

HiRadMat at CERN SPS

A test facility for Accelerator Components with High Power Beam Pulses

Adrian Fabich on behalf of the HiRadMat team

ATS seminar, 26. May 2016

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

Overview

- Motivation
- Layout and features of the facility
- Experiments
- Conclusions

2

CERN

From Motivation to Proposal

- Beam intensity increases in particle accelerators
 - \rightarrow materials of near-beam equipment must be able to withstand the higher energy deposition/radiation
- Testing in an existing facility is difficult/inconvenient
 - Typically an accelerator is already used for physics
 - Limited in access for installation works
 - Limited in space along the beam line
 - Missing infrastructure
 - Limited in beam time

There was the request for a **dedicated** test facility:

- **HighRadMat Hi**gh **Rad**iation to **Mat**erials Dedicated facility to study the impact of **intense pulsed beams** on materials investigating effects from heat & radiation with increasing intensity.
 - Thermal management (heating) & thermal shock (pressure waves)
 - Radiation damage to materials change of mechanical properties

Facility target:

- provide irradiation area with beams similar to LHC injection regime
- with scanning possibilities in intensity and spot size
- Designed for single-pulse experiments (long-term irradiation is excluded for operational aspects)

Application targets:

• machine components, protection devices, targets, material studies, detector testing, electronics

CERN

Project Timeline

- Installed in place of former WANF proposed 2009 by R. Assmann and I. Efthymiopoulos
- Core team from EN/EA (formerly EN/MEF)

4

WANF dismantling

WANF operation until 1998

EUCARD²

• Dismantling in 2010

A. Fabich

5

CERN

Facility services

Provision of dedicated irradiation infrastructure

- Preparation lab at surface
 - Same interfaces as in the tunnel
- Control room
 - With pre-installed cabling for signal/HV/Ethernet to TNC
 - 140 meter cable distance to TNC
- Irradiation position
 - Standardized installation (remote)
 - General supplies (water, electricity, cabling)
 - Beam monitoring
- Assistance during design, preparation, installation, operation and follow-up
- Advising in safety matters and radiation-protection

7

EN Engineering Department

Layout Target Area TNC (1)

Layout Target Area TNC (2)

3 test stands for experiments

26/5/2016

- Remote installation of normed support tables
- Standard connections for general infrastructure

EUCARD²

Target area TNC

Beam Parameters

Similar to LHC injection

	Protons	Heavy ions (Pb ⁸²⁺)
Beam energy	440 GeV	173 GeV/u
Bunches/pulse (max)	288	52
Pulse intensity (max)	3 10 ¹³	4 10 ⁹
Bunch spacing	25, 50, 75 or 150 ns	100 ns
Pulse length (max)	7.2 μs	5.2 μs
Beam spot	variable arc	ound 1 mm ²
Pulse energy (max)	3.4 MJ	21 kJ

Variable intensity

Variable beam focus

ר Organisation structure

Regular meetings for daily operation:

ATSMB

- Experimental Area management with CERN groups
- Users meeting (with video conferencing)

HRM user e-mail list: hiradmat-users@cern.ch

Beam time application

Primary contact hiradmat.sps@cern.ch

- Experiment proposals are recommended by the HiRadMat Scientific Board
 - Scientific interest of the experiment, feasibility and post-irradiation analysis
 - Expected results and publications to the interest of the scientific community
 - Approval validated by the HiRadMat Technical Board
 - Integration, operational and safety aspects, radiation protection and waste management

Board meeting about twice a year.

More information on http://cern.ch/hiradmat

CERN

12

CERN

13

Target R&D
Wthimble - granular target technology
Ptarg
RIB target
RodTarg - AD target
Collimation (LHC and injectors)
Crystal collimation
tunneling experiment
Rotating collimator
Transfer lines collimators (3x)
SPS ejection septum protection
material studies
Prototyping (LHC and injector types)
Detectors
BLM - beam loss monitors
Optical microphone
Rpinst - RP Instrumentation R&D
diamond detectors
BTV beam monitors
More
GlassyC
Beryllium specimen
Cryogenic elements

HRM beam program

Single pulse experiments

- Typically 100 pulses per experiment (10 exp./year)
 - Lasting a few shifts per experiment
- Limitation on air activation
- Allow personnel access to irradiation area

GlassyC experiment

New material for vacuum windows

- Glassy Carbon obtained by the pyrolysis at high temperature of a highly reticulated resin
- 98 % (weight) of carbon and 2% of oxygen.

