
Improving code
performance:

an introduction

Sofia Vallecorsa

2016 Openlab Summer Students lecture series

sofia.vallecorsa@cern.ch

mailto:sofia.vallecorsa@cern.ch

• Introduction
• Why performance is important?

• Performance
• Can we define it?
• How do we measure it?

• Improving performance
• Use case: Simulating particle interactions through matter

• Current status: Geant4 performance
• The GeantV prototype

• The end: Summary & Conclusions

Outline

2

Moore’s law and power wall

• In 1965 G. Moore noted that
the number of electronic
components which could be
crammed into an integrated
circuit was doubling every
year.

• Moore’s law is not a “Law”, it’s
more of a self-fulfilling
prophecy..

INTRODUCTION

3

Why do we care?

Bottom line…
Massive data processing, modelling, simulation from
fundamental research and beyond!

For years we have relied on the increase of clock speed to
simply see our code running faster on more performant
hardware.. it’s over now!

INTRODUCTION

4

INTRODUCTION

The era of
supercomputers

Ever faster networks, distributed systems,
and multi-processor architectures show that
parallelism is the future of computing.
 • > x500,000 increase in supercomputer
performance in past 20 years
 • The race is already on for Exascale computing!

 ExaFLOP = 1018 calculations per second

top500.org

5

http://top500.org

Performance
• Timing: faster execution

• CPU time, latency,…
• Speedup (parallel vs serial execution)

• Amount of processed data: throughput
• Size: smaller executable, smaller memory footprint
• …and “the holy grail”… forward scalability:

• Maximum performance from today’s hardware
should scale on future processors/accelerators

• Automatically - with virtually no code rewriting
• Good scaling if:

• x2 number of cores (or vector
size) doubles
performance

Improving performance is a tradeoff!!
• Timing vs. Size
• Compilation speed and memory
• Latency vs throughput

PERFORMANCE

6

• Before any optimisation we need a way to
measure what we are optimising

• Before any measurement we need a clear,
explicit statement of the problem to solve.

➥ A good understanding of the hardware
➥ Reproducible, representative benchmarks
➥ “The right” tool
➥ Time (!): Performance optimisation is a
process that may require several iterations

Measuring performance (I)
PERFORMANCE

7

Measuring performance (II)

Identify hotspots:
Majority of scientific and technical

programs accomplish most of their
work in a few places.

Focus on hotspots and ignore sections
that account for little CPU usage.

Identify bottlenecks:
Areas that are disproportionately slow, or

cause parallelizable work to halt or be
deferred (e.g. I/O)

Restructure or change algorithm to reduce
or eliminate unnecessary slow areas

PERFORMANCE

8

Statistical Sampling:
Program flow is periodically interrupted,
current program state is examined.
• Asynchronous sampling:

• Timers
• Hardware counters (CPU cycles, L3

cache misses, etc.)
• Synchronous sampling:

• Calls to certain library functions are
intercepted (malloc, fread, …)

Profiling techniques
PERFORMANCE

Code Instrumentation:
• Instrumentation:

• Code for collecting profiling
information is inserted into the
original program.

• Approaches:
• Manual (measurement APIs)
• Automatic source level
• Compiler assisted (e.g. gprof)
• Binary translation
• Runtime instrumentation

9

Profiling techniques
PERFORMANCE

Statistical sampling advantages:
• No changes to program or build process

• Recommended: Debugging symbols
• No blind spots: Measurements cover

• Library functions
• Functions with unavailable source code

• Low overhead (typically 3-5%)

Statistical sampling limitations:
• Statistical sampling involves some degree of

uncertainty
• Information attributed to source lines may

not be accurate
• Certain types of information not available:

• Number of calls of a certain function
• Average runtime per call of a certain

function

10

PERFORMANCE

Some profiling tools
• VTune, Advisor – Intel products, very powerful, include

multi-threading analysis and vectorisation
• gprof: GNU, Flat profiles, call lists, Recompilation

needed
• PIN, Valgrind: Instrumentation / Synthetic software

CPU, Simulate such characteristics as cache misses
and branch mispredictions, memory space usage,
function call relationships

