DCache at Purdue CMS Tier2

US CMS Tier-2 Workshop LIGO March 3, 2009

Fengping Hu, Preston Smith Purdue University

Outline

- DCache Resources at Purdue
- Performance Results
- Limits & Operational Issues Encountered
- Conclusion

Purdue CMS Tier2 Data Center

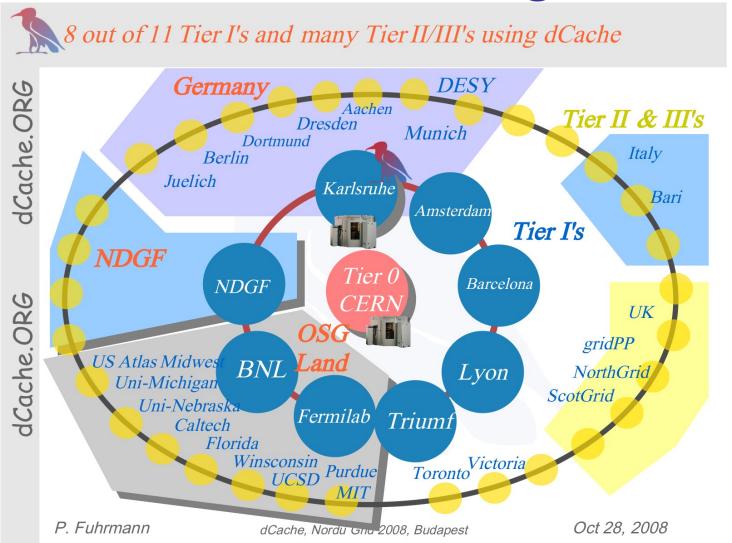
Size: ~ 500 TB (200 TB in Resilient, 300TB in

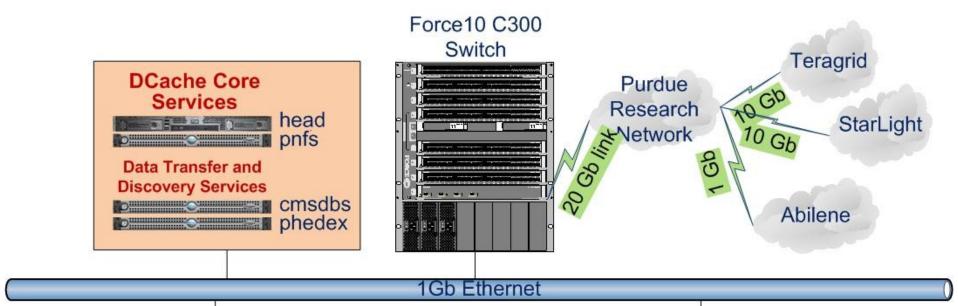
Non-resilient), ~250 nodes

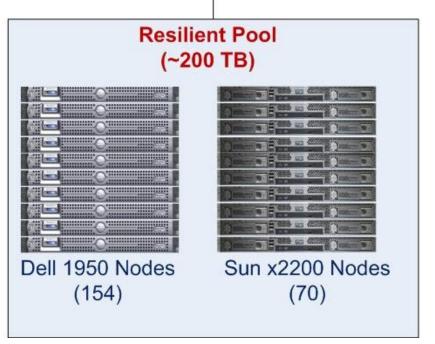
Networking: 1 Gb/s to Internet 2, 10 Gb/s to

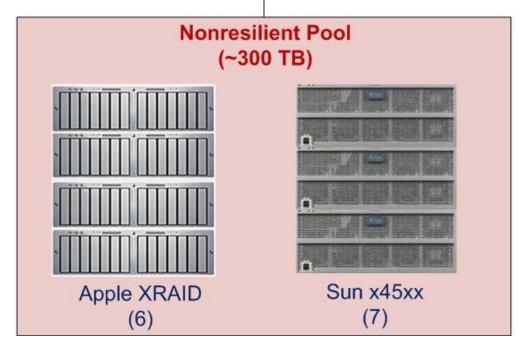
TeraGrid, 10 Gb/s to FNAL via StarLigh

Why dCache Was Selected


- Used by lots of OSG sites best choice at the time
- A distributed storage solution that exploits the capabilities of each server
- Designed to be scalable, reliable
 - Fault tolerance by separation of the namespace and data repositories
 - Resilience with the Replica Manager
 - Load balancing with custom cost metrics
- Grid-aware
 - Grid-aware user authentication
 - Interoperability through SRM
 - Information Service
- Fancy features
 - Hot-spot migration (increase throughput by duplicate popular files)


