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Overview
• What we know and what we don’t know about 

dark matter

• CDMS-II experiment

• detection principle

• results from 5 - tower run

• current status

• The future

• SuperCDMS

• backgrounds
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Introduction to 
Dark Matter
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The Evidence for Dark Matter
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Motion of Galaxies in Clusters

1933

Rotation Curves 1970

1979

Twin Quasars
0957+561 A&B
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The Bullet Cluster
• Observations of the Bullet 

Cluster in the optical and 
x-ray fields combined with 
gravitational lensing 
provide compelling evidence 
that the dark matter is 
particles.

blue = lensing
red = x-rays
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Clowe et al., ApJ, 648, 109 

• Gravitational lensing tells us 
mass location

• No dark matter = 
lensing strongest near 
gas

• Dark matter = lensing 
strongest near stars 
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The Cosmic Pie

• Measurements from CMB + 
supernovae + LSS indicate that 
~23% of our Universe is 
composed of dark matter.
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What Could Dark 
Matter Be?

•Warm or Cold? 
• ordinary νs can not 

make up LSS of 
universe
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http://nedwww.ipac.caltech.edu/level5/March02/Plionis/Plionis3_2.html
http://nedwww.ipac.caltech.edu/level5/March02/Plionis/Plionis3_2.html
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What Could Dark 
Matter Be?

•Warm or Cold? 
• ordinary νs can not 

make up LSS of 
universe

• Baryonic or Non-
Baryonic?
• to avoid skewing 

formation of light 
elements in BBN 
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A Candidate is Born!
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WMAP  0.095 < Ωh
2

< 0.129

Weakly Interacting Massive Particles

Particles in thermal equilibrium

Decoupling when non-relativistic

Freeze out when annihilation rate 
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Weakly Interacting 
Massive Particles

• New stable, massive particle 
produced thermally in early 
universe

• Weak-scale cross-section gives 
observed relic density
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Motivated by Particle 
Physics Too!

• New TeV physics required to 
explain radiative stability of 
weak scale.

• SuperSymmetry

• Extra Dimensions 

• ... 

• These theories give rise to 
convenient dark matter 
candidates.

• LSP,  LKP

Baltz et al., PRD 74, 103521 (2006)

stable

9



CERN,  July 7, 2009 Jodi Cooley

Weakly Interacting Massive Particles

Particles in thermal equilibrium

Decoupling when non-relativistic

Freeze out when annihilation rate 

! expansion rate

Relic abundance:
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Happy Coincidence!

Baltz et al., PRD 74, 103521 (2006)

stable

σχ ≈ 10
−37

cm
2
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How Do We Detect WIMPs?

IceCube

FGST

CDMS

WIMP scattering on earth WIMP production on earth

WIMP 
annihilation in 
the cosmos

11

CERN
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The Spherical Cow
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The Spherical Cow
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Direct Detection Event Rates

D. Cline, Scientific American 2003

“Spherical Cow” Halo Model
ρo = 0.3 GeV/cm3,  
Maxwellian distrubution, 
vo = 220 km/s, 
vesc = 650 km/s 

13
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Direct Detection Event Rates

D. Cline, Scientific American 2003

“Spherical Cow” Halo Model
ρo = 0.3 GeV/cm3,  
Maxwellian distrubution, 
vo = 220 km/s, 
vesc = 650 km/s 

Interaction Details
spin-independent, 
coherent scattering

σχ ∝ A
2

13
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Direct Detection Event Rates 
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WIMP Elastic Scattering Differential RateWIMP Differential Event Rate

Mχ = 100 GeV/c2

σχ-N = 10-45 cm2 

• Elastic scattering of a 
WIMP deposits small 
amounts of energy into 
recoiling nucleus 
(~ few 10s of keV)

• Featureless exponential 
spectrum

•  Expected rate: 
< 0.01/kg-d

• Radioactive background of 
most materials higher than 
this rate.

14

Si
Ge

Xe
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Detection Challenges

✓Low energy thresholds (~10 keV)

✓Ridged background controls
➡ Clean materials
➡ shielding
➡ discrimination power

✓Substantial Depth 
➡ neutrons look like WIMPS

✓ Long exposures
➡ large masses, long term stablility

15
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CDMS-II

16
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CDMS-II:  The Big Picture

Discrimination from 
measurements of 
ionization and 
phonon energy.