• perfmon2: Low level access to counters, No
recompilation needed

11

Multi-dimensional
improvement

• Multiple computing nodes
• Multi-socket
• Multi-core
• Hardware threading
• Instruction Level Parallelism

• Instruction pipelining
• Vector registers

Data parallelism:
• same transformation to multiple

pieces of data
• wise design of data structures

Task/Process parallelism:
• split load into “baskets of work”

consumed by a pool of resources
• need to check inter-dependency

IMPROVING PERFORMANCE

12

Multi-dimensional
improvement

• Multiple computing nodes
• Multi-socket
• Multi-core
• Hardware threading
• Instruction Level Parallelism

• Instruction pipelining
• Vector registers

IMPROVING PERFORMANCE

13

Amdahl’s law
“… the effort expended on achieving high parallel processing rates is wasted unless
it is accompanied by achievements in sequential processing rates of very nearly the
same magnitude.” - G.M. Amdahl - 1967

It tells us something about parallel execution: It states the maximum speed up
achievable given a certain problem of FIXED size and serial portion of the program.

speedup = 1
1− P

speedup = 1
P
N

+S

IMPROVING PERFORMANCE

14

Coming up next…

• Introduction to task parallelism

• Memory related programming models

• Suggestions to design parallel code

• Vectorisation

• Compiler optimisation and auto-vectorisation

IMPROVING PERFORMANCE

15

Introducing concurrency

• Process: isolated instance of a program, with its own space in memory
• can have multiple threads
• Easy to manage
• Communication/switching between them possible but pricey

• Thread: light-weight process within process
• share memory with other threads belonging to same process
• Managed and scheduled by the kernel according to available resources
• Many options available:

• C++11 std::thread
• OS: pthreads (linux)..
• Libraries: OpenMP …

• Task: Logically discrete section of computational work. Typically a program-like
set of instructions executed by a processor.

IMPROVING PERFORMANCE

16

Shared memory (thread) model

• Main program loads necessary system and
user resources
• Performs serial work and creates threads,

scheduled and run by OS
• Each thread has local data and shares the

common resources (to avoid replication)
• Threads communicate by updating global

memory address locations
• Synchronisation ensures that two threads

do not update same global address at
any time.

• Threads can come and go, but a.out
remains present to provide necessary
shared resources until the completion.

IMPROVING PERFORMANCE

17

Distributed/Hybrid memory models

Distributed memory: Tasks use own local
memory (same and/or across many physical
machines)
• Tasks exchange data through

communications by sending and receiving
messages

• Message passing through a library.e.g.
Message Passing Interface (MPI)

Hybrid memory: combines more than one programming model. e.g: message passing model
(MPI) & threads model (OpenMP).
• Threads perform computationally intensive kernels using local, on-node data
• Communications between processes on different nodes occurs over the network using MPI

IMPROVING PERFORMANCE

18

Designing parallel code (I)
• Understand the problem: can it actually be

parallelised?
• Identify inhibitors to parallelism (e.g. data

dependence)
• Change the algorithm, check external

libraries
• Partitioning: break the problem in discrete

chunks
• Communication: what is needed? (e.g.

visibility and scope, synchronous or
asynchronous…)
• Consider cost in terms of overhead,

latency and bandwidth

Loop carried dependency:

Loop independent dependency:

IMPROVING PERFORMANCE

19

Designing parallel code (II)

• Synchronisation: Managing the sequence
of work is critical!
• Barriers: Each task works until the

barrier, then stops.
• When the last task reaches the barrier,

all are synchronised.
• Locks and semaphores: protect access

to global data or a code section.
• One task at a time may own it
• The first task to acquire the lock "sets"

it. Others wait until the owner releases
the lock

• Load balancing/granularity

traffic deadlock in Tel Aviv, 2011

IMPROVING PERFORMANCE

20

Vectorisation
Vectorised data is a prerequisite
to make efficient use of modern
CPU vector instruction sets

scalar operation vector operation

Year Register Corresponding
Instruction set

~1997 80 bit MMX

~1999 128bit SSE1

~2001 128 bit SSE2

… 128 bit SSEx

2008 128 bit AVX

~2010-2011 256 bit AVX2

2013 512 bit IMCI

2015 512 bit AVX512

P5 Pentium

Pentium III

Pentium IV

Pentium - Nehalem core i7

Sandy Bridge

Haswell

Xeon Phi (Knights Corner)