DCache Usage





Data Resilience

- Resilient pool
 - Spare disk space in computing farm
 - Replica Manager ensures data integrity and availability by keeping replicas of logical files on different nodes
- Non-Resilient pool
 - RAID disks
 - PFM tool address availability issue by replication
- Disk failure in the past year
 - 4 failures out of ~1000 disks (2 in Resilient pool, 2 in NonResilient Pool)

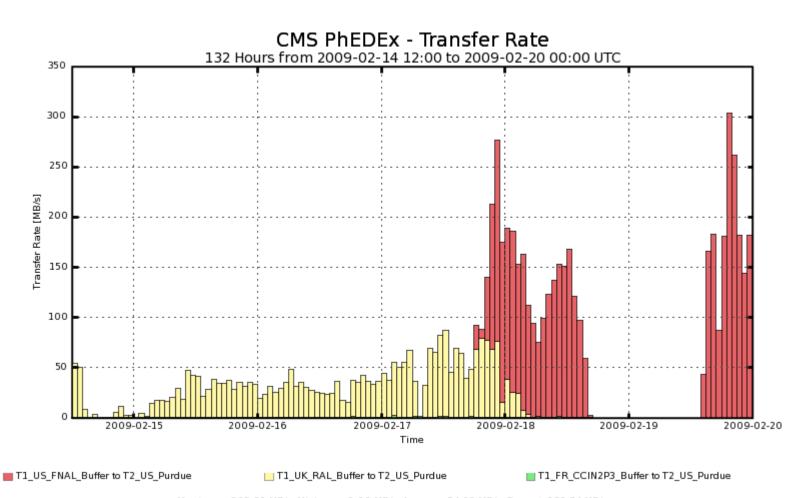
gPlazma Authorization

- Grid-aware PLuggable Authorization Management
 - kpwd
 - Grid-mapfile
 - gplazmalite-vorole-mapping
 - Saml-vo-mapping (GUMS)
- Configurations deployed
 - kpwd+gplazmalite-vorole-mapping
 - grant read access but restrict write access
 - manually add individual DNs to implement access control on /store/user directory
 - Plan to move to gplazmalite-vorole-mapping + saml-vomapping

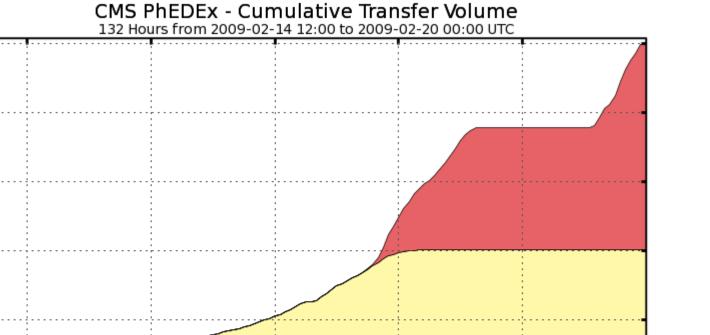
Tunings

- Multiple mover queues in each pool
 - Dcap uses LAN queue, gridftp use WAN queue
 - Slow processing dcap jobs don't clog up the fast gridftp request
 - Limit number of concurrent gridftp transfers to prevent pools from overloading
- Cost module setting left at defaults
- Misc timeouts mostly at defaults
- Network tuning
 - Set TCP buffers according to BDP value (BW * RTT)

Sun Fire X4500


- Linux is currently the OS deployed
- RAID configuration in Linux
 - Create 6 software RAID 5 arrays
 - Concatenate the RAID arrays into 1 super big logical volume
- File system
 - XFS wins over EXT3 in performance (especially for write)
 - XFS and ZFS comparable in performance, and both have their own edges
- Dilemma
 - Solaris/ZFS have slightly better performance than Linux/XFS
 - The cost of adding another flavor in all all Linux environment can't be underestimated

Write Performance


Maximum: 303.81 MB/s, Minimum: 0.00 MB/s, Average: 54.92 MB/s, Current: 181.74 MB/s

