The Higgs boson - a first of its kind?

Liron Barak

CERN

High Energy Physics

- Probing matter with very high energy in order to study the particles that made the universe.
- In the LHC, we can probe for the first time the highest energy ever (100GeV-1TeV) and the smallest distance ever (10⁻¹⁸-10⁻¹⁹m).

Particle Content SU(3)×SU(2)×U(1)

3

The Higgs Boson

Theory Inputs

XS and BRs

Needle in the Haystack

Bump Hunter (Η->γγ)

- Hunting a new short lived particle means looking for a bump in the invariant mass $(m_{inv}^2 = (p_1+p_2)^2)$ distribution of its decay products.
- The significance of the bump must be high enough to make a statistical fluctuation of the known background highly unlikely.

Bump Hunter (Η->γγ)

• We have two photons.

Bump Hunter (Η->γγ)

* We have two photons in the background too:

What should we do?

 Identify discriminating variables to suppress our backgrounds.

 How did we do it? <u>https://twiki.cern.ch/twiki/pub/AtlasPublic/</u> <u>HiggsPublicResults//Hgg-FixedScale-</u> <u>Short2.gif</u>

• How did we do it?

The Golden Channel

• H->ZZ events in ATLAS

The Golden Channel

 How did we do it? <u>https://twiki.cern.ch/</u> <u>twiki/pub/AtlasPublic/HiggsPublicResults//</u> <u>4l-FixedScale-NoMuProf2.gif</u>

The Golden Channel

• How did we do it?

The Glory Day

Beyond the Standard Model

- Problems in the Standard Model (Neutrino mass, dark matter...).
- Fermions come in three families, why only one Higgs family?
- With two Higgs families, five states; Charged Higgs the smoking gun.

Motivation from Run1

Charged Higgs

• How to find it? Depends on its mass.

Light Charged Higgs

How is it produced?

Heavy Charged Higgs

• How is it produced?

Getting there....

m_x [GeV]

Recap

- * Run1 (65-600GeV):
 - * Two regions: low mass (65-110GeV) and high (110-600GeV). Extending the SM Higgs search that was done form 100-160GeV.

Run 2

- * Changes from run1 to run2:
 - New energy, upgraded detector ->
 Re-optimization of the cuts (pT, isolation -> BG reduction).
 - * Improving analysis:
 - * Background modelling.
 - * Signal parametrization.

Run 2

- * Changes from run1 to run2:
 - * New energy, upgraded detector -> Re-optimization of the cuts (pT, isolation -> BG reduction).
 - * Improving analysis:

Run 2

- * Changes from run1 to run2:
 - * New energy, upgraded detector -> Re-optimization of the cuts (pT, isolation -> BG reduction).
 - * Improving analysis:
 - * Background modelling.
 - * Signal parametrization.

Mass spectrum

Mass spectrum

Final Result

THANK YOU FOR YOUR ATTENTION