Xeon Phi (Knights Landing)

IMPROVING PERFORMANCE

21

Vectorisation
Reminder:
Single Precision Floating Point (FP) : 32 bit
Double Precision FP : 64 bit

16 single precision FP

8 double precision FP

64 8-bit integer

32 16-bit integer

16 32-bit integer

8 64-bit integer

512 bit

64 bit mask

AVX 512

4 single precision FP
2 double precision FP

16 8-bit integer
8 16-bit integer
4 32-bit integer
2 64-bit integer

128 bit

8 single precision FP
4 double precision FP

SSE and AVX 128

AVX 256

IMPROVING PERFORMANCE

22

Compiler optimisations

• Instruction selection: e.g. Multiplication*2 can be done by addition, bit-shift
• Constant elimination
• Algebraic simplification: Use algebraic properties to simplify expressions
• Dead code removal
• Loop Optimisations: often executed, large payoff!
• Inlining: improves time at the cost of space (larger code); allows for further

optimisation;
• Auto-Parallelisation, Auto-vectorization..

• Compiler optimisation are controlled by flags and
pragmas
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

• Differences among compilers and target architectures can be large
• You might be compromising accuracy and precision

IMPROVING PERFORMANCE

23

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Auto-Vectorisation

• Prefer countable single entry and single exit “for” loops.
• Write straight line code, reducing branches (switches, goto or return

statements)
• Avoid dependencies between loop iterations
• Prefer array notation to pointers.
• Use the loop index directly in array subscripts where possible
• Use efficient memory accesses
• Favour inner loops with unit stride
• Align data. Data is memory aligned when the data to be operated upon as an

n-byte chunk is stored on an n-byte memory boundary
• Prefer Structure of Arrays (SoA) over Array of Structures (AoS)

IMPROVING PERFORMANCE

24

Memory access pattern

SOAoutput
vector

output
vector

AOS

• AOS approach seems the natural way to do vector
processing of particles

• 3-to-1 typical memory access pattern
• SOA approach is better vectorised by the compiler

• Memory access in SOA pattern also more efficient

IMPROVING PERFORMANCE

25

Our case study

26

Simulation in High Energy Physics

27https://cds.cern.ch/record/1309872

simulating the passage of particles through matter

Simulation in HEP
Heavy computation requirements, massively CPU-bound
The LHC uses more than 50% of its distributed GRID power for detector simulations

(~250.000 CPU years equivalent so far)

cms.web.cern.ch

CURRENT SOFTWARE: GEANT4

28

http://cms.web.cern.ch

Geant4 (GEometry ANd Tracking)

• Linear scaling of throughput with number of
threads

• Large savings in memory: 9MB extra
memory per thread

• No Performance/Throughput increase

P. Canal, ICHEP’16

• Major international collaboration, ~2M lines of code, hundreds of users
worldwide

• Large variety of applications ..beyond HEP: Medical applications, materials &
space science

• Scalar processing: Each particle is simulated and followed through its whole
life one by one.

• Event level parallelism: each thread processes one event exclusively

CURRENT SOFTWARE: GEANT4

Performance (Xeon + Xeon Phi)

29

Current
code: Geant4

CURRENT SOFTWARE: GEANT4

Call graph
for a very simple (!) Geant4 example

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

valgrind / gprof2dot / graphviz

30

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

Current code: Geant4
• Codebase very large and non-homogenous
• Very deep call stack (IC misses) and virtual table structure
• Hotspots practically

inexistent
• Each rectangle

represents a
function

• Its size is
proportional to
the cost spent
therein

CURRENT SOFTWARE: GEANT4

Valgrind/kCachegrind

31

so .. how do we optimise?

