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Previous work: simulation high power mercury 

targets within Muon Collider – Neutrino 

Factory Collaboration / MAP project

Collaboration with Kirk McDonald (Princeton 

University), Harold Kirk (BNL), Adrian Fabich 

(CERN) and other members of the targetry 

group 
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Mercury Jet Target for Neutrino Factory / Muon Collider 

Jet disruptions: 
experiment 

Target schematic

• Simulation goal: understanding of hydrodynamic response of targets 

• Simulation problems

• Entrance of the jet into magnetic field

• Studies of surface instabilities, jet breakup, and cavitation 

• Critical component: accurate resolution of material interfaces



Eulerian and Lagrangian Approaches to Dynamics 

Eulerian method. Coordinate frame (or computational mesh) is fixed 

(laboratory frame) and the flow moves with respect to this frame

• Simple to use

• Difficult to capture dynamic interfaces 

Lagrangian method. The moving substance is represented by a 

set of material elements that move together with the flow

• Natural resolution of material interfaces 

• Major difficulty: the mesh is severely distorted by the flow

• Broadly used in 1D

• Ideal for solid dynamics (any dimension)

• Lagrangian method using particles:

• Idea: replace Lagrangian fluid element

with a particle  
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Front Tracking and FronTier Code

• Front tracking is a hybrid Lagrangian-Eulerian method for 

systems with sharp discontinuities in solutions or material 

properties

Volume filling

rectangular mesh

(Eulerian Coord.)

(N-1) dimensional 

Lagrangian mesh 

(interface)

Turbulent fluid mixing.

Left: 2D

Right: 3D (fragment of 

the interface)



FronTier is a parallel 3D multiphysics code based on front tracking

• Negligible numerical diffusion across interfaces

• Physics models include 

• Compressible and incompressible fluid dynamics

• MHD in low magnetic Reynolds number approximation

• Realistic EOS models, phase transition models

The FronTier Code
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Mercury Jet Entrance into 20 Tesla Transverse Magnetic Field 

Distortion of the mercury jet in 

magnetic solenoid due to 

transverse component of 

the magnetic field

• Simulations showed large distortion (flattening) of the mercury jet entering 

magnetic solenoid

• Under original design parameters of the MERIT experiment at CERN, 

the mercury jet would be transformed into a thin sheet

• Cross section with proton beams and pion production would be 

significantly reduced

• To reduce this effect, MERIT experiment design parameters were changed 



MHD Simulation of the mercury jet interaction with 

proton pulses  

5T

0T

10T

15T

Mercury jet surface at 150 

microseconds after the interaction 

with 12 teraproton pulse 

• Simulations predicted cavitation and 

surface filamentation

• Cavitation is critical for the 

explanation of target behavior

• Demonstrated stabilizing effect of the 

magnetic field

• Magnetic field reduces the amount 

of cavitation and velocity of filaments

• Agreement with MERIT experiments on 

the range of disruption velocities (10 – 50 

m/s)



Growth of Filaments and Cavitaiton

The length and velocity of the 

fastest growing filaments and 

cavitation

Cavitation in the mercury jet: 

density distribution at 20 and 

250 microseconts



Particle-based Methods for 

Multiphase Problems
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• Traditional methods: Eulerian mesh-based PDE discretization with special 

algorithms for resolving interface (Volume-of-fluid, Level Set, Front tracking etc.)

• Enhancement by various adaptive features  (adaptive mesh refinement, AMR)

• Require very complex meshes, potential loading balancing problems

• Complexity causes potential difficulties in porting to new supercomputer 

architectures (GPU’s, Intel-MIC’s)
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Grid-based vs. Particle-based

Particle-based (meshless) methods:

• Exact conservation (Lagrangian formalism)

• Capable of simulating extremely large non-uniform domains (natural adaptivity)

• Ability to robustly handle material interfaces of any complexity

• Scalability on modern multicore supercomputers

• Simplicity: 3D code is just slightly more complex compared to a 1D code

• Bridge the gap between continuum and atomistic approaches 

We believe Particle-based (meshless) methods will have much greater role 

in future simulations of multiphase systems



Introduction to Smoothed Particle Hydrodynamics. 

