Improving code
performance:
an Introduction

Practical examples from particle physics sumulation

¢«

Sofia Vallecorsa

sofia.vallecorsa@cern.ch

2016 Openlab Summer Students lecture series


mailto:sofia.vallecorsa@cern.ch

Outline

Introduction

- Why performance is important?
Performance 7
- Can we define it?
How do we measure it?
Improving performance
Use case: Simulating particle interactions through matter
Current status: Geant4 performance
The GeantV prototype
The end: Summary & Conclusions



[ ] [ )\

Moore's law and power wall
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Number of fransistors per chip 1s going up

The clock speed ts not

The amount of energy dissipated per chip is the limiting Factor (power wall)
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Why do we care”?

Bottom line...
Massive data processing, modelling, simulation from
fundamental research and beyond!

For years we have relied on the increase of clock speed to
simply see our code running faster on more performant
hardware.. it’s over now!
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Thé era of

Performance Development
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Ever faster networks, distributed systems,
and multi-processor architectures show that | E _
parallelism is the future of computing.
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Performance
[s there A definition?

Timing: faster execution

 CPU time, latency,...

 Speedup (parallel vs serial execution)

Amount of processed data: throughput

Size: smaller executable, smaller memory footprint
...and “the holy grail”... forward scalability:

* Maximum performance from today’s hardware
should scale on future processors/accelerators

* Automatically - with virtually no code rewriting
Good scaling if:

* X2 number of cores (or vector

, Improving performance is a tradeoft!!
size) doubles

* Timing vs. Size
performance « Compilation speed and memory
» Latency vs throughput




Measuring performance ()

"Eirst catch the rabbit

a recipe for rabbit stew

e Before any optimisation we need a way to
measure what we are optimising

e Before any measurement we need a clear,
explicit statement of the problem to solve. Cope

A good understanding of the hardware

>

> Reproducible, representative benchmarks Yes_.
> “The right” tool

(N

Time (!): Performance optimisation is a s
process that may require several iterations MEASURE

IDON'T
BELIEVE YOU




Measuring performance (ll)

|dentify hotspots:

Majority of scientific and technical
programs accomplish most of their
work in a few places.

Focus on hotspots and ignore sections
that account for little CPU usage.

|dentify bottlenecks:

Areas that are disproportionately slow, or
cause parallelizable work to halt or be
deferred (e.qg. 1/O)

Restructure or change algorithm to reduce
or eliminate unnecessary slow areas

Tuning (evels

“a reality check by A.Nowak"
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Potential gains Estimate
Algorithm Major ~10x-1000x
Source code Medium ~1x-10x
~10%-20%
Compiler level Medium-Low ("”’m“g —
parallelization)
Operating Low ~5-20%
system
Hardware Medium ~10%-30%




Profiling techniques

Statistical Sampling:

Program flow is periodically interrupted,
current program state is examined.

e Asynchronous sampling:
® Timers

e Hardware counters (CPU cycles, L3
cache misses, etc.)

e Synchronous sampling:

e Calls to certain library functions are
intercepted (malloc, fread, ...)

e —

Code Instrumentation:
* [nstrumentation:

e Code for collecting profiling
information is inserted into the
original program.

- Approaches:
e Manual (measurement APIs)
e Automatic source level
e Compiler assisted (e.g. gprof)
e Binary translation

e Runtime instrumentation

E—




Profiling techniques

Statistical sampling advantages: Statistical sampling limitations:

e No changes to program or build process e Statistical sampling involves some degree of

e Recommended: Debugging symbols uncertainty

e [nformation attributed to source lines may

e No blind spots: Measurements cover
not be accurate

e | ibrary functions

® ' ' ' : :
e Functions with unavailable source code Certain types of information not available:

e Low overhead (typically 3-5%) e Number of calls of a certain function

E— —— e Average runtime per call of a certain
function

)