ER b
ac

kgro
und

NR signal

Ephonon

E
ch

a
rg

e

Keep backgrounds low as 
possible through shielding.

17

Use a combination of discrimination and shielding to 
maintain a “<1 event expected background” experiment 

with low temperature semiconductor detectors
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CDMS-II ZIP Detectors
• Z-sensitive Ionization and 

Phonon mediated

• 250 g Ge or 100 g Si crystals 
(1 cm thick, 7.5 cm diameter)

• Photolithographically patterned 
to collect athermal 
phonons and ionization 
signals

• xy-position imaging

• Surface (z) event rejection 
from pulse shapes

• 30 detectors stacked into 
5 towers of 6 detectors

3” (7.6 cm)

1 cm Ge: 250 g
Si: 100 g

18
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CDMS-II ZIP Detectors
• Z-sensitive Ionization and 

Phonon mediated

• 250 g Ge or 100 g Si crystals 
(1 cm thick, 7.5 cm diameter)

• Photolithographically patterned 
to collect athermal 
phonons and ionization 
signals

• xy-position imaging

• Surface (z) event rejection 
from pulse shapes

• 30 detectors stacked into 
5 towers of 6 detectors

1 µ tungsten 380µ x 60µ aluminum fins

18
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ZIP Detectors:  Charge
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~85%

~15%

Inner Channel:  ionization measurement
Outer Channel:  fiducial volume 
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ZIP Detectors:  Phonons
Al Collector

W Transition-
Edge Sensor

Si or Ge

quasiparticle
diffusion

phonons

20

~

RTES 

(Ω)

4

3

2

1

T (mK)Tc ~ 80mK

~ 10mK

Tungsten 
Transition Edge 
Sensor (TES)

4 SQUID readout channels, 
each reads out 1036 TESs in 
parallel
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• Most backgrounds (e, γ) 
produce electron recoils

• WIMPS and neutrons 
produce nuclear recoils.

Different particles, different interactions

M. Attisha

Different Particles, Different Interactions

Background Rejection

21
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• Most backgrounds (e, γ) 
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• Particles that interact in the 
“surface dead layer” result in 
reduced ionization yield.
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Reduced Ionization 
Yield

• Reduced charge yield 
is due to carrier back 
diffusion in surface 
events.

• “Dead layer” is 
within ~10μm of the 
surface.

~10 μm
“dead layer” -3Vcarrier back diffusion

h+ h+ h+

h+ h+

e-e-e-

e- e-

e-h+

rapid phonon
down-conversion
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Surface Event Rejection

Phonons near surface travel 
faster, resulting in shorter 
risetimes of phonon pulse.

Selection criteria set to accept 
~0.5 background events.

23

Bulk
Surface

Delay + RiseTime [µs]

C
o

u
n

ts



CERN,  July 7, 2009 Jodi Cooley

Another View of Discrimination

24
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Peeling the Shielding Onion

Active Muon Veto:  
rejects events from cosmic rays

25
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Peeling the Shielding Onion

Active Muon Veto:  
rejects events from cosmic rays

25

@ 40 mK!!

Phonon Sensors
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Peeling the Shielding Onion

Active Muon Veto:  
rejects events from cosmic rays

25

Polyethyene:  moderate 
neutrons produced from fission 
decays and from (α,n) interactions 
resulting from U/Th decays

Pb: shielding from gammas 
resulting from radioactivity

Low Activity Lead Polyethylene

µ-metal (with copper inside)

Ancient lead

40 cm

22.5 cm

10 cm

@ 40 mK!!

Phonon Sensors
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Peeling the Shielding Onion

Active Muon Veto:  
rejects events from cosmic rays

25

Polyethyene:  moderate 
neutrons produced from fission 
decays and from (α,n) interactions 
resulting from U/Th decays

Pb: shielding from gammas 
resulting from radioactivity

Low Activity Lead Polyethylene

µ-metal (with copper inside)

Ancient lead

40 cm

22.5 cm

10 cm

Cu:  shielding from gammas

@ 40 mK!!