32

Let’s see..
• Physics is “naturally parallel”

• Events, particle trajectories, energy
depositions

• Particle transport is mostly local:
• 50% of the time spent in 50/7100 volumes

(ATLAS)

ATLAS volumes sorted by transport
time.

Same behaviour observed for most
HEP geometries

En
tri

es
 p

er
 v

ol
um

e

• Locality not exploited by classical
transport code

• Existing code inefficient
• Cache misses due to fragmented code

THE GEANTV PROTOTYPE

cms.cern.ch

33

http://cms.web.cern.ch

GeantV: introducing parallelism

An algorithm to transport particles through
matter has “few” key ingredients:

• Geometrical shapes that describe detector
volumes

• Physics algorithms that describe particle
interactions with detector materials

• “Navigation” framework that organises
particles and transports them “through”
geometry and physics

The GeantV projectTHE GEANTV PROTOTYPE

34

http://geant.cern.ch

GeantV: introducing parallelism

35

• Introduce data parallelism: transport
particles in groups
• Group them according to geometrical

volumes they cross and/or physics
processes

• Keep overhead under control!
• Introduce concurrency: split the whole flow in

different tasks and/or threads to run
simultaneously

• Portable on different architectures (CPUs, GPUs
and accelerators)

The GeantV projectTHE GEANTV PROTOTYPE

http://geant.cern.ch

Moving on to…

• How we’ve implemented concurrency

• An example on removing bottlenecks

• Introducing vectorisation (geometry)

• Performance improvement!

36

Current model: static allocation of workers
• Main thread method as infinite looper
• Any thread can execute a set of chained

tasks (geometry navigation,
propagation in the magnetic field,
physics processes..)

• Data communication by concurrent
queues

• Main queue of baskets of tracks
• Secondary queues of transport

byproducts (I/O, files, final products)

Concurrency in GeantV
THE GEANTV PROTOTYPE

37

Lock-free algorithm
(memory polling)

2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Concurrency in GeantV

Fine grain MT prevents scaling to high number of threads
Issue for many cores architectures!

THE GEANTV PROTOTYPE

Geometry + propagator: main
consumer, will balance with
physics in future

Physics: low profile, will go up with
physics models

Creating baskets: main Amdahl source

Reshuffling baskets: constant overhead

Algorithm using spin-lock

scalability with number of threads

NthreadsNthreadsNthreads

38

Removing bottlenecks: I/O

• First implementation:Send
concurrently data to one thread
dealing with full I/O

• Buffer mode: Send concurrently
local hits connected to memory
files produced by workers to
one thread dealing only with
final merging/writing to disk

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120

re
la

tiv
e

 ti
m

e
 o

ve
rh

e
a

d
 w

rt
 n

o
 I/

O

Throughput [MB/s]

GeantV concurrent I/O
8 data producer threads + 1 I/O thread

Data I/O (old)
Buffer I/O (new)

• Physics simulation produces ‘hits’ i.e. energy depositions in detector sensitive parts
• Hits are produced concurrently by all the simulation threads

• Thread-safe queues handle asynchronous generation of hits by several threads
• Dedicated output thread transfers the data to storage

THE GEANTV PROTOTYPE

39

Geometry…

40

It sums up to more than 30% of processing time

A geometry library provides APIs to:

In or out?
collision detection and

distance to enter de object

minimal safe distance to
object

distance to leave object

THE GEANTV PROTOTYPE

VectorizedGeometry

Optimised library of primitive and composite solids

Reduce virtual function calls and avoid code
multiplication

Use template code

Introduce data parallelism

Explicit vectorisation (external libraries)

APIs for single & many-track navigation

“Inner” vectorisation of complex shapes

Compiler autovectorisation

41

“Inner” Vectorisation

THE GEANTV PROTOTYPE

Vectorising Geometry

Option A (“free lunch”):
put code into a loop and let the compiler do the work works in only few cases
Option B (“convince the compiler”):
refactor the code to make it “auto-vectorizer” friendly might work but strongly compiler
dependent
Option C (“use SIMD library”):
refactor the code and perform explicit vectorization using external libraries library
compiler independent