Code tnstrungentation




Some profiling tools

= Elapsed Time: 1.445s

VTune, Advisor — Intel products, very powerful, include @ CPU Time: 15.110s

multi-threading analysis and vectorisation

gprof: GNU, Flat profiles, call lists, Recompilation
needed

PIN, Valgrind: Instrumentation / Synthetic software
CPU, Simulate such characteristics as cache misses
and branch mispredictions, memory space usage,
function call relationships

perfmon2: Low level access to counters, No
recompilation needed

Function / Call Stack

SimpleNavigator::FindNextBoundaryAndStep
ShapelmplementationHelper<vecgeom::cxx:: Trapezoidimplementation<{int)-1, (int)-1>>::DistanceToin
ShapelmplementationHelper<vecgeom::cxx:: Trapezoidimplementation<{int)-1, (int)-1>>::Contains
SimpleNavigator::RelocatePointFromPath

ScalarShapelimplementationHelper<vecgeom: . cxx.: Polyhedronimplementation<(EinnerRadii)0, (EPhiCutout)0>>::Conains
ShapeimplementationHelper<vecgeom::cxx;: Boximplementation<(int)-1, (int)-1>>;:Contains

ScalarShapeimplementationHelper<vecgeom::cxx:: Polyhedronimplementation<(EinnerRadii)0, (EPhiCutout)0>>:: DistanceToOut
Tubeimplementation<(int)0, (int)512, vecgeom::cxx::TubeTypes::UniversalTube>::DistanceToln<vecgeom::cxx::kScalar>
ShapeimplementationHelper<vecgeom::cxx::Boximplementation<(int)-1, (int)-1>>::DistanceToin

Icpy

Quadrilaterals:: DistanceToln<vecgeom::cxx::kScalar, (bool)0>

Tubeimplementation<(int)-1, {int)-1, vecgeom: . cxx:: TubeTypes::UniversalTube>:: DistanceToln<vecgeom: . cxx::kScalar>
ShapeimplementationHelper<vecgeom::cxx:: Tubeimplementation<(int)-1, (int)-1, vecgeom::cxx: . TubeTypes: :UniversalTube>>; : Conti

ScalarShapeimplementationHelper<vecgeom:: cxx:: Booleanimplementation<(BooleanOperation) 2, (int)-1, (im)-1>>::Contains
1 1 Selected 1 rowis)

© Effective Time: 14.022s

© Spin Time; 1.055s

© Overhead Time: 0.032s
Instructions Retired: 2,636,178,581
CPI Rate: 7.063

The CPI may be too high. This could be cause
instructions. Explore the other hardware-relat

Wait Rate: 13.083
CPU Frequency Ratio: 1.000
@ Context Switch Time: 7.114s

Wait Time: 6.358s
Inactive Time: 0.756s

Paused Time: 0s

ﬁ

Effective Time by Utilizationw

i) \dle @@ Poor [J Ok [§ideal [ Over

6.781s
1.851s [
0.520s [
0.4385

e Examples from

03735

0.357s§
0.285s ll’l IL-Q{ \/TMWQ

0.260s [
0.227sf§
0.195s )
0.195s )
0.162s)
0.162s )

0.162sfi
6781«
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Multl-dimensional
improvement

* Multiple computing nodes

* Multi-socket Task/Process parallelism:
e split load into “baskets of work”™
e Multl-core consumed by a pool of resources

* need to check inter-dependency

* Hardware threading
e Instruction Level Parallelism

* Instruction pipelining Data parallelism:

e same transformation to multiple
pieces of data

o \/ector reg ISters e wise design of data structures

12



Multl-dimensional
mprovement Which direction?

* Multiple computing nodes

* Multi-socket

* Multi-core

* Hardware threading

* Instruction Level Parallelism
* [nstruction pipelining

* \Vector registers

13



Amdahl’s law

“... the effort expended on achieving high parallel processing rates is wasted unless
It is accompanied by achievements in sequential processing rates of very nearly the
same magnitude.” - G.M. Amdahl - 1967
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It tells us something about parallel execution: It states the maximum speed up
achievable given a certain problem of FIXED size and serial portion of the program.



Coming up next...

1

Introduction to task parallelism 7

Memory related programming models
Suggestions to design parallel code
Vectorisation

Compiler optimisation and auto-vectorisation

15



Introducing concurrency

Processes-threads-tasks

® Process: isolated instance of a program, with its own space in memory
e can have multiple threads
e Fasy to manage
e Communication/switching between them possible but pricey

* Thread: light-weight process within process
- share memory with other threads belonging to same process
* Managed and scheduled by the kernel according to available resources
e Many options available:
e C++11 std::thread
e OS: pthreads (linux)..
e | ibraries: OpenMP ...