Phonon Sensors
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Lo
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Depth (meters water equivalent)

SUF
 17 mwe
 0.5 n/d/kg
  (182.5 n/y/kg)

Soudan
 2090 mwe
 0.05 n/y/kg

SNOLab
 6060 mwe
 0.2 n/y/ton
  (0.0002 n/y/kg)
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Initial Runs at Soudan

4K
600mK
50mK
20mK

T1Z1
…
…

T1Z6

T2Z1
…
…

T2Z6

= Ge (250g)

= Si (100g)

PRL 93, 211301 (2004) 
PRD 72, 052009 (2005)

Run 118:  52.4 live days (2003-4)
  1 kg Ge + 0.2 kg Si

PRL 96, 011302 
(2006)Combined reanalysis 
2008 (in preparation)

Run 119:  74.5 live days (2004)
 1.5 kg Ge + 0.6 kg Si
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Two Tower Limits (2005)
• Upper limit on WIMP-

nucleaon spin-independent 
σ is 1.6 x 1043 cm2 for a 
WIMP of mass 60 GeV.

• Excludes large regions of 
SUSY parameter space 
under some frameworks.

- A. Bottino et al, Phys. Rev 
D 69, 037302 (2004) in 
purple.

- J. Ellis et al., Phys. Rev. D 
71, 095007 (2005) in green
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Phys. Rev. Lett. 96 (2006) 011302
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CDMS II Experiment

29

T1 T2

T3T5T4

• 30 detectors installed and operating in 
Soudan since June 06.
- 4.75 kg of Ge, 1.1 kg of Si

• Seven Total Data Runs:
✓  R123 - R124:

- taken: (10/06 - 3/07) (4/07 - 7/07)
- exposure:  ~400 kg-d (Ge “raw”)
- PRL 102, 011301 (2009)

✓  R125 - R128
- taken:  (7/07 - 1/08) (1/08 - 4/08) 

                         (5/08 - 8/08) (8/08 - 9/08)
- exposure:  ~ 750 kg-d  (Ge “raw”)
- Under Analysis

✓  R129:
- taken:  (11/08 - 3/09)
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First Five Tower Results 
Blind Analysis:
 Event selection and efficiencies were calculated without looking 
at the signal region of the WIMP-search data.

 

Event Selection:
Veto-anticoincidence cut
Single-scatter cut
Qinner (fiducial volume) cut
Ionization yield cut
Phonon timing cut
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PRL 102, 011301 (2009)
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Analysis Summary 

3121

Neutron Background
Poly Cu (α,n):  < 0.03
Pb (fission):  < 0.1
Cosmogenic: < 0.1 (MC 0.03-0.05)
8 vetoed neutron multiples seen
0 vetoed singles seen
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Quality, Singles, Veto
Fiducial volume
Nuclear recoil band
Phonon timing

398 raw kg-d
121 kg-d WIMP equiv. @ 60 

GeV/c2  (10 - 100 keV 
analysis energy range)

Estimated number of  background events to 
pass surface cut in Ge

Surface Background

0.6+0.5
−0.3(stat.)+0.3

−0.2(syst.)

PRL 102, 011301 (2009)
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Opening the Box
Box opened Monday, February 4, 2008 for 15 Ge ZIPs.
Remaining 8 Si and 1 Ge undergoing further leakage studies.

32
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Opening the Box
Box opened Monday, February 4, 2008 for 15 Ge ZIPs.
Remaining 8 Si and 1 Ge undergoing further leakage studies.
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Opening the Box
Box opened Monday, February 4, 2008 for 15 Ge ZIPs.
Remaining 8 Si and 1 Ge undergoing further leakage studies.

3σ region masked
Hide unvetoed singles
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Opening the Box
Box opened Monday, February 4, 2008 for 15 Ge ZIPs.
Remaining 8 Si and 1 Ge undergoing further leakage studies.

3σ region masked
Hide unvetoed singles
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Opening the Box
Box opened Monday, February 4, 2008 for 15 Ge ZIPs.
Remaining 8 Si and 1 Ge undergoing further leakage studies.

