Introduction to Accelerator Physics

Outline:

what you need to build a Storage Ring

Albert \& James-Clark

Liquid Helium \& Beer
Beethoven
Big Ben \& Big Bang
Aircraft Carriers in the tunnel
Cats (but no dogs)
the beta function is usually obtained via the matrix element "m12", which is in and including
element "m12, which is in
Twiss form for the undistorted case

$$
\begin{array}{ll}
m_{12}=\beta_{0} \sin 2 \pi Q & \underbrace{m_{12}^{*}}=b_{11} a_{12}+b_{12} a_{22}-\delta_{12} \sigma_{12} \Delta k d s \\
\text { (1) } m_{12}^{*}=\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s & m_{12}=\beta_{0} \sin 2 \pi Q
\end{array}
$$

As M^{*} is still a matrix for one complete turn we still can express the element m_{12}
in twiss form:

$$
\text { (2) } \quad m_{12}^{*}=\left(\beta_{0}+d \beta\right) * \sin 2 \pi(Q+d Q) \quad-a_{12} b_{12} \Delta k d s=\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

Equalising (1) and (2) and assuming a small error

$$
4 \pi
$$

$$
\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\left(\beta_{0}+d \beta\right) * \sin 2 \pi\left(Q+d Q \mathbf{A} 0 \cdot{ }^{\circ}\right.
$$

$$
\begin{aligned}
\left.\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=(\beta) \& d \beta\right) * \sin & \underbrace{2 \pi Q \cos 2} \\
& \approx 1 \\
& \approx 2 \pi d Q
\end{aligned}
$$

$$
-a_{12} b_{12} \Delta k d s=\frac{\beta_{0} \Delta k \beta_{1} d s}{2} \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

$\beta_{0} \sin 2 \pi Q-a_{12} \sigma_{12} \Delta k d s=\beta_{0} \sin 2 \pi Q+\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q+d \beta_{0} 2 \pi d Q \cos 2 \pi Q$

$$
d \beta_{0}=\frac{-1}{2 \sin 2 \pi Q}\left\{2 a_{12} b_{12}+\beta_{0} \beta_{1} \cos 2 \pi Q\right\} \Delta k d s
$$

replace by ...

"after some TLC transformations"
... or ... "after some beer"

A Bit of History

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2}} * \frac{1}{\sin ^{4}(\theta / 2)}
$$

Rutherford Scattering, 1906 Using radioactive particle sources: α-particles of some MeV energy

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design \& construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

$\left.\begin{array}{l}\text { Particle source: Hydrogen discharge tube } \\ \text { on } 400 \mathrm{kV} \text { level }\end{array}\right\} \begin{aligned} & \text { Accelerator: evacuated glas tube } \\ & \text { Target: Li-Foil on earth potential }\end{aligned}$
Technically: rectifier circuit, built of capacitors and diodes (Greinacher)
robust, simple, on-knob machines largely used in history as pre-accelerators for proton and ion beams
recently replaced by modern structures (RFQ)

Main limitation

Main limitation: electric discharge due to too high Voltage.

Maximum limit: I MV
Limit set by Paschen law:
the breaking Voltage between two parallel electrodes depends only on the pressure of the gas between the electrodes and their distance
 too dense, long mean average path of High pressure: dense electrons gas, large Voltage needed for gas ionisation
2.) Electrostatic Machines:

(Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

* Terminal Potential: $U \approx 12$... 28 MV
using high pressure gas to suppress discharge ($S F_{6}$)

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The ,,Tandem principle ": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H^{-}) and stripping the electrons in the centre of the

Example for such a „steam engine ": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

... and how it looks inside
"Vivitron"Strassbourg

The Principle of the "Steam Engine":
Mechanical Transport of Charge via a rotating chain or belt

$$
\begin{aligned}
& \text { stripping foils: } 1500 \AA \\
& H^{-} \rightarrow p \\
& C^{-} \rightarrow C^{6+}
\end{aligned}
$$

Fallen die Dinger eigentlich runter ?

