Michal Bochenek

CERN

ACEOLE Six Months Meeting

This research project has been supported by a Marie Curie Initial Training Network Fellowship of the European Community's & Seventh Framework Programme under contract number (PITN-GA-2008-211801-ACEOLE)

Outline

- Motivation,
- Proposed powering scheme for new ATLAS Inner Tracker,
 - Serial powering,
 - DC-DC conversion,
- Proposed scheme for serial powering,
- Overview of step-up charge pumps,
- Switched capacitor voltage doubler,
- Overview of step-down converters,
- Results from Cadence simulations,
- What has been done and plans for the future.

Motivation

Current ATLAS Inner Tracker

Some facts about powering in current ATLAS Inner Tracker

- The ATLAS Pixel and SCT power cables are above 100 m long and their resistance can be as high as 4.5 Ω,
- Power consumed by the SCT front-end electronics is 25 kW, a similar amount is lost in the power cables,
- Each front-end power module has its own power supply channel and cable,
- The space available for power cables from the tracker through the ATLAS detector is strictly limited and cannot be increased.

Motivation

New ATLAS Inner Tracker

Requirements for new ATLAS Inner Tracker

After the High Luminocity Upgrade

- The number of channels in SLHC tracker will be increased 10 times,
- The readout chips of the upgraded ATLAS tracker will operate at a reduced voltage but will consume similar currents as the current tracker,

The new solution for power management has to be found

An integrated DC-DC step-up charge pump for the serial powering scheme in ABCN (130nm) Power distribution in new ATLAS Inner Tracker

Requirements for voltages and currents (128 channels / chip)

ASICs for new ALTAS Inner Tracker will be designed in CMOS 130nm (or below) technology

Current requirements:

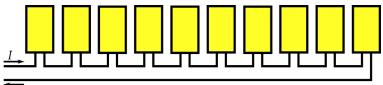
 $I_{analog} < I_{digital}$

Estimation for currents

 $I_{analog} \approx 16 mA$ (short strips option), $I_{analog} \approx 32 mA$ (long strips option). $I_{digital} \approx 51 mA$

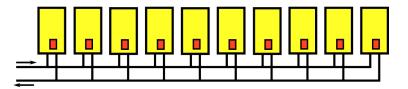
Voltage requirements:

Vanalog > Vdigital


Two power domains (contributes significantly to power saving)

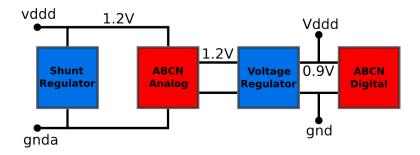
$$V_{analog} = 1.2 V$$

 $V_{digital} = 0.9 V$


Possible solutions to the power distribution problem

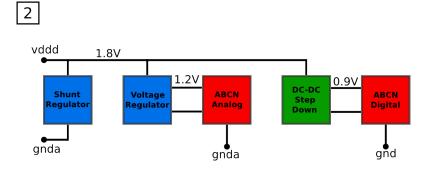
Different powering schemes have been investigated

• Serial powering of detector modules


 Parallel (or independent) powering of detector modules combined with DC-DC conversion

An integrated DC-DC step-up charge pump for the serial powering scheme in ABCN (130nm) Possible schema of serial powering

Possible schema of power management in ABCN (130nm)

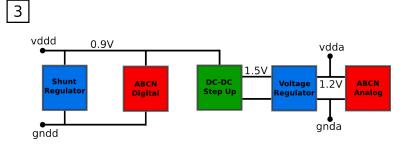


(+) Reasonable efficiency,

(-) Low quality of analog supply (no voltage regulator).

Possible schema of serial powering

Possible schema of power management in ABCN (130nm)



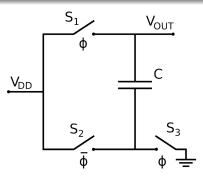
(+) Easy to obtain good quality of analog supply (voltage regulator with high drop \Rightarrow easy to obtain good filtering efficiency),

(-) No regulation on digital power line (required low impedance of DC-DC since variable current is consumed in digital part).

Possible schema of serial powering

Possible schema of power management in ABCN (130nm) (the most preferable solution)

(+) Good quality of analog and digital voltage,


- low output impedance of shunt regulator,
- possibility to use classical linear regulator \Rightarrow good filtering efficiency,

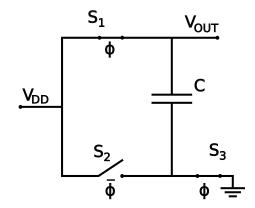
No regulation on DC-DC but constant power consumption in analog part.