- Online monitoring using strain gauges and temperature sensors
- Post-irradiation evaluation (PIE) ongoing: microscopy

A. Fabic

MicOpt: First data view

- Impacts are clearly detected by Optical Microphone
- Peak sound pressure: 166 Pa; 138 dB SPL (tentative!)

Time signal

Courtesy: Balthasar Fischer, Xarion (AT) Daniel Deboy, KUG

6ms reflection delay (target is placed 1.05m away from tunnel wall)

Experimental setup

- Thorough analysis:
 - radiation effects?
 - correlation between intensity and sound pressure level?
 - sound time-of-arrival for location detection?

Optical microphone #2 (beam dump)

EUCARD²

26/5/2016

Experiment table

Optical microphone #1 (target area)

BPM diamond detectors

Development of

- Online monitoring of beam position at experiment
- Measuring of beam halo on four quadrants

FIGURE 3.2: A schematical view of a detector module, with units in mm. Each gold pad has a side length of 3 mm and a separation to one another of 0.2 mm. The hole of the gold plating has a radius of 1.5 mm.

FIGURE 3.3: A photograph of the frontside of one of the BPMs.

Bunche

Beam position with TARGET downstream

• Noise induced from backscattered particles

• Beam position still deducible

Online monitoring

- Beam performance
 - Intensity: BCT transformers in SPS/transfer line
 - Beam profile
 - BPM in transfer line
 - Air core current transformer, BTV at experiment
- Radiation monitoring
 - RadMons in TNC and TT61
 - BLMs along the transfer line and experimental setup

M. Calviani et al.

AD target

• Motivation:

Reduce the uncertainties existing in the core material response of the AD-Target

- Assess the material selection for a new AD-Target for LS2
- Goals:
 - Recreate the same extreme conditions as reached in the AD-target in a controlled environment (validation of hydrocodes calculations)
 - Identify mechanism of failure and limits of the materials of interest impacted by proton beams

W-Ta

Ir

W

WLa

Ta

TZM

Mo

26/5/2016

CERN

20

Measurement tools

Provided with the expertise of various groups at CERN

- Laser-Doppler vibrometer
 - Measuring surface velocities of several m/s
 - tens of MHz sampling
- Optical high-speed recording
 - High-speed camera with several kHz frame rate

- Diamond detectors, strain gauges, temperature sensors ...
- Beam monitoring
 - High precision (< 0.1 mm) alignment/survey to experimental tables/beam
 Based on BTV/air core current transformer
 - Intensity monitoring
- Radiation monitoring with RadMons and beam loss monitoring

Validation of collimator materials

Beam #Utime: #U	Seam Inermet : comparison between sinulation and experiment Beam Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experiment Image: Comparison between sinulation and experimen		Hi	gh Inte	nsity Te	sts (Typ	e 2)	High-Ra	diation to Materials	
Beam 400 (dbell Tamme) here ANTY 400 (db.mm) 000 + 40 000 + 40	Beam MUTURE #40 offset transmit to MUTUR Utilitie to MUTURE #40 offset transmit to MUTURE #40 offset to MUT	V.	Iner	met : comp	arison betwe	en simulation	and experi	ment		
	Case Bunches P/bunch Total Beam Specimen Velocity	Bear	autoons mutablede	e Geland Ann Albert						
100math	Case Bunches p/bunch Total Beam Specimen Velocity		0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00 0.005+00							
Simulation 60 1.5e11 9.0e12 p 2.5 mm 9 316 m/s			Providence of the second	72	1.26+11	9.05e12 m	1.0 mm	8 (north 9)	-275 m /s	

Courtesy: A. Bertarelli, M. Guinchard

Validation of collimator materials

AUTOD/N-3D-V14.0 (+Bets Options) from ANSYS ABS VEL (m/s) 0.0000+00 0.0000+
0 000+00 0 000+00
0 000+00 0 000+000 0 000+000+000+000 0 000+0000+0
0.000e+00 0.000e+00 0.000e+00
Case Bunches p/bunch Iotal Beam Specimen Velocity Sigma Slot

Courtesy: A. Bertarelli, M. Guinchard

HRMT-23 JAWS

 designed to test and qualify against LHC and HL-LHC accident scenarios three collimator jaws (HL-LHC with MoGr, HL-LHC with CuCD, LHC with CFC)

Embarked Instrumentation	Sampling frequency
126 electrical strain gauges	4 MHz
42 temperature probes	200 Hz
Laser Doppler Vibrometer	4 MHz
Water pressure sensor	100 kHz
60 strain Fibre Bragg Gratings	500 Hz
HD Camera inspection	" 4K "
st Speed Camera + LED lighting system	20 000 fps

Courtesy: M. Guinchard et al.

