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Background

In order to reach multi-TeV e*e™ collision
energies the CLIC collaboration has invested
significant effort to develop 100 MV/m gradient
accelerating structures.
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CLIC accelerating structures I@

e 11.994 GHz, X-band

* OFE copper, hydrogen bonded 1040 °C
e 100 MV/m accelerating gradient

* |nput power =50 MW

* Pulse length =200 ns

* Repetition rate 50-400 Hz

25 cm . o .
Micron—precision disk

IPAC2017, 15 May 2017 ensch, CERN



Vacuum arcing !

One of the main limitations we have is
vacuum arcing, aka breakdown,
* Supresses power flow reducing

acceleration
e @Gives beam transverse kick
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adn Very high-field vacuum arcs

Densities, time = 0.000 [ns]

Vacuum arcs — the formation of plasma T — 6T T
accompanied by large electron currents - | ||
. . . . ar ar
occur in many devices and applications. £l £l 1018
What'’s so special about us? 2l { ol
* Very high surface electric fields, over 200 i 1 ' {10
ot———t ol——t—t
€ R R ARG DAY R S o O 1 2 3 4 5 6
MV/m 6 2uml 7 - zuml 1800
* Opportunity to test over 20 rf structures | Flectrons il {1600 101
and over 40 pulsed dc electrodes L <5 li00s
combined with significant theoretical and EE g4 11000 g,
2 g3l 800 S 10%2
simulation effort. 2 S5l 600 2
400
. . . 1r L
We believe that we see processes which give S T\ .
OO 1 2 3 4 5 6 %.0 04 08 12 16 2.8 Lt

fundamental field limits for copper. i t [ns]

Onset of a vacuum arc simulated by ArcPIC, K.
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m Where we do our experiments

/d} Nextef facilities

Klystron-based test stands at _ad
CERN: [

* XBoxlto3 [

* NEXTEF at KEK

 Two pulsed-dc systems.
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m CLIC accelerating structures - performance summary X
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d[b Very high-field vacuum arcs, in more detail ‘@

Consider the vacuum arc trigger.

Need a site which produces enhanced electron field emission and neutral atom
emission.

What is the nature of such a site?
For most applications these are contaminants: dust, particles, oxides etc.

But at high fields, > 100 MV/m surface electric field, we see clear evidence of
field-generated features — that give the ultimate field limit.

These features seem to form below the surface and are generated by
dislocation dynamics.

IPAC2017, 15 May 2017 Walter Wuensch, CERN



Conditioning @

Accelerating structures do not run right away at full specification — pulse length and gradient
need to be gradually increased while pulsing. Typical behaviour looks like this:
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35 36 37 38 39 40 41 42
Power [MW)]
Data taken in XBox-2 with TD26CC structure, T. Lucas

IPAC2017, 15 May 2017

BDR dependence

2l

Regularly observed dependence:

BDR o E3075

U

—Ef +e4E? AV
kT

Physical model based on
defect formation

BDR < e

Ef =0.8eV
AV = 0.8 x 10724m3

K. Nordlund, F. Djurabekova, Defect model for the dependence of
breakdown rate on external electric fields, Phys. Rev. ST Accel. Beams
15, 071002 (2012)

Walter Wuensch, CERN



Comparison of three similar structures
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Comparing conditioning
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Mechanical fatigue samples

LT

G S

rf structure

Experiment:

1. Build rf structure, standard procedure with 1040
°C bonding, and mechanical sample with same
heat treatment.

2. Condition rf structure and fatigue mechanical
sample.

3. Compare material state before/after/between
using advanced microscopy techniques: FIB cutting
lamella and image using STEM and TEM.
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200 nm
Formation of dislocation patterns characteristic of
hardening.
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EHT =25.00kvV Mag= 49.70KX 15:22:47

After heat treatment

|Probe= 248pA WD= 4.6 mm Detector = aSTEM42 Feb 2017 Alexander
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200nm ESBGri{= OV IProbe= 248pA WD=46mm Detector = aSTEM4Z Feb 2017 Alexander @ CE RN

EHT =25.00kvV Mag= 49.70KX 15:22:47 Lunt

S8 5
L &

After rf conditioning, high E field
region — TEM image
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@b Interpretation ‘@

RF operation at high fields produces dislocation patterns similar to fatigue implying:

* A hardening process occurs during conditioning,

* Dislocation dynamics, formation and movement, are central to high-gradient behaviour.

Some numbers:

* Electric field stressis 0 = %EOEZ so for 250 MV/m surface field, 270 kPa — for perfect flat

surface.

 The onset of plastic behaviour in Cu is of the order of kPa, so well above already at 100
MV/m surface field.

* Speed of sound in copper is .38 mm/100 ns, so bulk phenomenon.

