

HW config continued

- 2 worker nodes (Dell 1950 1U)
 - 8 cores ,2 GB/core, SL4.7 (64bit) 300 GB local storage
 - 8 Condor slots in separate partitions (16 GB/each)
 - Xrootd data server
- 1 worker node (assembled from parts)
 - 8 core, 2 GB/core, SL 4.7 (64 bit), 2.7 TB local disk (3)
 - 8 Condor slots separate partitions (16 GB/each)
 - Xrootd data server
- Xen hypervisor w/ 3 virtual machines (assembled from parts)
 - 1 worker node. 4 cores, 2GB/core, SL 4.7 (64bit), 300 GB local storage, 4 Condor slots, Xrootd data server
 - Xrootd director (also Proof master if Proof is added to cluster)
 - Extra VM (though to be Proof master initially)

Duke Tier 3 Software/Support Personnel

- Software installed
 - Several recent Atlas releases from kits done manually
 - Condor , WLCG client
 - Bestman-Xrootd, Bestman gateway, gridftp
- Support Personnel
 - Duke Physics department system managers maintain OS and interactive user accounts
 - Duke HEP Research scientist (me) Installs/maintains Atlas,
 OSG and Condor software
 - 0.10 to 0.25 FTE available for these activities
 - Implies the code must be simple to install, debug and operate

Services at Duke Tier 3

- Condor cluster with 28 slots
 - Use basic condor install/configuration with small changes
 - Configuration files all on common disk
- Xrootd data system (with Bestman-gateway SRM)
- NFS data storage with Bestman-gateway SRM
 - Bestman-gateway SRM Easy to install
- Atlas code releases from kits
 - Atlas env. similar to LXPlus (cmthome/ requirements file)
 - differs from how things are done at ANL
- Wiki visible to all
 - Important for communication amongst support Personnel
 - Source of training materials for group members

Cluster Evolution/ Design Constraints

- Last year after OSG meeting in NC setup a OSG CE with help of RENCI. Now concluding that OSG CE total cost of ownership is too high (effort involved to maintain) for benefits
- Previous experience lets me to conclude that I will want managed storage sooner than later (hence work w/ Xrootd)
- Need to fit within constrains of Department computer room
 - Rack mounted hardware
 - Mirrored system disks (reduce sys admin efforts)
 - Standard configurations. / Use virtual machines when appropriate
- Need to reduce load on Department system admins.

(they are providing best effort support)

Adapt system to needs/wishes of the users

Upgrade plans

Short term (within 1-2 months)

- Replacement of interactive login machines
 - 8 core, 2 GB/core, 500 GB local scratch space
- Additional Disk -
 - 16 TB standalone file server (assembled from parts ~ 6K\$)
- Managed switch

Longer term (minimal survival mode) (within 1 year)

(assumes no new sources of computing funds)

- 64 cores (2 GB/core) (~10 machines)
- ~ 20 TB disk storage (on worker nodes)

Add Local Panda submission to site

- Allow users to test their jobs before going to grid
- Needs http interface to local file catalog

Our current analysis model

Based on a small Tier 3

- Heavily depends on outside computing
- Fraction of data copied to local storage
- Test programs with local machines
- Send to grid larger scale jobs
- Resulting histogram files returned to local machines
- Disadvantage -
 - Very reliant on availability on outside CPU and storage at the Tier1 and Tier2 sites

Upgrade Plan (ideal model)

- ~25 8 core machines
- ~ 100 TB disk space
 - This much space requires some space management
 - Typical file size << 1 GB/file</p>
- Analysis model
 - Copy most of DPD data locally
 - Analyze locally except for the very large jobs
 - Would allow us quickly analyze the data as it is available

Challenges

- Interaction with Duke Computing infrastructure
 - Campus Firewalls / Local Firewalls
 - open ports normally closed slow process
 - Determine required ports by services open
 - Campus networking
 - "Last mile problem" Duke U is on Internet 2
 - Working with Campus networking people to solve problem
- Getting files to our site
 - Using dq2-ls and dq2-get to identify and copy files to Duke
 - dq2-ls and dq2-get often fail at Duke silent failures return nothing. Can see no pattern in failures
- Interface to Condor batch system
 - my job has many parts not a bunch of single Condor jobs
 - ARCON scripts form ANL should help but need to be extended

Challenges cont.

- Setting up Bestman-Xrootd
 - VDT documentation confusing at best in current form
 - Use other sources (Proof documentation, Scalla documentation, e-mail from Wei Yang direct and through OSG storage)
 - Excellent help form Wei Yang
- Registering Duke Tier 3 as part of OSG
 - I am first of these types of Tier 3 to register (SE only)
 provide storage for local users only
- Funding for Computing
 - In past 3 years received no funds from DOE for computing
 - All computing comes from a small grant from Duke U.
 - Need to find additional resources if we are to grow to the size we envision we need to be effective
- Longer term Local Data management

Conclusions

- Duke Tier 3 is an example of a small tier site being designed and configured to provide enough resources to allow group members to analyze the Atlas data effectively on a limited budget
- To reduce the support load excellent documentation is critical.
- Tier 3's will need some support need to have a robust Tier 3 support group.
- Without sufficient funding to Tier 3 sites, it implicitly assumes that sufficient resources will be made available to the general users at the Tier1 and Tier 2 sites.