3σ region masked
Hide unvetoed singles
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CDMS II Results

Upper limit at the 90% 
C.L. on the WIMP-nucleon 
cross-section is 
4.6 x 10-44 cm2 for a 
WIMP of mass 
60 GeV/c2
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101 102 10310!44

10!43

10!42

10!41

10!40
Baltz Gondolo 2004
Roszkowski et al. 2007 95% CL
Roszkowski et al. 2007 68% CL
EDELWEISS 2005
WARP 2006
ZEPLIN II 2007
CDMS II 1T+2T Ge Reanalysis
XENON10 2007
CDMS II 2008 Ge
CDMS II Ge combined
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Yield Discrimination

34

Previous Analysis Current AnalysisPRL 102, 011301 (2009)
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Peak at Timing Quantities

35

Previous Analysis Current Analysis
PRL 102, 011301 (2009)

Timing Parameter Timing Parameter
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Another View of Discrimination

36

Previous Analysis Current AnalysisPRL 102, 011301 (2009)

• 133Ba ER
•  133Ba SE
• 252Cf
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Projected Sensitivity (2009)

37
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~2.5 times more 
total exposure

Baltz, Gandolo 2004
Roszkowski et al. 2007, 95 % CL
Roszkowski et al. 2007, 65% CL
CDMS II T1+T2 Ge reanalysis
Zeplin III 2008
XENON 10 2007
CDMS II 2008 Ge
CDMS II 2008 Ge Combined

Raw Exposure
-R118-R119 = ~120 kg-d
-Run 123-124= ~400 kg-d
-Run 125-128 = ~750 kg-d

Results expected
late Aug. 09
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The Future

38
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Next Step:  SuperCDMS

• Last CDMS II data run taken on March 18, 2009

• March 19, 2009:  Warm up to begin the installation and 
commissioning of the first SuperCDMS detectors

• First step in realization of the proposed SuperCDMS Soudan 
project (15 kg Ge deployed in existing Soudan setup)

- SuperTowers 1-2 funded

- SuperTowers 3-5 under review

• Eventual goal:  SuperCDMS SNOLAB (100 kg Ge deployed 
at SNOLAB)
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What is a SuperTower?

40



CERN,  July 7, 2009 Jodi Cooley

Detector Improvements

✓SuperTower = five 1-inch thick 
detectors + two 1-cm thick 
ionization only detectors

✓Increase thickness (2.5 x).
➡ better surface/volume
➡ increase manufacture

41
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✓Optimize Al fin design (increase 
Al coverage)
✓enhance phonon signal to noise
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Detector Improvements

✓SuperTower = five 1-inch thick 
detectors + two 1-cm thick 
ionization only detectors

✓Increase thickness (2.5 x).
➡ better surface/volume
➡ increase manufacture

41

✓Optimize Al fin design (increase 
Al coverage)
✓enhance phonon signal to noise

✓Optimize phonon sensor 
layout
➡ better rejection of surface events
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Phonon Sensor Layout
• Events at large radius have delay 

times similar to events at 
intermediate radius.

• Effect due to phonons reflecting 
off outer cylindrical walls back 
into central region of detector.

42
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Phonon Sensor Layout
• Events at large radius have delay 

times similar to events at 
intermediate radius.

• Effect due to phonons reflecting 
off outer cylindrical walls back 
into central region of detector.

• New metric compares start 
times of inner 3 channels to the 
start time of outer channel, 
breaks degeneracy.
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ST1 Surface Testing

43
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SuperTower 1 Installation

44
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SuperTower 1 Installed

45
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SuperCDMS Schedule
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Activity Name 2008 2009 2010 2011 2012 2013 2014 2015 2016

2008 2009 2010 2011 2012 2013 2014 2015 2016

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

CDMS II
Operations

4kg, 2E-44 cm2Expected Sensitivity

SuperCDMS Soudan
Detector R&D

Construction

Operations

Expected Sensitivity 15 kg, 5E-45 cm2 

SuperCDMS SNOLAB
Detector R&D

Construction

SNOLAB facility

100 kg detector payload

Operations

100 kg detector payload

Expected Sensitivity

100 kg sensitivity 100 kg, 3E-46 cm2  

GEODM...
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From CDMS to SuperCDMS 
to GEODM
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χ1
0 Mass [GeV/c2]

σ
SI

 [c
m

2 ]

CDMS II Current

CDMS II Final

15kg @ Soudan

100kg @ SNOLAB

1.5T @ DUSEL

1

2
3 4

102 10310−47

10−46

10−45

10−44

10−43

10−42

SuperCDMS

CDMS II

7.5 cm x 1 cm ~ 0.25 kg / det
16 detectors = 4 kg
~ 2 yrs operation

7.5 cm x 1 in ~ 0.64 kg / det

SuperCDMS SNOLAB and Germanium 
Observatory for Dark Matter (GEODM)

15 cm x 2 in ~ 5.1 kg / det

Soudan
25 detectors ~ 15 kg
2 yrs ~ 8000 kg-d

SNOLAB
150 detectors ~ 100 kg
3 yrs ~ 100,000 kg-d

SNOLAB
20 detectors ~ 100 kg
3 yrs ~ 100,000 kg-d

DUSEL
300 detectors ~ 1.5 T
4 yrs ~ 1.5 Mkg-d
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Surface Events:  Radon 
Contamination

• Airborne radon is everywhere.