Do they actually drop?

$$
\begin{aligned}
& l_{V d G}=30 \mathrm{~m} \\
& v \approx 10 \% c \approx 3 * 10^{7} \mathrm{~m} / \mathrm{s} \\
& \Delta t=1 \mu s
\end{aligned}
$$

Free Fall in Vacuum:

$$
\begin{aligned}
s & =\frac{1}{2} g t^{2} \\
& =\frac{1}{2} 10 \frac{m}{s^{2}} *(1 \mu s)^{2} \\
& =5 * 10^{-12} m=5 \mathrm{pm}
\end{aligned}
$$

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam
schematic Layout:

Energy gained after nacceleration gaps

$$
E_{n}=n * q * U_{0} * \sin \psi_{s}
$$

\boldsymbol{n} number of gaps between the drift tubes q charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
Ψ_{S} synchronous phase of the particle

[^0]
Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: $E_{\text {kin }}=20$ MeV per Nucleon, $\beta=0.04 \ldots 0.6$, Particles: Protons/Ions

$$
\begin{aligned}
& E_{\text {total }}=988 \mathrm{M} \mathrm{eV} \\
& m_{0} c^{2}=938 \mathrm{MeV} \\
& p=310 \mathrm{MeV} / \mathrm{c} \\
& E_{\text {kin }}=50 \mathrm{MeV}
\end{aligned}
$$

Beam energies

1.) reminder of some relativistic formula

$$
\begin{array}{ll}
\text { rest energy } & \boldsymbol{E}_{0}=\boldsymbol{m}_{0} \boldsymbol{c}^{2} \\
\text { total energy } & E_{=}=\gamma^{*} E_{0}=\gamma * m_{0} c^{2} \quad \text { momentum } \quad \boldsymbol{E}^{2}=\boldsymbol{c}^{2} \boldsymbol{p}^{2}+\boldsymbol{m}_{0}{ }^{2} \boldsymbol{c}^{4} \\
\text { kinetic energy } & \boldsymbol{E}_{\boldsymbol{k} \boldsymbol{i n}}=\boldsymbol{E}_{\text {total }}-\boldsymbol{m}_{0} \boldsymbol{c}^{2}
\end{array}
$$

GSI: Unilac, typical Energie $E_{\text {kin }}=20 \mathrm{MeV}$ per
Nukleon, $\beta=0.04$... 0.6,
Protons/Ions, $f_{r f}=110 \mathrm{MHz}$

Energy Gain per „Gap":

$$
\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{\boldsymbol{R} \boldsymbol{F}} \boldsymbol{t}
$$

Application: until today THE standard proton /ion pre-accelerator CERN Linac 4 is being built at the moment

4.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: Bend a Linac on a Spiral Application of a constant magnetic field keep $B=$ const, $R F=$ const
\rightarrow Lorentzforce

$$
\vec{F}=q^{*}(\vec{v} \times \vec{B})=q^{*} v * B
$$

 increasing momentum \rightarrow Spiral Trajectory
revolution frequency

$$
\omega_{z}=\frac{q}{m} * B_{z}
$$

the cyclotron (rf-) frequency
is independent of the momentum

Cyclotron:

! ω is constant for a given q \& B
$!!B^{*} R=p / q$
large momentum \rightarrow huge magnet
!!!! $\omega \sim 1 / m \neq$ const works properly only for non relativistic particles

Application:
Work horses for medium energy protons
Proton / Ion Acceleration up to $\approx 60 \mathrm{MeV}$ (proton energy) nuclear physics
radio isotope production, proton / ion therapy

Beam Energy

... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

CERN Accelerators
kin. Energy $\quad \gamma$
Linac $2 \quad 60 \mathrm{MeV} 1.06$
PS $26 \mathrm{GeV} \quad 27$
SPS $\quad 450 \mathrm{GeV} \quad 480$
LHC $\quad 7$ TeV 7460
remember: proton mass $=938 \mathrm{MeV}$

Cyclotron: modern trends: Problem: $\boldsymbol{m} \neq$ const.
\rightarrow non relativistic machine

$$
\omega_{z}=\frac{e^{*} \|_{B B_{z}}}{\gamma^{*}{ }_{I n n_{0}}}
$$

5.) The Betatron: Wideroe 1928/ Kerst 1940

...apply the transformer principle to an electron beam: no RF system needed, changing magnetic B field