 Task: Logically discrete section of computational work. Typically a program-like
set of instructions executed by a processor.

and what about memory!?!
16



Shared memory (thread) model

- Main program loads necessary system and
user resources

e Performs serial work and creates threads,
scheduled and run by OS

e Fach thread has local data and shares the
common resources (to avoid replication)

® [hreads communicate by updating global
memory address |locations

e Synchronisation ensures that two threads
do not update same global address at
any time.

e [hreads can come and go, but a.out
remains present to provide necessary
shared resources until the completion.

17

a.out

Il sub1() — T2
gu ::bz() —+—

doi=1,n

A(i)=fnc(i**2) /”'T3

B‘(’i):A(i)*psi / T4
en o
call sub3() =~ //

call sub4() —

dwi)




Distributed/Hybrid memory models

o Machine A Machine B
Distributed memory: Tasks use own local
memory (same and/or across many physical task 0 task 1
machines)

recv()

network
task 3

send()

* Tasks exchange data through send()

communications by sending and receiving task 2 |

Mmessages
recv()

* Message passing through a library.e.g.
Message Passing Interface (MPI)

Hybrid memory: combines more than one programming model. e.g: message passing model
(MPI) & threads model (OpenMP).

e Threads perform computationally intensive kernels using local, on-node data
e Communications between processes on different nodes occurs over the network using MPI

Here the underlying hardware network communication speed & bandwidth do matter!
18



Designing parallel code ()

* Understand the problem: can it actually be
parallelised?

* |dentify inhibitors to parallelism (e.g. data
dependence)

e Change the algorithm, check external
libraries

* Partitioning: break the problem in discrete
chunks

e Communication: what is needed? (e.g.
visibility and scope, synchronous or
asynchronous...)

« Consider cost in terms of overhead,
latency and bandwidth

19

Loop carried dependency:

DO 500 J = MYSTART,MYEND
A(J) = A(J-1) * 2.0
500 CONTINUE

Loop independent dependency:

task 1 task 2
X =2 X =4
Y = X*%2 Y = X**3



Designing parallel code (ll)

e Synchronisation: Managing the sequence

of work is critical! traffic deadlock in Tel Aviv, 2011

e Barriers: Each task works until the
barrier, then stops.

¢ \When the last task reaches the barrier,
all are synchronised.

* Locks and semaphores: protect access
to global data or a code section.

- One task at a time may own it

e The first task to acquire the lock "sets’
it. Others wait until the owner releases
the lock

 Load balancing/granularity

The bottom line is that there is no silver bullet!
» Case by case nvestigation needed

20 * Baest solution: often a trade-off



Vectorisation

scalar operation  vector operation

Al + B = [%
. ) L Ao Bo C°
Vectorised data is a prerequisite A = . —
.. ' T 1 5 c! A B, C|
to make efficient use of modern - = -
CPU vector instruction sets il B - o R —
Al *t LBl = kS i : -
Year Register Corresponding Ex: lntel
Instruction set
~1997 80 bit MMX P5 Pentium
~1999 128bit SSE1 Pentium Il
~2001 128 bit SSE2 Pentium |V
128 bit SSEX Pentium - Nehalem core i7
2008 128 bit AVX Sandy Bridge
~2010-2011 256 bit AVX2 Haswell
2013 512 bit IMCI Xeon Phi (Knights Corner)
2015 512 bit AVX512 Xeon Phi (Knights Landing)
Ok



Vectorisation

Reminder:
Single Precision Floating Point (FP) : 32 bit
Double Precision FP : 64 bit

AVX 512
iiiiiiiiiiiiil L[

W W W N
SSE and AVX 128
EERRREERERERERERE
EEEEREERRE
(S N W N
[ T
AVX 956 T

| B | i

' 16 single precision FP

8 double precision FP

64 8-bit integer

4 single precision FP
2 double precision FP
16 8-bit integer
8 16-bit integer
4 32-bit integer
2 64-bit integer
128 bit

8 single precision FP
4 double precision FP

Using today one FP

32 1651t integer (stngle precision) means
16 32-bit integer wausg 15 slots 1 a
8 64-bit integer register!
512 bit
64 bit mask

22




Compiler optimisations

Rice (1953): For every

- Compiler optimisation are controlled by flags and compiler there (s a
pragmas

- https://gcc.gnu.org/onlinedocs/gcec/Optimize-Options.html

modified compiler that

generates shorter

« https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

- Differences among compilers and target architectures can be large code.