• It decays relatively quickly to 
210Pb (1/2 live 22yrs).

48

210Pb
22 yrs 

210Bi
5 d

210Po
138 d

206Pb
stableβ
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β
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α
5.3 MeV
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Surface Events:  Radon 
Contamination

• Airborne radon is everywhere.

• It decays relatively quickly to 
210Pb (1/2 live 22yrs).

• Detector contamination from 
222Rn can be determined by 
measuring alpha or beta 
particles given of during 
these decays.

48

210Pb
22 yrs 

210Bi
5 d

210Po
138 d

206Pb
stableβ

<0.1 MeV

β
1.2 MeV

α
5.3 MeV
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 Surface Events:  α Measurements 

• We identify alphas by 
reconstructing phonon and 
charge energies for events in 
the MeV range.

• Events contained in the inner charge 
electrode have energy consistent 
with 210Po alphas at 5.3 MeV.

• Alphas are observed at a rate of 
0.4/detector/day.
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Figure 26: We identify alphas by reconstructing the charge and phonon energy estimates in the MeV range (left), as
shown for a Ge ZIP detector in Tower 2. The alphas tend to cluster at 5 MeV phonon energy and 1 MeV ionization
energy. The histogrammed phonon energy (right) for all events contained within the inner charge channel is consistent
with the 210Po alpha at 5.3 MeV energy.

tor/day are single-scatter events, having a hit in one
ZIP detector alone. In this section, we explain why
the bulk of this rate is due to decays of 210Pb de-
posited by airborne radon, with a contribution of
0.044/detector/day from photon-induced events.3

With a half-life T1/2 = 22.3 years, 210Pb is im-
planted into surfaces by a decay chain initiated by air-
borne 222Rn, which itself is a decay product of 238U.
A total of 63 keV is available in the transitions from
210Pb to the 210Bi ground state, which typically liber-
ate one internal-conversion electron per decay, often
with accompanying Auger electrons and/or x-rays,
with total energy near 46.5 keV. The 210Bi daughter
with half-life T1/2 = 5.01 days undergoes β− decay
to 210Po with 1.2 MeV endpoint, but the β-electron
energy distribution is non-standard, and peaks at the
lowest energies. The 210Po then decays with a half-life
T1/2 = 138 days to the stable 206Pb isotope, emitting
an α particle with an energy of 5.3 MeV while the
nucleus recoils with 0.1 MeV.

Our detectors are exposed to radon during fab-
rication, mounting and testing. We observe alpha
particles in our detectors (Fig. 26) at a rate of ∼
0.4/detector/day. We identify the predicted beta
component by looking at double-coincident betas be-
tween nearest-neighbor detectors (see Fig. 27).

A correlation analysis between alpha and beta rates
provides evidence that the bulk of our beta back-

3The photon-induced contribution is obtained from the
147/kg/day photon rate in our 0.25 kg detectors and previ-
ously quoted rate of 1.2×10−3 surface events for every bulk
photon event.
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Figure 27: The broad (wider than detector resolution)
45 keV peak in the sum energy spectrum of beta-beta
coincidences in neighboring detectors. We identify it as
being due to 210Pb. The 210Pb decay is rather complicated
due to the variety of internal-conversion electrons, Auger
electrons, and X-rays ensuing from the decay, a broad
peak at 45 keV is a reasonable expectation.
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Figure 26: We identify alphas by reconstructing the charge and phonon energy estimates in the MeV range (left), as
shown for a Ge ZIP detector in Tower 2. The alphas tend to cluster at 5 MeV phonon energy and 1 MeV ionization
energy. The histogrammed phonon energy (right) for all events contained within the inner charge channel is consistent
with the 210Po alpha at 5.3 MeV energy.