1 particle -> 1 result N particles -> N results

THE GEANTV PROTOTYPE

42

Example
Some existing (C++) code to tell whether a particle is inside a volume

THE GEANTV PROTOTYPE

positions/dimensions vectors (x,y,z)
43

Option A: “free lunch”
Start from some existing code

Provide a vector interface and .. hope that compiler vectorise

THE GEANTV PROTOTYPE

positions/dimensions AOS: (x,y,z,x,y,z…)44

The struggle to autovectorisation (I)

Intermediate local
variables

+ if conversion

inline and remove
early returns

THE GEANTV PROTOTYPE

45

The struggle to autovectorisation (II)

AOS to SOA

THE GEANTV PROTOTYPE

46

Option B: “convince the compiler”

massage/refactor original code to make the compiler autovectorize
1. copy scalar code to new function ("manual inline")
2.change the data layout (se SOA)
3. remove early - returns
4. manually unroll loops

THE GEANTV PROTOTYPE

47

Option C: “use external library”

Always vectorizes …don’t have to convince the compiler!
• excellent performance (automatically uses aligned data)
• can mix vector context and scalar context (code)
• given that we have to refactor code anyway, this is our implementation
• choice

Vc library
THE GEANTV PROTOTYPE

https://github.com/VcDevel48

https://github.com/VcDevel/Vc
https://github.com/VcDevel

Improving vectorisation

Many branches just distinguish between “static” properties of class instances
general “tube” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

Tube HollowTube FullTubePhi HalfHollowTubeHollowTubePhi

THE GEANTV PROTOTYPE

To get rid of many branches we could introduce a separate class for each
important tube realisation

canonical approach:
solution with handwritten
separate classes

C++: AbstractTube *t = new FullTube();
49

Reducing branches: templates
Alternative idea: use C++ templates
• evaluate and reduce “static” branches at compile time
• generate binary code specialised to concrete solid instances

C++: AbstractTube *t = new SpecializedTube<FullTube>();

THE GEANTV PROTOTYPE

➡ vectorisation is efficient
➡ better compiler optimisations in scalar code
➡ less virtual functions means less calls to virtual tables
➡ embrace “generic programming” philosophy :-)
➡ Use the same approach to insure portability (..but this is another story..)

50

VecGeom performance

0"

50"

100"

150"

200"

250"

300"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16"

Re
al
%&
m
e%
[s
ec
]%

Threads%#%

Real%&me%VecGeom%versus%ROOT%
geometry%

ROOT" VecGeom"

0"

500"

1000"

1500"

2000"

2500"

0" 5" 10" 15" 20"
Re

si
de

nt
(m

em
or
y(
[M

By
te
s]
(

Threads(#(

Resident(memory(VecGeom(versus(
ROOT(

ROOT"

VecGeom"

• GeantV runs VecGeom scalar navigation in full CMS geometry
• first realistic estimate of overall impact on simulation time: ~1.6 improvement
• so far using only scalar navigation mode

✓

Simulation of 10 pp events at 7TeV in the CMS detector

THE GEANTV PROTOTYPE

51

VecGeom performance
A set of CPU-intensive navigation methods:
Measure wall time for vector and scalar implementations:
Calculate vector speed-up (scalar time is reference =1) using AVX2 and AVX512

0.0

1.8

3.5

5.3

7.0

Inside SafetyToIn DistanceToIn

Sp
ee
du
p

scalar vector

0

4.5

9

13.5

18

Inside SafetyToIn DistanceToIn

Sp
ee
du
p

scalar vector

Quiz: assign the correct label!
(all our code uses double precision…)

AVX2 AVX512

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

THE GEANTV PROTOTYPE

52

VecGeom performance
A set of CPU-intensive navigation methods:
Measure wall time for vector and scalar implementations:
Calculate vector speed-up (scalar time is reference =1) using AVX2 and AVX512

0.0

1.8

3.5

5.3

7.0

Inside SafetyToIn DistanceToIn

Sp
ee
du
p

scalar vector

Super-linear speedup for

some of the methods !