Introduction to step-up charge pump circuits

Overview of the simplest voltage doubler

Charge pumps are circuits that generate a voltage larger than the supply voltage from which they operate

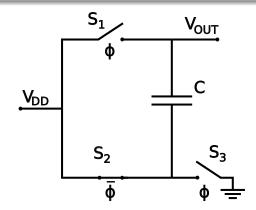
$$(V_{OUT} - V_{DD}) C = V_{DD} C$$


and therefore

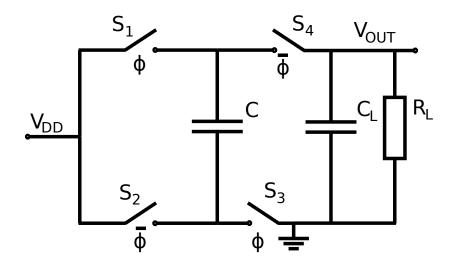
$$V_{OUT} = 2V_{DD}$$

Introduction to step-up charge pump circuits

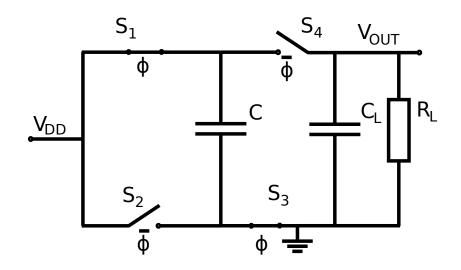
Simple voltage doubler (Phase 1)


- Switches *S*₁ and *S*₃ are closed,
- Switch *S*₂ is opened,
- Capacitor is charged to the supply voltage V_{DD}

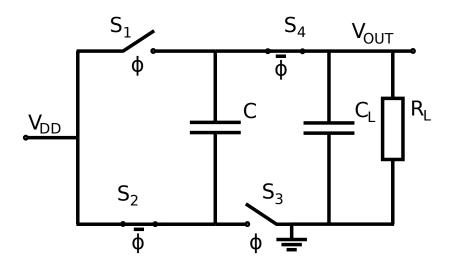
Introduction to step-up charge pump circuits


Simple voltage doubler (Phase 2)

- Switches S_1 and S_3 are opened,
- Switch S₂ is closed,
- Bottom plate of the capacitor on V_{DD} , while the capacitor maintains its charge $V_{DD}C$ (from the previous phase).


Introduction to step-up charge pump circuits

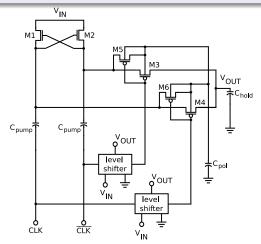
Practical voltage doubler with filtering capacitance


Introduction to step-up charge pump circuits

Practical voltage doubler (Phase 1)

Introduction to step-up charge pump circuits

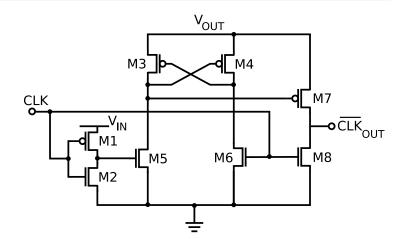
Practical voltage doubler (Phase 2)



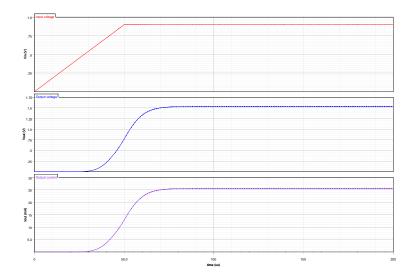
Voltage doubler for serial powering scheme

Solution for voltage doubler pumping on both clock edges

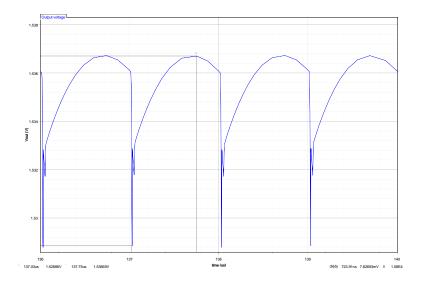
- Transistors (low V_{Th}) M1 and M2 use thin (2.2nm) gate oxide,
- Transistors M3 M6 use thick (5.2nm) gate oxide,


•
$$V_{IN} = 0.9V, C_{PUMP} = 470nF, C_{HOLD} = 470nF, C_{POL} = 10pF.$$

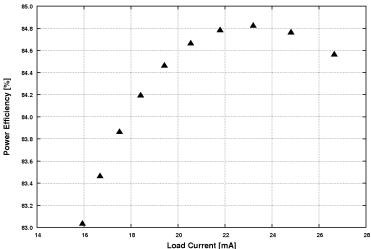
An integrated DC-DC step-up charge pump for the serial powering scheme in ABCN (130nm) Voltage doubler for serial powering scheme


Practical solution for level shifter

- Transistors M_1 M_8 use thick (5.2nm) gate oxide.
- Main part of the circuit powered from output voltage, V_{OUT}.