Idea: a time varying magnetic field induces a voltage that will accelerate the particles

Farady induction law

$$
\oint \vec{E} d \vec{s}=-\int_{A} \dot{B} d f=-\dot{\Phi}
$$

circular orbit

$$
\begin{aligned}
& \frac{m v^{2}}{r}=e^{*} v^{*} B \\
& \rightarrow \quad p=e^{*} B^{*} r
\end{aligned}
$$

schematic design

magnetic flux through this orbit area

$$
\Phi=\int B d f=\pi r^{2} * B_{a}
$$

induced electric field

$$
\begin{gathered}
\oint \vec{E} d s=\vec{E} * 2 \pi r=-\dot{\Phi} \Rightarrow \vec{E}=\frac{-\pi r^{2} * \dot{B}_{a}}{2 \pi r}=-\frac{1}{2} \dot{B}_{a} r \\
\text { force acting on the particle: } \quad \dot{p}=-|\vec{E}| e=\frac{1}{2} \dot{B}_{a} r * e
\end{gathered}
$$

The increasing momentum of the particle has to be accompanied by a rising magnetic guide field:

$$
\dot{p}=e^{*} \dot{B}_{g} r \quad \boldsymbol{B}_{\boldsymbol{g}}=\frac{1}{2} \boldsymbol{B}_{\boldsymbol{a}}
$$

robust, compact machines, Energy $\leq 300 . . .500 \mathrm{MeV}$,
limit: Synchrotron radiation

6.) Synchrotrons / Storage Rings / Colliders:

Wideroe 1943, McMittan, Veksler 1944, Courant, Livingston, Snyder 1952

Idea: define a circular orbit of the particles, keep the beam there during acceleration, put magnets at this orbit to guide and focus

Synchrotrons as Discovery Machines

Creation of μ showers in the earth atmosphere

$$
\begin{aligned}
& E_{I P}=m c^{2} \\
& E_{I P}=E_{1}+E_{2}
\end{aligned}
$$

Three Jet event, gluon discovery at PETRA

7.) Electron Storage Rings

Production of Synchrotron Light

$$
\begin{aligned}
& \begin{array}{ll}
P_{s}=\frac{e^{2} c}{6 \pi \varepsilon_{0}} * \frac{1}{\left(m_{0} c^{2}\right)^{4}} \frac{E^{4}}{R^{4}} & \text { Radiation Power } \\
\Delta E=\frac{e^{2}}{3 \varepsilon_{0}\left(m_{0} c^{2}\right)^{4}} \frac{E^{4}}{R} & \text { Energy Loss per turn } \\
\omega_{c}=\frac{3 c \gamma^{3}}{2 R} & \begin{array}{l}
\text { "typical Frequency " } \\
\text { of emitted light }
\end{array}
\end{array}
\end{aligned}
$$

Application of Synchrotron Light Analysis at Atoms \& Molecules

The electromagnetic Spectrum:

having a closer look at the sun ...

Light:

$$
\begin{gathered}
\lambda \approx 400 \mathrm{~nm} \ldots 800 \mathrm{~nm} \\
\text { 1 Oktave }
\end{gathered}
$$

The electromagnetic spectrum

Analysis of Cell structures

Structure of a Ribosom
Ribosomen are responsible for the protein production in living cells.
The structure of these Ribosom molecules can be analysed using brilliant synchrotron light from electron storage rings
(Quelle: Max-Planck-Arbeitsgruppen für Strukturelle Molekularbiologie)

Angiographie

x-ray method applicable for the imaging of coronar heart arteria

Beam Dynamics in FELs and ERLs:

Smallest time scale in FELs and Linacs:


```
FEL pulses allow observation of processes in the femto-sec scale
```


Structure of Matter

9.) Storage Rings for Structure Analysis

synchrotron light: nm

electron scattering: A... $10^{-18 ~ m}$
de Broglie:

$$
\lambda=\frac{h}{p}=\frac{c h}{E} \quad E \approx p c
$$

[^0]: * acceleration of the proton in the first gap
 * voltage has to be "flipped "to get the right sign in the second gap \rightarrow RF voltage
 \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

