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Moore’s law and power wall

• In 1965 G. Moore noted that 
the number of electronic 
components which could be 
crammed into an integrated 
circuit was doubling every 
year. 

• Moore’s law is not a “Law”, it’s  
more of a self-fulfilling 
prophecy..

INTRODUCTION
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Why do we care?

Bottom line…
Massive data processing, modelling, simulation from 
fundamental  research and beyond! 
 
For years we have relied on the increase of clock speed to 
simply see our code running faster on more performant 
hardware..   it’s over now!

INTRODUCTION
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INTRODUCTION

The era of 
supercomputers

Ever faster networks, distributed systems, 
and multi-processor architectures show that 
parallelism is the future of computing.  
 • > x500,000 increase in supercomputer 
performance in past 20 years 
 • The race is already on for Exascale computing!

      ExaFLOP = 1018 calculations per second

top500.org
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Performance
• Timing: faster execution 

• CPU time, latency,… 
• Speedup (parallel vs serial execution)  

• Amount of processed data: throughput 
• Size: smaller executable, smaller memory footprint 
• …and “the holy grail”… forward scalability:  

• Maximum performance from today’s hardware 
should scale on  future processors/accelerators  

• Automatically  - with virtually no code rewriting 
• Good scaling if:  

• x2 number of cores (or vector 
size) doubles 
performance

Improving performance is a tradeoff!! 
• Timing  vs. Size 
• Compilation speed and memory 
• Latency vs throughput

PERFORMANCE
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• Before any optimisation we  need a way to 
measure what we  are optimising  

• Before any measurement we need a clear, 
explicit statement of the problem to solve.  

➥  A good understanding of the hardware 
➥  Reproducible, representative benchmarks
➥  “The right” tool
➥  Time (!): Performance optimisation is a 
process that may require several iterations

Measuring performance (I) 
PERFORMANCE
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Measuring performance (II)

Identify hotspots:
Majority of scientific and technical 

programs accomplish most of their 
work in a few places. 

Focus on hotspots and ignore sections 
that account for little CPU usage. 

Identify bottlenecks:
Areas that are disproportionately slow, or 

cause parallelizable work to halt or be 
deferred (e.g. I/O) 

Restructure or change algorithm to reduce 
or eliminate unnecessary slow areas

PERFORMANCE
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Statistical Sampling: 
Program flow is periodically interrupted, 
current program state is examined. 
• Asynchronous sampling:  

• Timers  
• Hardware counters (CPU cycles, L3 

cache misses, etc.)  
• Synchronous sampling:  

• Calls to certain library functions are 
intercepted (malloc, fread, …) 

Profiling techniques
PERFORMANCE

Code Instrumentation:
• Instrumentation:

• Code for collecting profiling 
information is inserted into the 
original program.  

• Approaches: 
• Manual (measurement APIs)  
• Automatic source level  
• Compiler assisted (e.g. gprof)  
• Binary translation  
• Runtime instrumentation 
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Profiling techniques
PERFORMANCE

Statistical sampling advantages:
• No changes to program or build process  

• Recommended: Debugging symbols  
• No blind spots: Measurements cover  

• Library functions  
• Functions with unavailable source code  

• Low overhead (typically 3-5%) 

Statistical sampling limitations: 
• Statistical sampling involves some degree of 

uncertainty  
• Information attributed to source lines may 

not be accurate  
• Certain types of information not available:  

• Number of calls of a certain function  
• Average runtime per call of a certain 

function 
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PERFORMANCE

Some profiling tools
• VTune, Advisor – Intel products, very powerful, include 

multi-threading analysis and vectorisation 
• gprof: GNU, Flat profiles, call lists, Recompilation 

needed 
• PIN, Valgrind: Instrumentation / Synthetic software 

CPU, Simulate such characteristics as cache misses 
and branch mispredictions, memory space usage, 
function call relationships 

• perfmon2: Low level access to counters, No 
recompilation needed
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Multi-dimensional 
improvement

• Multiple computing nodes 
• Multi-socket 
• Multi-core 
• Hardware threading 
• Instruction Level Parallelism 

• Instruction pipelining 
• Vector registers

Data parallelism:
• same transformation to multiple 

pieces of data 
• wise design of data structures

Task/Process parallelism:
• split load into “baskets of work” 

consumed by a pool of resources 
• need to check inter-dependency 

IMPROVING PERFORMANCE
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Multi-dimensional 
improvement

• Multiple computing nodes 
• Multi-socket 
• Multi-core 
• Hardware threading 
• Instruction Level Parallelism 