* You might be compromising accuracy and precision

Need to ruwm tests!

Instruction selection: e.g. Multiplication*2 can be done by addition, bit-shift

Constant elimination

Algebraic simplification: Use algebraic properties to simplify expressions

Dead code removal

Loop Optimisations: often executed, large payoft!

Inlining: improves time at the cost of space (larger code); allows for further
optimisation;

Auto-Parallelisation, Auto-vectorization..

23



https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Auto-Vectorisation

. /" . . /)
Good practices to  convince the compiler

* Prefer countable single entry and single exit “for” loops.

e Write straight line code, reducing branches (switches, goto or return
statements)

* Avoid dependencies between loop iterations

* Prefer array notation to pointers.

* Use the loop index directly in array subscripts where possible
« Use efficient memory accesses

- Favour inner loops with unit stride

e Align data. Data is memory aligned when the data to be operated upon as an
n-byte chunk is stored on an n-byte memory boundary

e Prefer Structure of Arrays (SoA) over Array of Structures (AoS)

24



Memory access pattern

particle | particle 2 particle3 N AN
RO
F & &
AOS § & ¢
OUtpUt SOA
vector

* AOS approach seems the natural way to do vector
processing of particles

e 3-to-1 typical memory access pattern output

- SOA approach is better vectorised by the compiler vector

* Memory access in SOA pattern also more efficient

Need fo fake possible overl»\eaofszém/'o account!!



Our case study



Simulation in High Energy Physics

simulating the passage of particles through matter

Essential for detector design and data-theory comparison

crand tn need of HPC!

https://cds.cern.ch/record/1309872 27



CURRENT SOFTWARE: GEANT4

Simulation in HEP

Heavy computation requirements, massively CPU-bound
The LHC uses more than 50% of its distributed GRID power for detector simulations

(~250.000 CPU years equivalent so far)

)’:i»![l]

Electromagnetic ©

Calorimeter
Hadron ~_ /
Calorimeter Superconducting
Solenoid
Legend: Muon - ! = T T T T
m m
Electron L | ] | . . : l
Charged Hadron
= = = = Neutral Hadron
------ Photon

cms.web.cern.ch
28



http://cms.web.cern.ch

Geantd (GEometry ANd Tracking)

current standard

within HEP

e Major international collaboration, ~2M lines of code, hundreds of users
worldwide

- Large variety of applications ..beyond HEP: Medical applications, materials &
space science

e Scalar processing: Each particle is simulated and followed through its whole
life one by one.

Event level parallelism: each thread processes one event exclusively

Evts/s

N w 4 (5, =2
1 1] 1 1]

o

~J
T

—

Performance (Xeon + Xeon Phi)

P. Canal, ICHEP’16

| HT Regime (HOST)

MIC

HT Regime (MIC)

HOST full

100 150
N Threads

200

29

» Linear scaling of throughput with number of

threads

» Large savings in memory: 9MB extra

memory per thread

* No Performance/Throughput increase



valgrind / gprof2dot / graphviz

Current
code: Geant4d

Call graph
for a very simple (!) Geant4 example

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html
30



http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

Current code: Geant4

e Codebase very large and non-homogenous

e Very deep call stack (IC misses) and virtual table structure

e Hotspots practically | |
inexistent Valgrind/kCachegrind

F EUEFEL

e Fach rectangle
represents a
function

e [tS Size s
proportional to
the cost spent
therein




so .. how do we optimise”?

.4 l'\l.(/l IL ] Level Potential gains Estimate
Algorithm Major ~10x-1000x
Source code Medium ~1x-10x
~10%-20%
Compiler level Medium-Low ("“mb'g —
parallelization)
Operating Low ~5-20%
system
Hardware Medium ~10%-30%

32



| et'’s see..