tor/day are single-scatter events, having a hit in one
ZIP detector alone. In this section, we explain why
the bulk of this rate is due to decays of 210Pb de-
posited by airborne radon, with a contribution of
0.044/detector/day from photon-induced events.3

With a half-life T1/2 = 22.3 years, 210Pb is im-
planted into surfaces by a decay chain initiated by air-
borne 222Rn, which itself is a decay product of 238U.
A total of 63 keV is available in the transitions from
210Pb to the 210Bi ground state, which typically liber-
ate one internal-conversion electron per decay, often
with accompanying Auger electrons and/or x-rays,
with total energy near 46.5 keV. The 210Bi daughter
with half-life T1/2 = 5.01 days undergoes β− decay
to 210Po with 1.2 MeV endpoint, but the β-electron
energy distribution is non-standard, and peaks at the
lowest energies. The 210Po then decays with a half-life
T1/2 = 138 days to the stable 206Pb isotope, emitting
an α particle with an energy of 5.3 MeV while the
nucleus recoils with 0.1 MeV.

Our detectors are exposed to radon during fab-
rication, mounting and testing. We observe alpha
particles in our detectors (Fig. 26) at a rate of ∼
0.4/detector/day. We identify the predicted beta
component by looking at double-coincident betas be-
tween nearest-neighbor detectors (see Fig. 27).

A correlation analysis between alpha and beta rates
provides evidence that the bulk of our beta back-

3The photon-induced contribution is obtained from the
147/kg/day photon rate in our 0.25 kg detectors and previ-
ously quoted rate of 1.2×10−3 surface events for every bulk
photon event.
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Figure 27: The broad (wider than detector resolution)
45 keV peak in the sum energy spectrum of beta-beta
coincidences in neighboring detectors. We identify it as
being due to 210Pb. The 210Pb decay is rather complicated
due to the variety of internal-conversion electrons, Auger
electrons, and X-rays ensuing from the decay, a broad
peak at 45 keV is a reasonable expectation.
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Surface Events:  β Measurements

• Betas from 210Pb 
decays are identified by 
looking for coincident 
beta events in 
neighboring detectors.

• This class of events 
produce a broad 
spectrum, 45 keV 
peak of beta events 
consistent with 
predictions from 210Pb. 

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Sum of Integrated Phonon Energy [MeV]

N
u
m

b
e
r 

o
f 
E

v
e
n
ts

T2Z5

 

 

All Alphas

Qinner Alphas

Not Qinner Alphas

Figure 26: We identify alphas by reconstructing the charge and phonon energy estimates in the MeV range (left), as
shown for a Ge ZIP detector in Tower 2. The alphas tend to cluster at 5 MeV phonon energy and 1 MeV ionization
energy. The histogrammed phonon energy (right) for all events contained within the inner charge channel is consistent
with the 210Po alpha at 5.3 MeV energy.

tor/day are single-scatter events, having a hit in one
ZIP detector alone. In this section, we explain why
the bulk of this rate is due to decays of 210Pb de-
posited by airborne radon, with a contribution of
0.044/detector/day from photon-induced events.3

With a half-life T1/2 = 22.3 years, 210Pb is im-
planted into surfaces by a decay chain initiated by air-
borne 222Rn, which itself is a decay product of 238U.
A total of 63 keV is available in the transitions from
210Pb to the 210Bi ground state, which typically liber-
ate one internal-conversion electron per decay, often
with accompanying Auger electrons and/or x-rays,
with total energy near 46.5 keV. The 210Bi daughter
with half-life T1/2 = 5.01 days undergoes β− decay
to 210Po with 1.2 MeV endpoint, but the β-electron
energy distribution is non-standard, and peaks at the
lowest energies. The 210Po then decays with a half-life
T1/2 = 138 days to the stable 206Pb isotope, emitting
an α particle with an energy of 5.3 MeV while the
nucleus recoils with 0.1 MeV.

Our detectors are exposed to radon during fab-
rication, mounting and testing. We observe alpha
particles in our detectors (Fig. 26) at a rate of ∼
0.4/detector/day. We identify the predicted beta
component by looking at double-coincident betas be-
tween nearest-neighbor detectors (see Fig. 27).