With high intensity beam pulses on thick target - electronics in TT61 failed

	GlassyC	PTarg	Jaws	BeGrid	BLM2	RodTarg
Target	Thin 0.1λ	Thick 2 λ	Thick >2λ	Thin 0.25 λ	Thin 0 λ	Thick 2 λ
p.o.t. (1e15)	1.2	0.03	1.1	0.3	0.3	0.2
Max. pulse intensity (1e13)	3.5	0.2	3.8	3.8	3.8	0.2
BLM411 response	0.016	0.0001	0.003	0.0004	0.0004	0.0003
BLM518 response	0.1	0.01	0.14	0.02	0.02	0.01
BLM526 response (just after nominal target position)	0.23	0.2	0.27 (sat.?)	0.22	0.15	0.2

Fa

igineering Department

CERN

23

Electronics/DAQ in TT61

with feed-through to TNC for direct cabling

Specifications

- Maximum cable length/optical path: 15 m
 - From electronics to target center
- Similar prompt radiation levels as in TJ7 bunker
 - Thick target, 3e12 ppp
 - 10e6 hadrons/cm2 for full intensity pulse

Additional shielding implemented (September 2015):

Optional counter measures: Increase distance (additional optical path/cable length)

Radiation levels

- 1e15 protons on target (1 experiment)
- Thick target 2 nuclear interaction lengths

Hadro	n fluence >20	MeV	Tee ie*11 ie*10 ie*09	Cour
		TT61 TTC		tesy: N. Charitonidi
electronic contraction of the second se	1000	2000	1000 100	S

 TT61 (at electronics): 1e7 heh/cm2 (for shielding 2016) TNC annual dose (for 1e16 pot): 1-5 kGy

CERN

CERN

26

EN Engineering Department

Tungsten powder target

Collaboration RAL-CERN

Courtesy C. Densham et al.

Trough with tungsten grains

26/5/2016

Tungsten powder target

High speed imaging equipment provided by HiRadMat (EN/EA)

26/5/2016

A. Fabich

EuCARD2 Transnational Access

HiRadMat is work package within FP7 EuCARD2

- supports travel/accommodation for external HRM users
- 150 user days at CERN enabled through HiRadMat within FP7

• Participant to the successor proposal "ARIES" (EuCARD3)

28

CERN

Conclusions

- HiRadMat as dedicated test facility successfully implemented
- Successful HiRadMat performance with large flexibility in performance parameters
- HiRadMat provides a great research opportunity on various accelerator components.

Dedicated THANK YOU to HSE/RP, EN/HE, BE/BI, EN/MME, BE/OP and EN/MEF (EN/EA) for the essential contributions to the implementation/operation of this facility!

All information published/linked at http://cern.ch/hiradmat

X) 29

CERN

CERN

30

HiRadMat Users Day

• 28th June 2016 at CERN

Announcement

- Assess the scientific dissemination of HRM
- Discuss potential improvements/extensions of the facility
- Dedicated presentations on numerous research topics
- Open forum discussions with all participants
- Dedicated invite to all present and interested HRM users will follow these days

You are welcome to participate/contribute!