IPAC2017, 15 May 2017 Walter Wuensch, CERN



dlb Simplified picture

Applied external electric field

Vacuum

ﬁ Tensile force ﬁ " " " "
— <

(Pulsed surface heating — not subject for today) Copper

P
<

Tensile stress induces plastic behaviour, i.e. creates dislocations.
Dislocations move to surface to reduce energy.

Projection of dislocation on surface in nucleation point for continuation of breakdown
process (too little time today for rest of story)

IPAC2017, 15 May 2017 Walter Wuensch, CERN



Exact Solution: Master Equation

BDR dependence - A

% =An—-1)P(n—1,t)+u(n+1)P(n+1,t)—

Exact Solution

Experiment: Dependence on Field

A. Grudiev, S. Calatroni,
and W. Wuensch,
PRST-AB 12, 102001
(2009)

K. Nordlund and F.
Djurabekova, PRST-AB

3| | 80 90 100 110 12 15, 071002 (2012)
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POWEI’ [MW] Stochastic Model of Breakdown Nucleation eli.engelberg@mail.huji.ac.il



d[b An explanation of high-field conditioning l@

Copper in its annealed state always has some, but very mobile, dislocations.

Stresses from rf pulses create and move dislocations, which migrate towards surface creating
surface features which nucleate breakdown sites.

This dynamic gives us breakdown rate.

Movement of dislocations also form interlocking “sessile” patterns, which reduce movement
of later-formed dislocations.

This interplay is what lies behind field dependence, conditioning and gives ultimate gradient.
BD nucleation as a critical transition in dislocation population, Y. Ashkenazy
Stochastic Model of Breakdown Nucleation under Intense Electric Fields, E. Engelberg

both at MeVArc2017 https://indico.cern.ch/event/521667/
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Hard vs. soft copper in pulsed dc system

90 Gradient vs N. Pulses

As-machined 1040 °C treated electrodes
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Hard vs. soft copper in pulsed dc system
4 =

RF structure in milled halves:
Heat-treated reference successful (presented
at LINAC)

Hard-copper version under preparation

Walter Wuensch, CERN



Q!b Summary

 Breakdown rate vs gradient,
* Conditioning vs number of pulses,
 Material state before and after conditioning,

All point to the importance of dislocation dynamics in
determining behaviour and Ultimate Gradient in high-
gradient normal conducting rf structures.

A crucial stage of the action is below the surface!

IPAC2017, 15 May 2017 Walter Wuensch, CERN
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Extra slides
(next step in breakdown)
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AR Example of growth of nano-sized field emitter @
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Exposed side

Tungsten tip used in ultra-fast electron diffraction.
Tips deteriorate under laser pulsing but:

 Small area to uniquely identify characteristics of field emission sites

* Intense femtosecond fields opportunity to benchmark molecular dynamics and kinetic
Monte Carlo codes

Hirofumi Yanagisawa, et. al. Laser-induced asymmetric faceting
and growth of a nano-protrusion on a tungsten tip, APL
IPAC2017, 15 May 2017 Photonics 1, 091305 (2016); doi: 10.1063/1.4967494



AR

Evolution of field emission during laser pulsing @

(a) 0 min (b) 5 min

Y (031)
’ %/
K\

010)

Viip =-3000V Viip = -3000V Viip = -2500V

(d) 140 min (e) 260 min (f) 290 min

Exposed side

Viip = -2300V Viip =-2100V Viip =-900V
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dﬂ |dentification of nm-sized emission site

(b) View A (d) View A
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. g

~ Energy deposited on a tip by Joule heating

Kinetic Monte Carlo Results

» Deposited energy was scaled to Gaussian laser
pulse:

with peak of the pulse in the center of the tip
~ width of the Gaussian = half of the laser waist

~ Deposited energy was used as an input for the

Two Temperature model
T —

Two temperature model

Two separate subsystems:
electrons and lattice. e- subsystem

Each subsystem is in thermal

equilibrium. ']I i?]l 4L. ®
Subsystems exchange energy Phorans @

through electron—phonon 090000

interaction. lattice

C,%=V-(R,VT,}-G{TE-T,]+A[F}

Te - electronic temperature, Tl - lattice
Kinetic Monte Carlo model under electric field temperature

Rigid lattice is assumed E

Thermally activated jurnps to vacant 1nn sites:

-E.
KT

I'=ve

where v s the attempt frequeney, k-
Boltzmann's constant, T - the temperature,

and E_ - the migration barrier that an atom
nieeds to overcome in order 1o make a jumg.

Adatoms on a surface become dipoles under
- l v {

electric field

Migration barriers are affected by electric field

Diffusion will be biased towards higher fields

Bias is defined by the adatom’s polarisability
-

More details in V. Jansson's talk ~ =rElening Baibuz for Me'Are 2007

www.helsinki.fi/yliopisto