A correlation analysis between alpha and beta rates
provides evidence that the bulk of our beta back-

3The photon-induced contribution is obtained from the
147/kg/day photon rate in our 0.25 kg detectors and previ-
ously quoted rate of 1.2×10−3 surface events for every bulk
photon event.
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Figure 27: The broad (wider than detector resolution)
45 keV peak in the sum energy spectrum of beta-beta
coincidences in neighboring detectors. We identify it as
being due to 210Pb. The 210Pb decay is rather complicated
due to the variety of internal-conversion electrons, Auger
electrons, and X-rays ensuing from the decay, a broad
peak at 45 keV is a reasonable expectation.
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Alpha-Beta Correlation Analysis
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Double-Scatter Nearest-Neighbor 
Alpha + Nuclear Recoil Events (by detector pair)

Slope = 0.44 (-0.08, +0.10)
Offset = -0.5 (-1.2, +1.4)
 χ2 = 6.2
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Correlation between 
events identified in the 
45 keV beta peak and 
alpha analyses for 
detector pairs is strong, 
corroborating the 
identification of the peak 
with 210Pb.
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Improved Background Rates

Tower 2

Tower 1

Tower 5
Tower 4

Tower 3

X detector 
malfunction

Alpha rates attributed to radon are a factor of 
~ 2 times better in the new detectors.
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XIA Alpha Counter
• Easiest way to monitor 

210Pb contamination is to 
measure alpha-particle 
emission.

• Goal:  0.32/detector/day
           4.6x10-3/cm2/day

• XIA UltraLo 1800 prototype 
evaluation and testing at Stanford

• Counting area: 1800 cm2

• Advertised sensitivity:  
2.5 x 10-3/cm2/day
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Initial Studies:  232Th & 238U

• Use Van der Graff generator to collect and then deposit Th & U 
daughters onto a Si wafer.

• Expect to see α-peaks at ~ 6 MeV, 7 MeV and 9 MeV.
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Initial Studies:  232Th & 238U

• Observed decay of daughters over 72 hr period consistent with 
both expectations and simulations.

• Use Van der Graff generator to collect and then deposit Th & U 
daughters onto a Si wafer.

• Expect to see α-peaks at ~ 6 MeV, 7 MeV and 9 MeV.
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Initial Studies:  232Th & 238U

• Observed decay of daughters over 72 hr period consistent with 
both expectations and simulations.

• Use Van der Graff generator to collect and then deposit Th & U 
daughters onto a Si wafer.

• Expect to see α-peaks at ~ 6 MeV, 7 MeV and 9 MeV.

24 hours 48 hours 72 hours
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Counter Progress and Plans
✓We have made improvements to the counter and made gains in 

the alpha identification algorithms to meet advertised sensitivity.

✓We continue to identify and screen cleaner materials.  

✓Currently, using counter to evaluate contamination by the 
different detector fabrication stages using witness samples.

✓We are also conducting studies of cleanliness of various 
materials:  Cu, gold-plated Cu, etc

‣ Eventually, detector will be moved to FermiLab where it will be 
used to screen detectors.
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Conclusions
• Currently CDMS is operating and taking data at the design level 

of five towers of detectors. 

• Data taken between Oct. 2006 and July 2007 has been analyzed 
and a cross section limit of < 4.6 x 10-44cm2 (90% CL) was 
placed for a WIMP of mass 60 GeV/c2.

• SuperCDMS is an experiment under development by the CDMS 
collaboration which is planned for operation in Soudan.  For this 
purpose we have enhanced the design of the CDMS detector.

• In an effort to operate our experiment in a ‘background-free’ 
mode, we are working to characterize and mitigate background 
events from the decay of omnipresent radon.
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Conclusions
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• Data taken between Oct. 2006 and July 2007 has been analyzed 
and a cross section limit of  < 4.6 x 10-44cm2 (90% CL) was placed 
for a WIMP of  mass 60 GeV/c2.

• CDMS II finished taking data on March 18, 2009.  We are 
currently analyzing the last data sets.

• SuperCDMS is an experiment under development by the CDMS 
collaboration which is planned for operation in Soudan.  For this 
purpose we have enhanced the design of  the CDMS detector.

• The first SuperTower has been installed at Soudan and is under 
commission.  Initial tests on the surface are promising.

• In an effort to operate our detector in a “background free” mode, 
we are working to characterize and mitigate background events 
from the decay of  omnipresent radon.
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Back-up Slides

58