Write Performance

T1_US_FNAL_Buffer to T2_US_Purdue

2009-02-15

20

Data Transferred [TB]

T1_UK_RAL_Buffer to T2_US_Purdue

2009-02-16

T1_FR_CCIN2P3_Buffer to T2_US_Purdue

2009-02-19

Total: 24.89 TB, Average Rate: 0.00 TB/s

2009-02-17

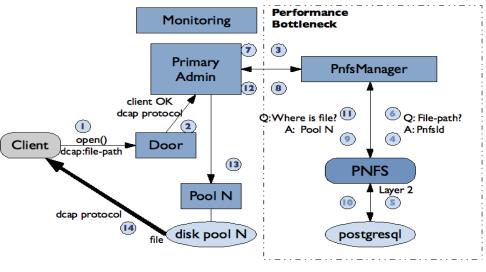
Time

2009-02-18

2009-02-20

PNFS Bottleneck

DCap-dcache-02-unknow-31464	dcap-dcache-02Domain	105	dcap-3	156896	3618	null	N.N.	cms-126.rcac.purdue.edu	WaitingForPnfs	00:03:33	Staging
DCap-dcache-02-unknow-31465	dcap-dcache-02Domain	101	dcap-3	156896	31872	null	N.N.	cms-143.rcac.purdue.edu	WaitingForPnfs	00:01:22	Staging
DCap-dcache-02-unknow-31466	dcap-dcache-02Domain	101	dcap-3	156896	7637	000100000000000051FF588	N.N.	cms-078.rcac.purdue.edu	WaitingForGetPool	00:01:24	Staging
DCap-dcache-02-unknow-31467	dcap-dcache-02Domain	103	dcap-3	156896	24140	null	N.N.	cms-135.rcac.purdue.edu	WaitingForPnfs	00:01:47	Staging
DCap-dcache-02-unknow-31468	dcap-dcache-02Domain	102	dcap-3	156896	6677	null	N.N.	cms-133.rcac.purdue.edu	WaitingForPnfs	00:01:47	Staging


Causes

- Single access point
- PNFS server uses global loc on each database

Fixes

- Upgrade pnfs node
- Optimize postgresql
- Split database so that each storal a sub-tree of the pnfs fs to parallize the access
- Replace PNFS with Chimera?

Client Reads File In dCache

PNFS Caveats

- "rmdir" fails to delete an empty dir
 - "the number of entries in the directory does not correspond to the actual number of objects in it"---Vladimir (FNAL)
 - "md3tool modifydirentrycount dbname pnfsid 0"
- A sequece that should be avoided
 - Create a directory (dir A) and create tags for this directory
 - 2. Create a subdirectory (dir B) in dir A
 - 3. Move dir B out of dir A
 - 4. Remove dir A

Pool Filling Up until Offline

- Set pool size correctly (rule of thumb)
 - set max diskspace (<Kbytes from 'df -k'> / 1024 / 1024 5)g
- Pool accepts new write request as long as there are space available, without counting in potential space consumption of the current transfer
 - Just my suspicion. If so, it's a bug.
- Makeshift solution deployed
 - A full pool write protect cron job (adapted from WISC)

Miscs

Suspended RCs

- Destroy RCs for which file doesn't exist
- Retry suspended RCs can put them through (quite often)

Orphaned files

- File on disk and in the pool, but not in the PNFS name space (out of sync)
- A cron job run at admin node (2 time/week) delete the orphaned file

Stuck srmcp myth

 Restart one of the dcache pool which was online fixed the problem

Conclusion

- DCache prove can support the nominal requirement of a cms tier2
- DCache is quite flexible, reliable and powerful
 - Addressed data reliability and availability on inexpensive commodity disk through file replication
 - Fault tolerance and Load balance features
 - Supports many transfer protocols
 - Grid aware
- DCache has a wide user population in LCG sites, thus good support from peers are available
- DCache needs effort on tuning and configuration
- DCache is not problem-free like anything else that is evolving

Acknowledgement

Ken Bloom (UNL)
Neha Sharma (FNAL)
Norbert Neumeister (Purdue)
Thomas Hacker (Purdue)
Vladimir Podstavkov (FNAL)