 Physics is “naturally parallel”
e Fvents, particle trajectories, energy
depositions

- Particle transport is mostly local:
e 50% of the time spent in 50/7100 volumes
(ATLAS)

ATLAS volumes sorted by transport

-
o
™

Entries per volume

TGLU
TBPA
TGL2
XBH1
TBP2
XBS1
XBG1
TBAA
XRAS
XRA4
XRA3
PXBO
XBHO
TBVS
TBVO
XRA2
XGAS
XBST
XRA1
TBVE6
ALA3
ALA2
ALAG
ALAT7
ALA1
ALAS
TBVT
ALA4
ALAS
ALAY9
XRAD
ALAO
ALADb
ALAa
TBVSE
TBV3
TBV4
TMOU
BWA1
TBVS
TMO1
PBEM1
BWA7
BWAS
TBVA

TBV1

TBV2

PBL1
SCTT

BWAG

cms.cern.ch

- Locality not exploited by classical
transport code

- EXxisting code inefficient

» Cache misses due to fragmented code


http://cms.web.cern.ch

GeantV: introducing parallelism

Restructuring simulation code n a new profotype

An algorithm to transport particles through
matter has “few” key ingredients:

e Geometrical shapes that describe detector
volumes

* Physics algorithms that describe particle
interactions with detector materials

* “Navigation” framework that organises
particles and transports them “through”
geometry and physics

34


http://geant.cern.ch

GeantV: introducing parallelism

Restructuring stmulation code i a new profotype

¢ |[ntroduce data parallelism: transport
particles in groups

e Group them according to geometrical
volumes they cross and/or physics
Processes

e Keep overhead under control!

e Introduce concurrency: split the whole flow in
different tasks and/or threads to run
simultaneously

e Portable on different architectures (CPUs, GPUs
and accelerators)

35


http://geant.cern.ch

Moving on to...

ow we've implemented concurrency
An example on removing bottlenecks
Introducing vectorisation (geometry)

Performance improvement!

36



Concurrency in GeantV

[nvestigated different ways of scheduling & sharing work

Current model: static allocation of workers
e Main thread method as infinite looper

e Any thread can execute a set of chained
tasks (geometry navigation,
propagation in the magnetic field,
PhysiCS pProcesses..)

- Data communication by concurrent
queues

e Main queue of baskets of tracks

e Secondary queues of transport
byproducts (1/O, files, final products)

37

Static threads

TransportTracks
(main looper)

[TTTTT

Propagator

Geometry Physics

w
™

G| -
©

|-
$4
o
o

k.
4=

3| -
o p—
P 4
N

Concurrent basket queue



% of run time

Concurrency in GeantV

Watch for overheads!!

Time share profile scalability

0.6F R
— T
0-5 —+— Propagator
B Geometry + propagator: main —&— Physics
04l consumer, will balance with —4— Basketizing
- . . 3 vy f-
- physics in future ~# Reshuffiing
03_ Croatinaihackaote.main. AmadahlicoLirca
- \JIUCLLIIIy NAOTMN Lo TETCTI INXETTOGIAT T OUUuUlr oo
: B\E
0.2 - meﬁ}__““——ﬂ\x A
Physics: low profile, will go up with P = —®
physics models IS U B e s
0.1 A =" i i i L1 ! s
Lo
0.91 2 3 4 5 6 7 8910 20
Nthreads

2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

scalability with number of threads

& 10- *HL%“%"

L A }»«% |
i m%q;%m«%
i L

8 =
i wc::%H

6

4 __ fon
N Wae Lock-free algorithm

Algorithm using spin-lock ol ?fh (memory polling)

I T T X T A A AN
2 4 6 8 10 12 14 16 18 20 22 24

Nthreads Nthreads

Fine grain MT prevents scaling to high number of threads

Issue for many cores architectures!