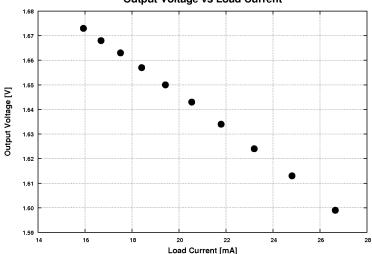

Results from simulations

Input voltage, output voltage and output current vs. time


Results from simulations

Voltage output ripples vs. time

Results from simulations

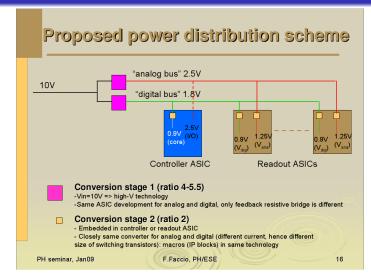

Power efficiency vs. load current

Power Efficiency vs Load Current

Results from simulations

Output voltage vs. load current

Output Voltage vs Load Current

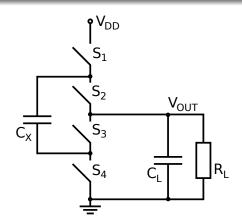

An integrated DC-DC step-up charge pump for the serial powering scheme in ABCN (130nm) Step-up switched capacitors DC-DC converter - summary

Status of step-up charge pomp design

- READY:
 - design study,
 - simulation in Cadence,
 - optimisation of the circuit (82% 85% of efficiency).
- TO BE DONE:
 - process corner simulations,
 - layout (submission planned in the end of the year).

Introduction to step-down converters circuits

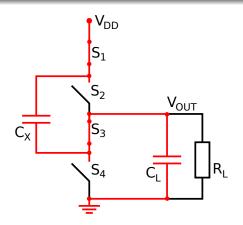
Prototyping the step-down switched capacitor converter for DC-DC powering scheme



Introduction to step-down converters circuits

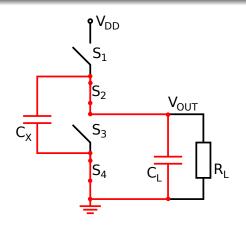
Simple switched capacitor DC-DC step-down converter

The simplest model contains:


- Four switches,
- Two capacitors.

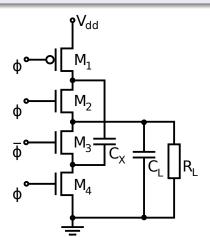
Introduction to step-down converters circuits

Simple step-down converter (Phase 1)

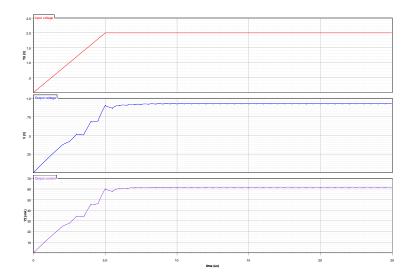

- Switches S_1 and S_3 are closed,
- Switches S₂ and S₄ are opened,
- C_X and C_L are connected in series.

Introduction to step-down converters circuits

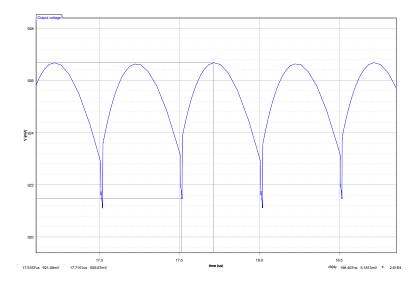
Simple step-down converter (Phase 2)


- Switches S_1 and S_3 are opened,
- Switches S₂ and S₄ are closed,
- C_X and C_L are connected in parallel.

An integrated DC-DC step-up charge pump for the serial powering scheme in ABCN (130nm) Step-down converter for serial powering scheme


Practical solution for step-down converter

- Four transistors: 1 x PMOS & 3 x NMOS, two capacitors: C_X & C_L,
- Transistor *M*₁ (PMOS) uses thick gate oxide,
- Transistors $M_2 M_4$ (tripple-well NMOS) also with thick gate oxide.


Results from simulations

Input voltage, output voltage and output current vs. time

Results from simulations

Voltage output ripples vs. time

An integrated DC-DC step-up charge pump for the serial powering scheme in ABCN (130nm) Step-down switched capacitors DC-DC converter - summary

Status of step-down converter design

• READY:

- analithical model of DC-DC step-down pump (from F. Faccio & S. Michelis),
- design study,
- preliminary simulations using Cadence shows efficiency up to 92%.
- TO BE DONE:
 - optimisation of the circuit,
 - process corner simulations,
 - layout (submission planned in the end of the year).

Thank you for your attention!