• Instruction pipelining 
• Vector registers

IMPROVING PERFORMANCE
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Amdahl’s law
“… the effort expended on achieving high parallel processing rates is wasted unless 
it is accompanied by achievements in sequential processing rates of very nearly the 
same magnitude.” - G.M. Amdahl - 1967

It tells us something about parallel execution: It states the maximum speed up 
achievable given a certain problem of FIXED size and serial portion of the program.

speedup = 1
1− P

speedup = 1
P
N

+S

IMPROVING PERFORMANCE
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Coming up next…

• Introduction to task parallelism 

• Memory related programming models 

• Suggestions to design parallel code 

• Vectorisation 

• Compiler optimisation and auto-vectorisation

IMPROVING PERFORMANCE
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Introducing concurrency

• Process: isolated instance of a program, with its own space in memory 
• can have multiple threads 
• Easy to manage 
• Communication/switching between them possible but pricey 

• Thread: light-weight process within process 
• share memory with other threads belonging to same process
• Managed and scheduled by the kernel according to available resources 
• Many options available: 

• C++11 std::thread 
• OS: pthreads (linux).. 
• Libraries: OpenMP … 

• Task: Logically discrete section of computational work. Typically a program-like 
set of instructions executed by a processor.

IMPROVING PERFORMANCE
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Shared memory (thread) model

• Main program loads necessary system and 
user resources
• Performs serial work and creates threads, 

scheduled and run by OS  
• Each thread has local data and shares the 

common resources (to avoid replication) 
• Threads communicate by updating global 

memory address locations 
•  Synchronisation ensures that two threads 

do not update same global address at 
any time.  

• Threads can come and go, but a.out 
remains present to provide necessary 
shared resources until the completion.

IMPROVING PERFORMANCE
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Distributed/Hybrid memory models

Distributed memory: Tasks use own local 
memory (same and/or across many physical 
machines) 
• Tasks exchange data through 

communications by sending and receiving 
messages 

• Message passing through  a library.e.g. 
Message Passing Interface (MPI)

Hybrid memory: combines more than one programming model. e.g: message passing model 
(MPI) & threads model (OpenMP). 
• Threads perform computationally intensive kernels using local, on-node data 
• Communications between processes on different nodes occurs over the network using MPI 

IMPROVING PERFORMANCE
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Designing parallel code (I)
• Understand the problem: can it actually be 

parallelised? 
• Identify inhibitors to parallelism (e.g. data 

dependence) 
• Change the algorithm, check external 

libraries 
• Partitioning: break the problem in discrete 

chunks 
• Communication: what is needed? (e.g. 

visibility and scope, synchronous or 
asynchronous…) 
• Consider cost in terms of overhead,  

latency and bandwidth

Loop carried dependency:

Loop independent dependency:

IMPROVING PERFORMANCE
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Designing parallel code (II)

• Synchronisation: Managing the sequence 
of work is critical! 
• Barriers: Each task works until the 

barrier, then stops. 
• When the last task reaches the barrier, 

all are synchronised. 
• Locks and semaphores: protect access 

to global data or a code section.  
• One task at a time may own it 
• The first task to acquire the lock "sets" 

it. Others wait until the owner releases 
the lock 

• Load balancing/granularity

traffic deadlock in Tel Aviv, 2011

IMPROVING PERFORMANCE
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Vectorisation
Vectorised data is a prerequisite 
to make efficient use of modern 
CPU vector instruction sets

scalar operation vector operation

Year Register Corresponding 
Instruction set

~1997 80 bit MMX

~1999 128bit SSE1

~2001 128 bit SSE2

… 128 bit SSEx

2008 128 bit AVX

~2010-2011 256 bit AVX2

2013 512 bit IMCI

2015 512 bit AVX512

P5 Pentium

Pentium III

Pentium IV

Pentium - Nehalem core i7

Sandy Bridge

Haswell

Xeon Phi (Knights Corner)

Xeon Phi (Knights Landing)

IMPROVING PERFORMANCE
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Vectorisation
Reminder: 
Single Precision Floating Point (FP) : 32 bit 
Double Precision FP : 64 bit

16 single precision FP 

8 double precision FP 

64 8-bit integer 

32 16-bit integer 

16 32-bit integer 

8 64-bit integer  

512 bit 

64 bit mask

AVX 512

4 single precision FP 
2 double precision FP 

16  8-bit integer 
8 16-bit integer 
4 32-bit integer 
2 64-bit integer  

128 bit

8 single precision FP 
4 double precision FP

SSE and AVX 128

AVX 256

IMPROVING PERFORMANCE
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Compiler optimisations

• Instruction selection: e.g. Multiplication*2 can be done by addition, bit-shift 
• Constant elimination 
• Algebraic simplification: Use algebraic properties to simplify expressions
• Dead code removal
• Loop Optimisations: often executed, large payoff!
• Inlining: improves time at the cost of space (larger code); allows for further 

optimisation;  
• Auto-Parallelisation, Auto-vectorization..