..On-g0tng work



Removing bottlenecks: |/O

 Physics simulation produces ‘hits’ i.e. energy depositions in detector sensitive parts
¢ Hits are produced concurrently by all the simulation threads
* Thread-safe queues handle asynchronous generation of hits by several threads

e Dedicated output thread transfers the data to storage

GeantV concurrent I/O

e First impIementation:Send 8 data producer threads + 1 1/0 thread
concurrently data to one thread
dealing with full [/O

w
S BN
>

w

* Buffer mode: Send concurrently
local hits connected to memory
files produced by workers to
one thread dealing only with
final merging/writing to disk

#—Data |/O (old)
—o—Buffer I/O (new)

relative time overhead wrt no 1/0O
N

0 20 40 60 80 100 120
39 Throughput [MB/s]



Geometry...

It sums up to more than 30% of processing time

The CMS detector:

boxes, frapezoids, tubes, cones,

polycones millions of volumes, very
complex hierarchy: -

A geometry library provides APIs to:

minimal safe distance to distance to leave object
In or out? object

collision detection and
distance to enter de object c—

40




V@CtorizedGeOmetry

High performance geometry library for next generation
stmulation frameworks

4p  Optimised library of primitive and composite solids

4  Reduce virtual function calls and avoid code
multiplication

4p  Use template code
4p  Introduce data parallelism
4p  Explicit vectorisation (external libraries)
4p  APls for single & many-track navigation
4 “Inner” vectorisation of complex shapes

4p  Compiler autovectorisation

41




Vectorising Geometry

fypical geometry task tn particle tracking:
Find next hitting boundary and get distance to it

1 particle -> 1 result N particles -> N results

¢e| /%o
N\

J

X1 X

Option A (“free lunch”):
put code into a loop and let the compiler do the work works in only few cases
Option B (“convince the compiler”):

refactor the code to make it “auto-vectorizer” friendly might work but strongly compiler
dependent

Option C (“‘use SIMD library”):

refactor the code and perform explicit vectorization using external libraries library

compiler independent 42



Example

Some existing (C++) code to tell whether a particle is inside a volume

bool contains( const double * point ){
for( unsigned int dir=0; dir < 3; ++dir ){
if( fabs (point[dir]-origin[dir]) > boxsize[dir] ) O
return false;

} S| i
return true,

} O

@

positions/dimensions vectors (X,y,z)

43



Option A: "free lunch’

Start from some existing code

bool contains( const double * point ){ O
for( unsigned int dir=0; dir < 3; ++dir ){ X

if( fabs (point[dir]-origin[dir]) > boxsize[dir] ) X, ®
return false;

} o
return true;

}

Provide a vector interface and .. hope that compiler vectorise

void contains_v( const double * point, bool * isin, int np ) {
for( unsigned int k=0; k < np; ++k) { , .
isin[k]=contains( &point[3*k] ); [t AO-QSM f vectorise!

1} \

positions/dimengjons AOS: (X,Y,Z,X,Y,Z...)



The struggle to autovectorisation (I)

INline and remove
early returns

not enough! wno

vectorisation

Intermediate local
variables
+ if conversion

not enough! no

vectorisation

void contains_v3( const double * point, bool * isin, int np ){
for( unsigned int k=0; k < np; ++k){
for( unsigned int dir=0; dir < 3; ++dir ){
if (fabs ( point[3*k+dir]-origin[dir] ) > boxsize[dir] ) isin[k]=false;
}
isin[k]=true;

1

void contains_v4( const double * point, bool * isin, int np){
for( unsigned int k=0; k < np; ++k){
bool tmp[3]={true, true, true};
for( unsigned int dir=0; dir < 3; ++dir ){
tmp|[dir] = fabs ( point[3*k+dir]-origin[dir] ) > boxsize[dir]; }
isin[k]=tmp[0] & tmp[1] & tmp[2];
2

45




The struggle to autovectorisation (Il)

typedef struct {
double *coord[3];

} P;

AOS to SOA

void contains_vé( const P & point, bool * isin, int np ){
for( unsigned int k=0; k < np; ++k){
bool tmp[3];
’ for( unsigned int dir=0; dir < 3; ++dir ){
VIOIL QWOM9L‘ . gcc tmp[dir] = (fabs (point.coord[dir][k]-origin[dir]) > boxsize[dir]);
: }
C(—. 8 Vec fo Yises isin[k]=tmp[0] & tmp[I] & tmp[2];