Beam slot assignments

HiRadMat

Injectors to HiRadMat in 2015

• Accumulated SPS cycle time: 4.0 days

Variable Statistics between 2015-02-16 16:13:00.000 and 2015	-12-01 16:13:00.000 (UTC_	TIME)	
Includes : V MIN Value V MAX Value V	VG Value 📝 Standard De	viation 🔽 Frequency Se	lection Modes : Rows
Variable Name	# Values	MIN Timestamp	MAX Timestamp
SPS::FEI_HIRADMAT	0		
SPS::HIRADMAT1	0		
SPS::HIRADMAT2	0		
SPS:FEI_HIRADMAT:FEI_HIRADMAT	0		
SPS:HIRADMAT_4INJ_FB11100_FT500_Q20_2014_V1:HIRA	0		
SPS:HIRADMAT_4INJ_FB11100_FT500_Q20_2014_V1:HIRA		2015-05-10 12:13:56.535	2015-09-28 19:24:24.135
SPS:HIRADMAT_HIGH_INTENSITY_2011_V1:HIRADMT1	0		
SPS:HIRADMAT_HIGH_INTENSITY_2011_V1:HIRADMT2	0		
SPS:HIRADMAT_L7200_2010_V1:HIRADMT1	0		
SPS:HIRADMAT_L7200_2011_V1:HIRADMT1	0		
SPS:HIRADMAT_L7200_2012_V1:HIRADMT1	0		
SPS:HIRADMAT_L7200_NORTHBUMP_2012_V1:HIRADMT1	0		
SPS:HIRADMAT_PILOT_Q20_2014_V1:HIRADMT1	11339	2015-04-04 16:55:49.335	2015-11-21 12:39:50.535
SPS:HIRADMAT_TEST_V1:HIRADMT1	0		

- Total intensity extracted: 3.7e15 pot
- Excellent performance of the injectors providing beams with large flexibility, in the largest intensity range for multi-bunch pulses. All planned beams provided.
- 2012: 2 days, 1.4e16 pot

26/5/2016

Name	# Values	MIN Timestamp	MAX Timestamp	MIN Value	MAX Value	AVG Value	Standard Deviation	Frequency
L_HIRADMAT	(NaN/year
RADMAT1	(0						NaN/year
RADMAT2	(NaN/year
HIRADMAT:FEI_HIRADMAT								NaN/year
ADMAT_4INJ_FB11100_FT500_Q20_2014_V1:HIRA	. (NaN/year
ADMAT_4INJ_FB11100_FT500_Q20_2014_V1:HIRA	. 0	0						NaN/year
ADMAT_HIGH_INTENSITY_2011_V1:HIRADMT1	0	0						NaN/year
ADMAT_HIGH_INTENSITY_2011_V1:HIRADMT2	3734	4 2012-06-13 05:58:07.335	2012-11-30 09:42:34.935					22/day
ADMAT_L7200_2010_V1:HIRADMT1	(0						NaN/year
ADMAT_L7200_2011_V1:HIRADMT1	8801	1 2012-05-09 06:40:19.335	2012-10-10 08:27:07.335					2/hour
ADMAT_L7200_2012_V1:HIRADMT1	3072	2 2012-10-11 09:36:02.535	2012-11-03 22:57:57.735					5/hour
ADMAT_L7200_NORTHBUMP_2012_V1:HIRADMT1	2193	2012-10-11 10:00:13.335	2012-10-22 15:09:31.335					8/hour
ADMAT_PILOT_Q20_2014_V1:HIRADMT1	(0						NaN/year
MAT_TEST_V1:HIRADMT1								NaN/year

Is the executive body that manages the facility.

• Evaluates the scientific merit of the proposed experiments, their feasibility, the proposed online information during beam time, the post-irradiation analysis plans and the expected results and publications to the interest of the scientific community.

Distributes the EUCARD Transnational Access funds - contractual obligation from EC

Members:

Bernie RIEMER, MSc Senior Research Engineer ORNL/SNS Target development team leader

Nick SIMOS, Ph.D, P.E (chair) Senior Scientist Nuclear Science Department & Photon Sciences Directorate BNL Project leader of BNL Linac Isotope Producer (BLIP)

Adrian FABICH (scientific secretary)

Beam physicist – EN/EA group

Stefano SGOBBA Materials Engineer – EN/MME group

Sebastien EVRARD Mechanical Engineer – EN/EA group

Stefano Redaelli Mechanical Engineer - BE/ABP group

Alfredo Ferrari Senior physicist - EN/STI group

Michael WOHLMUTHER, PhD

Senior Scientist Paul Sherrer Institute - PSI Radiation transport & Multiphysics Group Head of Target Development Group

A. Fabich

BatMon reading (HRMT27)

CERN

36

Extended shielding

- Maximum radiation levels behind : 1e6 to 1e7 heh/cm2
- Further improvements only by increasing distance

Write-up with radiation fields in preparations