• Compiler optimisation are controlled by flags and 
pragmas
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

• Differences among compilers and target architectures can be large
• You might be compromising accuracy and precision

IMPROVING PERFORMANCE
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Auto-Vectorisation

• Prefer countable single entry and single exit “for” loops. 
• Write straight line code, reducing branches (switches, goto or return 

statements) 
• Avoid dependencies between loop iterations 
• Prefer array notation to pointers. 
• Use the loop index directly in array subscripts where possible 
• Use efficient memory accesses
• Favour inner loops with unit stride
• Align data. Data is memory aligned when the data to be operated upon as an 

n-byte chunk is stored on an n-byte memory boundary 
• Prefer Structure of Arrays (SoA) over Array of Structures (AoS)

IMPROVING PERFORMANCE
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Memory access pattern

SOAoutput 
vector

output 
vector

AOS

• AOS approach seems the natural way to do vector 
processing of particles 

• 3-to-1 typical memory access pattern 
• SOA approach is better vectorised by the compiler

• Memory access in SOA pattern also more efficient

IMPROVING PERFORMANCE
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Our case study
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Simulation in High Energy Physics

27https://cds.cern.ch/record/1309872

simulating the passage of particles through matter



Simulation in HEP
Heavy computation requirements, massively CPU-bound
The LHC uses more than 50% of its distributed GRID power for detector simulations 

(~250.000 CPU years equivalent so far) 

cms.web.cern.ch

CURRENT SOFTWARE: GEANT4
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Geant4 (GEometry ANd Tracking)

• Linear scaling of throughput with number of 
threads  

• Large savings in memory: 9MB  extra 
memory per thread 

• No Performance/Throughput increase

P. Canal,  ICHEP’16 

• Major international collaboration, ~2M lines of code, hundreds of users 
worldwide 

• Large variety of applications  ..beyond HEP: Medical applications, materials & 
space science 

• Scalar processing: Each particle is simulated and followed through its whole 
life one by one. 

• Event level parallelism: each thread processes one event exclusively

CURRENT SOFTWARE: GEANT4

Performance (Xeon + Xeon Phi)
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Current 
code: Geant4

CURRENT SOFTWARE: GEANT4

Call graph 
for a very simple (!) Geant4 example 

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

valgrind / gprof2dot / graphviz
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Current code: Geant4
• Codebase very large and non-homogenous 
• Very deep call stack (IC misses) and virtual table structure 
• Hotspots practically 

inexistent 
• Each rectangle 

represents a 
function 

• Its size is 
proportional to 
the cost spent 
therein

CURRENT SOFTWARE: GEANT4

Valgrind/kCachegrind
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so .. how do we optimise?
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Let’s see..
• Physics  is “naturally parallel”

• Events, particle trajectories, energy 
depositions  

• Particle transport is mostly local:
• 50% of the time spent in 50/7100 volumes 

(ATLAS)

ATLAS volumes sorted by transport 
time. 

Same behaviour observed for most 
HEP geometries

En
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es
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e

• Locality not exploited by classical 
transport code

• Existing code inefficient 
• Cache misses due to fragmented code

THE GEANTV PROTOTYPE

cms.cern.ch
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GeantV: introducing parallelism

An algorithm to transport particles through 
matter has “few” key ingredients: 

• Geometrical shapes that describe detector 
volumes 

• Physics algorithms that describe particle 
interactions with detector materials 

• “Navigation” framework that organises 
particles and transports them  “through” 
geometry and physics 

The GeantV projectTHE GEANTV PROTOTYPE
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GeantV: introducing parallelism

35

• Introduce data parallelism: transport  
particles in groups 
• Group them according to geometrical 

volumes they cross and/or physics 
processes 

• Keep overhead under control! 
• Introduce concurrency: split the whole flow in 

different tasks and/or threads to run 
simultaneously 

• Portable on different architectures (CPUs, GPUs 
and accelerators)

The GeantV projectTHE GEANTV PROTOTYPE

http://geant.cern.ch


Moving on to…

• How we’ve implemented concurrency 

• An example on removing bottlenecks 

• Introducing vectorisation (geometry) 

• Performance improvement!
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Current model: static allocation of workers
• Main thread method as infinite looper 
• Any thread can execute a set of chained 

tasks (geometry navigation, 
propagation in the magnetic field, 
physics processes..) 