1
but not tcc 13

46



Option B: “convince the compiler’

massage/refactor original code to make the compiler autovectorize
1. copy scalar code to new function ( "'manual inline" )

2.change the data layout (se SOA)

3. remove early - returns

4. manually unroll loops

void contains_v_autovec( const P & points, bool * isin, int np ){
for (int k=0; k < np; ++k)
{

z,

-origin[0]) > boxsize[0]);
-origin[ I]) > boxsize[l]);
-origin[2]) > boxsize[2])

bool resultx=(fabs (point.coord|[0]
bool resulty=(fabs (point.coord||]
bool resultz=(fabs (point.coord[2][
isin[k]=resultx & resulty & resultz;

oy

lx:

1}

[t auto-vectorises but results depend on compilers choice and choice of optimisation

Flggs



Option C: “use external library’

void contains_v_Vc( const P & points, bool * isin, int np )

{
for( int k=0; k < np; k+=Vc::double_v::Size)

{

Vc::double_m inside;
inside = (abs (Vc::double_v(point.coord[0][k])-origin[0]) < boxsize[0]);
inside&= (abs (Vc::double_v(point.coord[|][k])-origin[1]) < boxsize[l]);
inside&= (abs (Vc::double_v(point.coord|2][k])-origin[2]) < boxsize[2]);
/I write mask as boolean result
for (int j=0;j<Vc::double_v::Size;++j){

isin[k+j]=inside[j];
}

Always vectorizes ...don’t have to convince the compiler!

e cxcellent performance ( automatically uses aligned data )

® can mix vector context and scalar context ( code )

® given that we have to refactor code anyway, this is our implementation

¢ choice
43 https://github.com/VcDevel
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Improving vectorisation

4

/" . .
branches are the enemy of vectorization...

Many branches just distinguish between “static” properties of class instances
general “tube” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

1 ¥ *

Tube HollowTube Hollow TubePhi FullTubePnhi HalfHollowTube

To get rid of many branches we could introduce a separate class for each
important tube realisation

canonical approach: AbstractTube

solution with handwritten
separate classes

C++: AbstractTube *t = new FullTube(); HollowTube FullTube HollowTubeWithPhi

fa
J




Reducing branches: templates

Alternative idea: use C++ templates
e cvaluate and reduce “static” branches at compile time
e generate binary code specialised to concrete solid instances

AbstractTube

C++: AbstractTube *t = new SpeCiaIizedTube<FuIITube>();

SpecializedTube .

Safet \
D;:ar):ceToln P-Q Y]CO YW\a hcL

and no code duplication!

= vectorisation is efficient

= petter compiler optimisations in scalar code

= |ess virtual functions means less calls to virtual tables

= embrace “generic programming” philosophy :-)

= Use the same approach to insure portability (..but this is another story..)
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scalar
VecGeom’performance

Simulation of 10 pp events at 7TeV in the CMS detector

[egacy code
Real time VecGeom versus R8ST
geometry

Resident memory VecGeom versus
REOT (og4cy code

2500

300
al=R00T VecGeom JMW

1500

N

wv

o
N
o
o
o

N
o
o

«==RO0T

Real time [sec]
=
Ul
o

1000
VecGeom

=
o
o

Resident memory [MBytes]

500

ul
o

o
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 5 10 15 20
Threads #
reads Threads #

- GeantV runs VecGeom scalar navigation in full CMS geometry
e first realistic estimate of overall impact on simulation time: ~1.6 improvement

® 5o far using only scalar navigation mode
S51



VecGeom performance

A set of CPU-intensive navigation methods:
Measure wall time for vector and scalar implementations:
Calculate vector speed-up (scalar time is reference =1) using AVX2 and AVX512

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

7.0 18
N Scalar N Vector - Scalar - vector
13.5
9
4.5
0
Inside SafetyToln DistanceToln Inside SafetyToln DistanceToln

Quiz: assign the correct label!
(all our code uses double precision...)

