

Adding SK 2Rpi0 sample to T2K OA

Wing Yan Ma Student Seminar 05/05/16

Overview

- Introduction: Oscillations at T2K
- Four sample joint oscillation analysis
- Additional 2Rpi0 sample to oscillation analysis

Neutrino Mixing

- T2K can observe v_{μ} disappearance and v_{e} appearance
- Sensitive to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, Δm^2_{32} , δ
- Not sensitive to solar parameters $\sin^2 \theta_{12}$, Δm_{21}^2

Oscillations at T2K

Near Detector constraint at SK

 The near detector significantly reduces the systematic uncertainty in the predicted event rate at SK

	Systematics	Without	With ND
Flux and xsec	Common to ND/SK	10.7%	2.4%
	All	10.8%	2.5%
FSI+SI at SK		1.8%	
SK detector		4.7%	
	Total	12.0%	4.0%

Four Sample Joint Oscillation Analysis

- Previous analysis: $1R\mu$ only for v_{μ} dis. and 1Re only for v_{e} app.
- Simultaneous fit to all 4 SK samples (FHC/RHC 1Rµ and FHC/RHC 1Re)
- FHC/RHC 1Re: bin in p and θ
- Shape information give additional power to separate the signal from the background
- FHC/RHC 1Rµ: bin in Erec
- Properly take into account the effect of the uncertainties on other oscillation parameters when trying to measure one of them.

Results (Not official yet!)

Adding SK 2Rpi0 sample

Aim: Implement the 2Rpi0 sample to oscillation analysis code and update OA result.

- Can help constraint some systematic parameters such as NCpi0 normalisation error
- A few % of this sample are from CC events so they are sensitive to oscillation parameters.

- 1. Produce basic distributions using existing T2K-SK data and MC.
- 2. Using p-theta binning for oscillation analysis, achieve better/similar sensitivity by adding 2Rpi0 sample with systematic errors.
- 3. Deduce how accurate the systematic errors of pi0 needs to be.
- 4. To reduce these errors, atmospheric data/hybrid-pi0 data studies might be needed.

NCpi0 Selection at SK

Signal definition: Neutrino neutral current interaction that has one and only one pi0 in the final state and no other mesons.

- 1. FCFV
- 2. 2 e-like rings
- 3. No decay electrons
- 4. Resulting rings have reconstructed invariance mass between 85-185 MeV/c²

Signal	osc nue	numu CC	nue CC	NC	Total
23.01	0.37	0.17	0.08	2.07	25.69

Run 1-6: 6.91 x10²⁰ POT

selection	%
efficiency	56.5
purity	89.5

Basic Distributions

- Found 21 events from data
- Found 25.69 events from MC

Systematic Error Re-evaluation

- Initial study: 4 diagonal terms of pi0 systematics were added without correlation with other samples
- 1 bin for each SK event category: sig nue CC, numu CC, bkg nue, NC
- To get correlation, re-generate SK detector matrix and FSI+SI covariance matrix
- Also added back NCpi0 norm error
- Total number of parameters: 103 → 108

Full Covariance Matrix for Nominal+new sample

Bins 1-50: Beam flux parameters

Bins 51-67: Correlated xsec and interaction parameters

Bins 68-103: SKdet+FSI+PN errors for nominal sample

Bins 104-107: SKdet+FSI errors for 2Rpi0 sample

Bin 108: SK momentum scale error

Preliminary study on Effect on Number of events

Generate 10000 toy experiments and study number of events distributions

Sensitivity check with new sample

- Use "Asimov" dataset: Treat nominal MC as data (instead of throwing/sampling from prediction to create toy data)
- Any difference between input and best-fit point is due to fitter (not statistical errors)
- Binned Poisson likelihood is used for Asimov dataset

$$\mathcal{L}_{ ext{Asimov}}(N_{ ext{obs}}, oldsymbol{x}, oldsymbol{o}, oldsymbol{f}) = \prod_{i=1}^{Emax} P_{ ext{Poisson}}(N_{ ext{pred}}(i), N_{ ext{obs}}(i)) imes \mathcal{L}_{ ext{syst}}(oldsymbol{f})$$

Using number of expected and observed 2Rpi0 events as inputs to likelihood

calculation

Only one bin for the 2Rpi0 sample

Sensitivity Check without Systematic Uncertainty

- Blue: nominal (numu+nue) sample
- Red: nominal + new sample

- Asimov dataset is used for this sensitivity study
- Marginalized over the other oscillation parameters using 10000 throws, with T2K best fit value of $\sin^2(2\theta_{13}) = 0.162$
- Found $\sin^2(2\theta_{13}) = 0.17$ for nominal and nominal+new sample

Sensitivity Check with Systematic Uncertainty

 Number of expected 2Rpi0 events has little effect to change of sin²(2θ₁₃)

- NCpi0 xsec can be derived from the 2Rpi0 sample, but stats too small still
- Sterile neutrino study: anomalous disappearance or appearance of active neutrinos could be a sign of sterile neutrinos
- Improve pi0 rejection efficiency for nue selection
- Data fit and comparison with MC

Conclusion

- Neutrino oscillations at T2K and how we measure oscillation parameters
- Recent effort of 4 sample joint oscillation analysis and result
- Addition sample to oscillation analysis might have little effect on sensitivity to $\sin^2(2\theta_{13})$, but may have other physics interests

Extra Slides

Versions

Reference (TN-148)

- NEUT 5.1.4.2, SKDETSIM 13.80
- Reweighted from flux 11a to flux 11bv3.2
- Reconstructed using APfit version 13a

- Using 14a MC
- 13a nominal flux
- skdetsim-v13p90
- NEUT 5.3.2
- 14b SK software (apfit_14b, fiTQun_v4r0)
- MC files taken from iRODS: t2ksk.
 14a.neut5.3.2.13a_tuned_v1r0.250ka.fine.nu*_x_nu*.root
- data from /disk/sklb/t2k/2013Sept_fitqun_run1-4full

Sensitivity Check without Systematic Uncertainty

- Blue: nominal sample
- Red: nominal + new sample

Sensitivity check with other parameters fixed