Computing density of continuum using particles 

Particle-mesh 

methods
Sum of particles 

in disks

SPH:

• Density is weighted 

sum of particles

• Each particle 

represents a 

Lagrangian cell

• No particle 

connectivity
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Main Approximations of SPH 

• Kernel approximation replaces the delta-

function with a smooth kernel function

• Approximation of this integral using particle 

distributions

• Dirac’s delta-function removes the integration ')'()'()( rdrrrArA
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For example, the density can be computed as 



Main Approximations of SPH (2) - Kernel 

• For example, the popular cubic spline kernel:

• The kernel should satisfy the properties to validate the integral approximation:



Main Approximations of SPH (3) – First Derivatives 

• Using integration by parts and ignore the surface integrals, we have

• Approximation of the first derivative of a field function A:

• Basic SPH discretization is:



Main Approximations of SPH (4) – Non-Unique Forms 

• Derivatives of quantities A are expressed in terms of derivatives of known 

kernels W

• This allows us to discretize PDE’s

• Non-uniqueness of derivatives:
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Discretization of Compressible Fluid Dynamics Equations  

• Momentum conservation equation
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Smoothed Particle Hydrodynamics (SPH) code 

• Developed an advanced SPH code 

• Several smoothed particle kernels

• Advanced time stepping methods

• Parallelized for distributed memory supercomputers

• GPU parallelization of most expensive processes

• Simulation experience: 

• obtained good numerical results results for some classes 

of problems

• simulations dependent on accuracy of linear and nonlinear 

wave dynamics miserably failed



Inaccurate numerical derivatives

• The biggest SPH problem: very low accuracy of derivatives (zero-order, 

non-convergent), even for constant smoothing radius

• SPH derivative gives the similar accuracy to FD if particles are placed 

on rectangular mesh (due to cancellation of cross-terms)

• Accuracy rapidly decreases if particles even slightly deviate from the 

mesh

• The chain below is not based on rigorous approximation theory
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Summary of SPH difficulties [Hopkins, GIZMO: A New Class of Accurate, 

Mesh-Free Hydrodynamic Simulation Methods, Mon. Not. R. Astron. Soc, 2014]  

Method Order Conservat
ive

Long time 
stability

Number of 
neighbors

Difficulties

Traditional SPH (GADGET, 
GASOLINE, TSPH)

0 yes yes ~32 noise, E0 
errors

“Modern” SPH
(P-SPH, SPHS,PHANTOM, 
SPH-Gal)

0 yes yes ~128-442 Excess 
diffusion, E0 
errors, 
expense

“Corrected” SPH
Integral-SPH, Moving Least 
Squares, Morris-96

0-1 no no ~32 Errors grow 
non-linearly, 
stability

Godunov-SPH 0 yes yes ~300 Instability, 
expense, E0 
errors



Why is SPH accurate (for some problems)?

• Despite operating with inaccurate derivatives, SPH may produce 

accurate results

• Our own experience

• Our simulation showed reasonable results for some problems

• But we did not obtain accurate results with wave propagation 

problems

• Especially inaccurate for coupled problems (hyperbolic + 

elliptic)
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Why is SPH stable?

• SHP is an example of Forward-in-Time, Centered-in-Space 

discretization of a hyperbolic PDE; should’t it be unstable?

• But SPH is remarkably stable. SPH code does not crash even if 

solutions develop into unphysical states

• Replacing SPH derivatives with very accurate GFD (generalized 

finite difference, future slides) derivatives produces an 

unconditionally unstable code!

• Why bad derivatives lead to a stable discretization and         

accurate derivatives lead to an unstable scheme?
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Lagrangian and Hamiltonian Dynamics of Particles

Let’s consider the Lagrangian and Hamiltonian functionals for the 

system of particle we intended to use for the SPH approximation of fluid
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is precisely equivalent to the SPH momentum conservation equation,

• the time-derivative of the Hamiltonian is equivalent to the SPH energy 

conservation equation    

Let’s express the density of the system via the smooth kernel and find  
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Inconsistencies of SPH explained

To overcome SPH deficiencies and preserve all its advantages, we 

are working on a Lagrangian particle technique based on generalized 

finite differences.

Daniel Price, SPH developer: “linear errors do not lie”, so it will always be 

true that … [other formulations] … will always be more accurate for linear or 

weakly nonlinear problems. ….   Ideally, one would want both, exact derivatives 

and conservation … and to my knowledge this is yet to be convincingly 

demonstrated by any particle method …”

• Inaccurate SPH discretization of Euler equations is identical to accurate 

Lagrange / Hamilton equations for the same particle system (interacting via 

isentropic potential energy)

• Hamiltonian formulation reveals non-linear properties of the system such as 

symmetries, invariants, behavior of the global system 

• Hamiltonian structure is responsible for the long term stability

• Approximation of derivatives is related to linear errors
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New Lagrangian Particle Method