AV X2 AV X512

@)
N



VecGeom performance

A set of CPU-intensive navigation methods:
Measure wall time for vector and scalar implementations:
Calculate vector speed-up (scalar time is reference =1) using AVX2 and AVX512

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

7.0 18
N Scalar N Vector - Scalar - vector
13.5
9
4.5
0
Inside SafetyToln DistanceToln Inside SafetyToln DistanceToln
AV X2 AV X512
- eedup for
Super e etnods !
ome of t®
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Scalability

To test our concurrency model we
setup a simplified testbed:

e a toy detector (typical tracker
geometry)

* a “ideal vector” transport scenario in
which particles are transported in
bunches without any overhead due
to particle re-shuftling to use as the
“theoretical” best case

* we also compare to the classical
code navigation method

* Measure speedup wrt Nthreads

benchmarks are run on new Intel Xeon Phi
systems recently released!

=O-classical ideal vector  =O=basket
120
Scalability
100
o 80 =0~ -0
)
()]
W 60
LUl
o
& 40
20
-0 -0 O
00
0 75 150 225 300
NTHREADS Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores
ideal vector vs. classical =O=basket vs. classical
175
140
5
105
)|
&j —O— o
o 70 e -0
d))
35 |~
Speedup wrt multithreaded classical approach
0
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Scalability (Il

High vectorization intensity achieved for both ideal and basketized cases
AV X-512 brings an extra factor of ~2 to our benchmark

Intel® Xeon Phi™ CPU 7210 @

Vector ideal ) 1.30GHz, 64 cores
Vector ideal

10

AVX2 AVX512

N
—
o

—
N
o
S

1.90

—
o
o

Absolute times (s)
©

T(AVX2)/T(AVX512)

1.70

1.60

0 75 150
0 75 150 225 300 Nthreads
Nthreads

0.01
225 300

we do understand vectorisation!
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The end



Summary (1)
What we have done

We started the GeantV project aiming at a x5-10 speedup wrt current
simulation software

* Relied on several technigues leveraging compiler and C++ features
 Compiler optimisation ( & inlining)
* C++ templating

Introduced data parallelism and concurrency to profit from the latest
advancements in terms of architecture

Results in terms of vectorisation and scalability are encouraging and call
for further optimisation

 (Caching & Memory management
* (Going multi-process

S/



summary (1)

What you should know wow..

* \Why we worry about performance

 How to approach the problem of improving performance

e Basic concepts of data and task parallelism

* Concurrency, Memory related programming models,
Vectorisation

* Areal life example

58




Conclusions

Improving code performance is an “epic fight”

There is no pre-defined “improving performance algorithm”

here Is a large variety of methods, strategies, “handles” to
use so..

..use your bratn!
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EEEEEE

Thank you!

Have a vice weekend
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Profiling tools

VTune: https://software.intel.com/en-us/intel-vtune-amplifier-xe

Advisor: https://software.intel.com/en-us/intel-advisor-xe

Valgrind: http://valgrind.org

PIN: https://software.intel.com/sites/landingpage/pintool/docs/65163/Pin/html/
gprof: https://sourceware.org/binutils/docs/gprof/

perfmon2: http://perfmon2.sourceforge.net
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GeantV: scheduler

After each step particles move on to different fates = need re-filtering!

Re-filtered tracks go
back to the scheduler nE
(re-basketizing)

Gegme’.[ry Physics:
navigation T ® Cross sections reuron o n v
M to different ne e reactions

algorithms

4p Overhead should be much smaller than locality/SIMD gains
4p portable without hindering perfo%rznance



Virtual vs template

Virtual inheritance: one of the most powerful features of C++
Allow for maximum flexibility

Separation of interface and implementations: clean code
Unified treatment of components behind the same interface
Comply to interfaces: easy mixing of components

E.g. Library developer provides interfaces, user complies to them
when writing implementations

(class 1Solid{ A
public:

virtual bool IsInside(const Particle&) = 0;

virtual double DistanceloBoundary (const Particle&) =0;

\J: Y,
("Class Cube: public ISolid { A Class Sphere: public ISolid { )
public: e
bool IsInside(const Particle&){...}; [ Class Cylinder: public ISolid {
double DistanceToBoundary (const Particle&){...} public:
\}; y bool Isinside...
double DistanceToBoundary ...

4
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Xray benchmark

/micfs/svalleco/newDemo - Intel VTune Amplifier (on oplamic03)
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