• Data communication by concurrent 
queues

• Main queue of baskets of tracks 
• Secondary queues of transport 

byproducts (I/O, files, final products)

Concurrency in GeantV
THE GEANTV PROTOTYPE
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Lock-free algorithm 
(memory polling) 

2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 

Concurrency in GeantV

Fine grain MT prevents scaling to high number of threads
Issue for many cores architectures! 

THE GEANTV PROTOTYPE

Geometry + propagator: main 
consumer, will balance with 
physics in future 

Physics: low profile, will go up with 
physics models 

Creating baskets: main Amdahl source

Reshuffling baskets: constant overhead

Algorithm using spin-lock 

scalability with number of threads

NthreadsNthreadsNthreads
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Removing bottlenecks: I/O 

• First implementation:Send 
concurrently data to one thread 
dealing with full I/O 

• Buffer mode: Send concurrently 
local hits connected to memory 
files produced by workers to 
one thread dealing only with 
final merging/writing to disk
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GeantV concurrent I/O 
8 data producer threads + 1 I/O thread 

Data I/O (old) 
Buffer I/O (new) 

• Physics simulation produces ‘hits’ i.e. energy depositions in detector sensitive parts
• Hits are produced concurrently by all the simulation threads 

• Thread-safe queues handle asynchronous generation of hits by several threads
• Dedicated output thread transfers the data  to storage

THE GEANTV PROTOTYPE
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Geometry… 

40

It sums up to more than 30% of processing time

A geometry library provides APIs to: 

In or out?
collision detection and 

distance to enter de object

minimal safe distance to 
object

distance to leave object

THE GEANTV PROTOTYPE



VectorizedGeometry

Optimised library of primitive and composite solids

Reduce virtual function calls and avoid code 
multiplication 

Use template code 

Introduce data parallelism 

Explicit vectorisation (external libraries)

APIs for single & many-track navigation 

“Inner” vectorisation of complex shapes 

Compiler autovectorisation
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“Inner” Vectorisation

THE GEANTV PROTOTYPE



Vectorising Geometry

Option A (“free lunch”):
put code into a loop and let the compiler do the work works in only few cases 
Option B (“convince the compiler”):
refactor the code to make it “auto-vectorizer” friendly might work but strongly compiler 
dependent 
Option C (“use SIMD library”):
refactor the code and perform explicit vectorization using external libraries library 
compiler independent

1 particle -> 1 result N particles -> N results

THE GEANTV PROTOTYPE
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Example
Some existing (C++) code to tell whether a particle is inside a volume 

THE GEANTV PROTOTYPE

positions/dimensions vectors (x,y,z)
43



Option A: “free lunch”
Start from some existing code

Provide a vector interface and .. hope that compiler vectorise

THE GEANTV PROTOTYPE

positions/dimensions AOS: (x,y,z,x,y,z…)44



The struggle to autovectorisation (I)

Intermediate local  
variables 

+ if conversion

inline and remove 
early returns

THE GEANTV PROTOTYPE
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The struggle to autovectorisation (II)

AOS to SOA

THE GEANTV PROTOTYPE
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Option B: “convince the compiler”

massage/refactor original code to make the compiler autovectorize 
1. copy scalar code to new function ( "manual inline" ) 
2.change the data layout (se SOA) 
3. remove early - returns  
4. manually unroll loops

THE GEANTV PROTOTYPE
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Option C: “use external library”

Always vectorizes …don’t have to convince the compiler!
• excellent performance ( automatically uses aligned data ) 
• can mix vector context and scalar context ( code ) 
• given that we have to refactor code anyway, this is our implementation 
• choice

Vc library
THE GEANTV PROTOTYPE

https://github.com/VcDevel48
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Improving vectorisation

Many branches just distinguish between “static” properties of class instances
general “tube” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

Tube HollowTube FullTubePhi HalfHollowTubeHollowTubePhi

THE GEANTV PROTOTYPE

To get rid of many branches we could introduce a separate class for each 
important tube realisation

canonical approach: 
solution with handwritten 
separate classes

C++: AbstractTube *t = new FullTube();
49



Reducing branches: templates
Alternative idea: use C++ templates
• evaluate and reduce “static” branches at compile time 
• generate binary code specialised to concrete solid instances 