• We keep only one idea of SPH: each particle represents a Lagrangian 

fluid cell

• Need to satisfy accuracy, stability, and efficiency on modern hardware

• Key novel features of our method:

• The method is free of artificial parameters

• A stable particle-based upwinding method was invented

• Accuracy: derivatives based on generalized finite differences

(optimal coefficients of a local stencil are found via least squares)

• High order methods

• We work on both hyperbolic and elliptic solvers

• Parallelization for distributed memory supercomputers and GPU’s 



Governing Equations

• 1D Lagrangian formulation of the Euler equation in the conservative form: 
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• Assume any EOS,                     , we can rewrite in the state 

vector

For example, using the polytropic gas EOS K=



• Performing matrix diagonalization, we obtain three advection equations
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Upwinding for Lagrangian Particles (1)

Represent the system in the component-wise form 

Wave from left

Wave from right

K>0



• Adding the subscripts l and r to the spatial derivatives 
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Upwinding for Lagrangian Particles: 1st order scheme

• First order 

discretization of temporal 

derivatives of the state 

(V, u or P) at the location 

of particle j 

• Moving the particles

rl

: RHS neighbors

: LHS neighbors

• The above yields a first order scheme



Computing Derivatives.

Local Polynomial Fitting (Generalized Finite Differences)
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• In 2D at the vicinity of a point 0, the function value in the location of a 

point i can be expressed as

• Second order approximation

• Using n neighbours:

0

i

Solve using QR to obtain 

derivatives convergent to 

prescribed order



Generalization of a Beam-Warming Scheme

30

• Component-wise form:

Second-Order Accurate Lagrangian Particle Method



Octree Neighbour Search & Variable Neighbour Search
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• The neighbour search algorithm is based on octrees (3D) and 

quadtrees (2D).

• The use of Octree is for variable search radius for each particle, 

which is essential for highly compressible materials

• The bucket search algorithm cannot be used in the case of variable 

search radius

• The octree method is efficient (O(N logN)) and  scales well

• We update the neighbor search radius of a particle based on the 

specific volume

• Free surface: ghost particles with vacuum state to obtain convergence 

of fluid states at the vacuum interface to correct solutions of the Riemann 

Problem
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• Multidimensional case: Strang splitting that maintains 2nd order accuracy 

• Limiters for controlling oscillations: detect oscillations and blend the 

2nd and 1st order methods in the location of oscillations / shocks

• No need for artificial viscosity

• Particles close to a free surface do not have full particle neighborhood. It 

is completed using vacuum ghost particles

• Algorithms for ghost particle states: Riemann problem for boundary 

particles in the direction normal to the interface for multiphase problems

• Simplified algorithm for vacuum interface: vacuum pressure and 

density and GFD-based interpolation of velocitiy

Elimination of Numerical Dispersion and Algorithm 

for Free Surfaces
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Verification: formation of shocks and effect 

of limiters
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Verification: Gresho vortex

• Very difficult test for SPH codes

• Grid-based second-order codes report empirical order of convergence ~ 1.3

• Our results: 2nd order of convergence at initial stages; reduces to 1st order at 

late time

Gresho vortex is a steady-state vortex in which special distribution of 

pressure compensates the centripetal force



• Generalization to Elliptic Problems

• Adaptive Particle-in-Cloud Method: a 

highly adaptive and artifact-free 

replacement for Particle-in-Cell method for 

Vlasov-Poisson problems

35



PIC Method
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• Represent distribution function by 

macro-particles 

• Each macro-particle represents 

a large number of real particles

• Build a mesh around particles

• Deposit charge of particles on the mesh

• Solve Poisson problem on  the mesh using either FFT of fast linear 

solvers. Compute forces on the mesh

• Interpolate forces to the location of particles and propagate particles
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PIC deficiencies

• Discretization error is not 

balanced with the error of 

charge computation

• Poor accuracy for highly non-

uniform systems

• AMR-PIC (adaptive mesh 

refinement) introduces strong 

artificial forces due to 

spurious images (mitigation 

methods have been 

suggested)
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AP-Cloud Method

• Discretization PIC Cartesian mesh is replaced by computational 

particles on an octree data structure

• The density of computational particles is chosen adaptively

• GFD (a weighted least-square approximation) is used as discretization, 

integration, and interpolation framework 

• The error from GFD and the source integration is balanced leading to 

minimization of the total error

• The method is free of artifacts typical for AMR-PIC

• Simple implementation of geometrically complex boundaries / open 

boundary conditions

• Improvement of accuracy and computational speed compared to 

traditional PIC. Higher convergence order compared to PIC
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Accurcy and Performance of AP-Cloud vs PIC