0

4.5

9

13.5

18

Inside SafetyToIn DistanceToIn

Sp
ee
du
p

scalar vector

AVX512

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

AVX2

THE GEANTV PROTOTYPE

53

0

20

40

60

80

100

120

0 75 150 225 300

SP
EE

D
U

P

NTHREADS

Scalability

classical ideal vector basket

0

35

70

105

140

175

0 75 150 225 300

SP
EE

D
U

P

NTHREADS

Speedup wrt multithreaded classical approach

ideal vector vs. classical basket vs. classical

Scalability

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

To test our concurrency model we
setup a simplified testbed:
• a toy detector (typical tracker

geometry)
• a “ideal vector” transport scenario in

which particles are transported in
bunches without any overhead due
to particle re-shuffling to use as the
“theoretical” best case

• we also compare to the classical
code navigation method

• Measure speedup wrt Nthreads

benchmarks are run on new Intel Xeon Phi
systems recently released!

THE GEANTV PROTOTYPE

54

Scalability (II)

0.01

0.1

1

10

0 75 150 225 300

Ab
so

lu
te

 ti
m

es
 (s

)

Nthreads

Vector ideal

AVX2 AVX512

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0 75 150 225 300
T(

AV
X2

)/T
(A

VX
51

2)
Nthreads

Vector ideal

High vectorization intensity achieved for both ideal and basketized cases
AVX-512 brings an extra factor of ~2 to our benchmark

THE GEANTV PROTOTYPE

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

55

The end

56

Summary (I)

We started the GeantV project aiming at a x5-10 speedup wrt current
simulation software
• Relied on several techniques leveraging compiler and C++ features

• Compiler optimisation (& inlining)
• c++ templating

• Introduced data parallelism and concurrency to profit from the latest
advancements in terms of architecture

• Results in terms of vectorisation and scalability are encouraging and call
for further optimisation
• Caching & Memory management
• Going multi-process
• …

THE END

57

Summary (II)

• Why we worry about performance

• How to approach the problem of improving performance

• Basic concepts of data and task parallelism

• Concurrency, Memory related programming models,
Vectorisation

• A real life example

THE END

58

Conclusions

There is a large variety of methods, strategies, “handles” to
use so..

There is no pre-defined “improving performance algorithm”

Improving code performance is an “epic fight”

THE END

59

Thank you!

THE END

60

Profiling tools

VTune: https://software.intel.com/en-us/intel-vtune-amplifier-xe
Advisor: https://software.intel.com/en-us/intel-advisor-xe
Valgrind: http://valgrind.org
PIN: https://software.intel.com/sites/landingpage/pintool/docs/65163/Pin/html/
gprof: https://sourceware.org/binutils/docs/gprof/
perfmon2: http://perfmon2.sourceforge.net

61

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-advisor-xe
http://valgrind.org
https://software.intel.com/sites/landingpage/pintool/docs/65163/Pin/html/
http://sourceware.org/binutils/docs/gprof/
http://perfmon2.sourceforge.net

scheduler

Physics:
• cross sections
• reactions

GeantV: scheduler

Re-filtered tracks go
back to the scheduler
(re-basketizing)

Dispatching

Re-basketizer

Dispatching

Overhead should be much smaller than locality/SIMD gains
portable without hindering performance

After each step particles move on to different fates ➙ need re-filtering!

62

Geometry
navigation
to different
algorithms

Virtual vs template
Virtual inheritance: one of the most powerful features of C++
 Allow for maximum flexibility
Separation of interface and implementations: clean code
Unified treatment of components behind the same interface
Comply to interfaces: easy mixing of components
E.g. Library developer provides interfaces, user complies to them
when writing implementations

63

Xray benchmark
THE GEANTV PROTOTYPE

64