C++: AbstractTube *t = new SpecializedTube<FullTube>();

THE GEANTV PROTOTYPE

➡ vectorisation is efficient 
➡ better compiler optimisations in scalar code 
➡ less virtual functions means less calls to virtual tables 
➡ embrace “generic programming” philosophy  :-) 
➡ Use the same approach to insure portability (..but this is another story..)
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VecGeom performance 
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• GeantV runs VecGeom scalar navigation in full CMS geometry
• first realistic estimate of overall impact on simulation time: ~1.6 improvement  
• so far using only scalar navigation mode

✓

Simulation of 10 pp events at 7TeV in the CMS detector

THE GEANTV PROTOTYPE
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VecGeom performance
A set of CPU-intensive navigation methods: 
Measure wall time for vector  and scalar implementations:
Calculate vector speed-up (scalar time is reference =1) using AVX2 and  AVX512
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Quiz: assign the correct label! 
(all our code uses double precision…)

AVX2 AVX512

Intel® Xeon Phi™ CPU 7210 @ 
1.30GHz, 64 cores 

THE GEANTV PROTOTYPE
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VecGeom performance
A set of CPU-intensive navigation methods: 
Measure wall time for vector  and scalar implementations:
Calculate vector speed-up (scalar time is reference =1) using AVX2 and  AVX512
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Super-linear speedup for 

some of the methods !
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Intel® Xeon Phi™ CPU 7210 @ 
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THE GEANTV PROTOTYPE
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Scalability

Intel® Xeon Phi™ CPU 7210 @ 
1.30GHz, 64 cores 

To test our concurrency model we 
setup a simplified testbed:  
• a toy detector (typical tracker 

geometry) 
• a “ideal vector” transport scenario in 

which particles are transported in 
bunches without any overhead due 
to particle re-shuffling to use as the 
“theoretical” best case 

• we also compare to the classical 
code navigation method

• Measure speedup wrt Nthreads

benchmarks are run on new Intel Xeon Phi 
systems recently released!

THE GEANTV PROTOTYPE
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Scalability (II)
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2)
Nthreads

Vector ideal

High vectorization intensity achieved for both ideal and basketized cases 
AVX-512 brings an extra factor of ~2 to our benchmark

THE GEANTV PROTOTYPE

Intel® Xeon Phi™ CPU 7210 @ 
1.30GHz, 64 cores 
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The end
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Summary (I)

We started the GeantV project aiming at a x5-10 speedup wrt current 
simulation software  
• Relied on several techniques leveraging compiler and C++ features 

• Compiler optimisation ( & inlining) 
• c++ templating  

• Introduced data parallelism and concurrency to profit from the latest 
advancements in terms of architecture

• Results in terms of vectorisation and scalability are encouraging and call 
for further optimisation
• Caching & Memory management 
• Going multi-process 
• …

THE END
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Summary (II)

• Why we worry about performance 

• How to approach the problem of improving performance 

• Basic concepts of data and task parallelism  

• Concurrency, Memory related programming models, 
Vectorisation 

• A real life example

THE END
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Conclusions

There is a large variety of methods, strategies, “handles” to 
use so.. 

There is no pre-defined “improving performance algorithm”  

Improving code performance is an “epic fight”

THE END
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Thank you!

THE END

60



Profiling tools

VTune: https://software.intel.com/en-us/intel-vtune-amplifier-xe 
Advisor: https://software.intel.com/en-us/intel-advisor-xe 
Valgrind: http://valgrind.org 
PIN: https://software.intel.com/sites/landingpage/pintool/docs/65163/Pin/html/ 
gprof: https://sourceware.org/binutils/docs/gprof/ 
perfmon2: http://perfmon2.sourceforge.net
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scheduler

Physics:  
• cross sections 
• reactions

GeantV: scheduler

Re-filtered  tracks go 
back to the scheduler  
(re-basketizing)

Dispatching 

Re-basketizer

Dispatching

Overhead should be much smaller than locality/SIMD gains
portable without hindering performance

After each step particles move on to different fates ➙ need re-filtering!

62
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Virtual vs template
Virtual inheritance: one of the most powerful features of C++
 Allow for maximum flexibility
Separation of interface and implementations: clean code
Unified treatment of components behind the same interface
Comply to interfaces: easy mixing of components
E.g. Library developer provides interfaces, user complies to them
when writing implementations
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Xray benchmark
THE GEANTV PROTOTYPE
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