Application of Lagrangian 

Particle Methods to High 

Power Targets 
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Validation: Mercury Thimble Experiment

Experimental device

Experimental images of mercury splash at t = 0.88, 0.125, 

0.7 ms after impact of 12 teraproton beam (A. Fabich)



Validation: Simulation of Mercury Thimble Experiments

LP simulation 

results at t = 0.5 

and 0.7 ms 

• EOS: analytic model for liquids that includes tension (negative pressure)

• Coefficients of EOS calculated using mercury data tables from 

Sandia

• Cavitation algorithm allows particles to separate if the pressure drops 

below critical pressure

• Good agreement with mercury thimble experiments (A.Fabich, Doctoral 

thesis) 



Mercury Jet after Interaction with Proton Pulse in the 

parameter regime of muon collider

Velocities of the mercury disruption reach: ~110 m/s (shorter axis), ~40 m/s 

(longer axis) 



Simulation of Tungsten 

Powder Target Experiments 
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Modeling assumptions

Microscope image of tungsten 

powder (O. Caretta et al., 

PRSTAB, 17, 101005, 2014.  

• Tungsten powder simulations could be 

obtained using Molecular Dynamics (MD)

• Difficulties: large range of particle size / 

shape distribution, frictional forces, mixture 

with helium gas / compressibility, high 

computational cost, etc.

• I believe that continuum approach to the 

simulation of tungsten powder has 

significant advantages

• Easy to model friction, mixture 

properties, etc.

• Potential future applications may involve 

mixture with liquid (difficult for MD)

• Continuum simulations have been 

successfully applied to many granular 

flow regimes 
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Modeling assumptions (cont.)

• Continuum modeling has one potential difficulty: the closure model

• David G. Schaeffer, Professor at Duke University: “Although I worked in 

granular flow for 15 years, I largely stopped working in this area. Part of 

my fascination with this field derived from the fact that typically 

constitutive equations derived from engineering approximations lead to 

ill-posed PDE. However, I came to believe that the lack of well-posed 

governing equations was the major obstacle to progress in the field, and 

I believe that finding appropriate constitutive relations is a task better 

suited for physicsts than mathematicians, so I reluctantly moved on”

• New progress on closure models for granular materials has been 

achieved. We are in the process of implementing an improved closure 

model

• More detailed experimental measurements from CERN required

• In current work, we obtained satisfactory results with a simplified model: 

a nonlinear modification of polytropic equation of state model
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Initial geometry and energy deposition

• The geometry of the trough is 

identical in the transverse 

dimension to the inner 

titanium trough used in the 

experiment. Longitudinal 

length was 4 cm

• Energy deposition profiles 

calculated by the FLUKA code 

were implemented in the 

transverse direction. Current 

simulations used uniform 

longitudinal deposition

• Problem of converting energy depositions and the the consequent 

thermal expansions into  pressure profiles. Theoretical models were 

employed but these contain significant uncertainties. The ultimate 

benchmark is obtaining experimental splash velocities.
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Evolution of splash: uniform initial height

1.8 cm height of powder lift 

4 cm height of powder lift 
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Initialization of particle distribution with 

perturbed initial height 

• To emulate initial 

experimental conditions after 

multiple shots, small 

amplitude surface 

perturbations were applied to 

the initial particle distribution. 
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Evolution of splash: perturbed initial height

Evolution of tungsten powder splash with velocity of 0.45 m/s. 
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Summary of powder target simulations

• Numerical simulations obtained velocities of the powder splash in the 

experimental range: 0.1 – 0.5 m/s

• Uniform height of the initial power distribution resulted in close to 

uniform lift of powder; initial surface perturbations led to spikes of the 

powder material

• Given a very simplified closure model, we ontained reasonably good 

agreement with experiments

• Additional work on the closure model (with input from experiments) is 

needed in order to obtain a robust simulation model which that can be 

successfully used for predictive simulations in beyond-experimental 

regimes
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Conclusions

• Recently developed Lagrangian Particle (LP) method for hydrodynamics 

type systems presents a significant improvement in accuracy compared 

to SPH

• Generalization to elliptic problems. Adaptive Particle-in-Cloud is a 

method for optimal solutions of Vlasov-Poisson problems traditionally 

solved with PIC, that replaces the PIC mesh with adaptively chosen 

computational particles

• Applications to high power mercury target problems

• Application of the LP method to tungsten powder targets

• Satisfactory results were obtained with a simplified closure problem

• Work on more accurate close model is underway; CERN 

experimental input would greatly help this work


