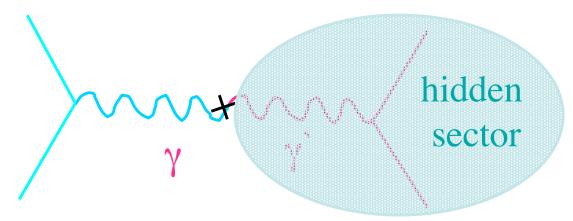
On search for eV hidden photons from the Sun


S.N. Gninenko INR Moscow

First Axion Strategy Meeting CERN, January 27, 2009

Plan

- introduction
- * γ`-helioscope
- prototype
- present status

γ-γ` mixing

- Hidden sector with additional U`(1) gauge factor and a new (possibly light) γ` boson
- $\star \gamma \gamma$ coupling $L \sim \chi F^{\mu\nu} F_{\mu\nu}$
- millicharged particles: $q=2\chi e \ (m_{\gamma} = 0)$ Holdom'86
 - oPs oPs oscillations, $\chi < 3x10^{-8}$ BBN Glashow'86
 - hidden matter scattering off our matter (DAMA/LIBRA) $\chi \sim 10^{-9}$ Foot'08

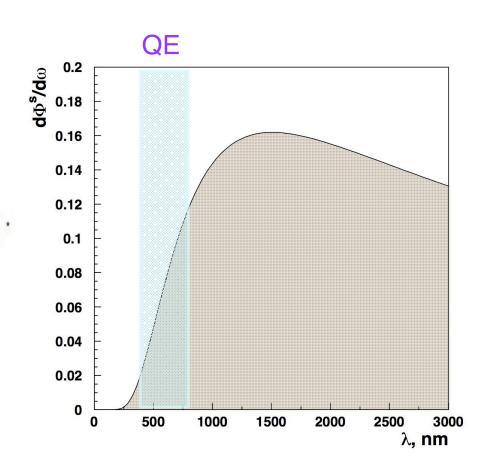
γ'-γ oscillations in vacuum

$$P_{\gamma' o\gamma}(\omega)=4\chi^2\sin^2\Bigl(rac{\Delta q l}{2}\Bigr)$$
 – probability γ – γ conversion

$$\Delta q = \omega - \sqrt{\omega^2 - m_{\gamma'}^2} pprox rac{m_{\gamma'}^2}{2\omega}$$
 – momentum transfer

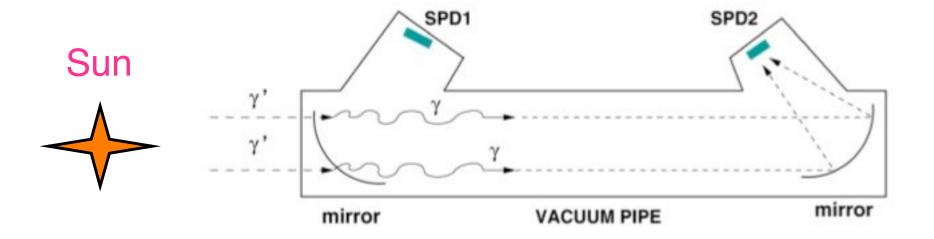
- \Leftrightarrow if $\Delta q I < \pi$ coherence over I,
- ❖ probability P ~ I² m_y.⁴
- if $I >> I_{osc} (\sim 1/\Delta q) P -> 2 \chi^2$
- \bullet e.g. $\omega \sim 1 \text{ eV}$, $m_{\gamma} \sim 10^{-4} \text{ eV}$, $I_{osc} \sim 20 \text{ m}$
- vacuum is important not to dump oscillations

Solar flux of γ


surface γ -flux, eV range,
T~ 5800 K (0.5 eV), max at 1 eV

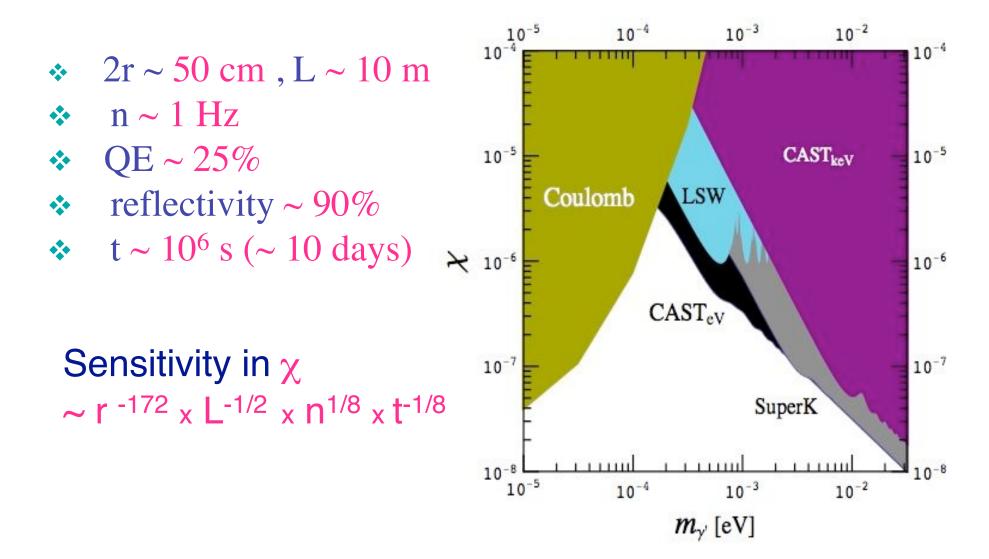
$$\frac{d\Phi^s}{d\omega} \simeq \chi^2 \ 4.2 \times 10^{18} \frac{\omega^2}{e^{\omega/T_0} - 1} \ \frac{1}{\text{eV}^3 \ \text{cm}^2 \ \text{s}} \ .$$

bulk γ -flux, 1-5 eV range


$$\frac{d\Phi^b}{d\omega} \sim \chi^2 \Big(\frac{m_{\gamma'}}{\rm eV}\Big)^4 10^{32} \; \frac{1}{\rm eV \; cm^2 \; s}$$

For
$$m_{\gamma}$$
 < ~10⁻⁴ eV, Φ^b < Φ^s

SG, J. Redondo PLB 664(2008)180 J. Redondo, arXive: 0801.1527


γ` - helioscope

Detector components

- * vacuum vessel (r, L) and pumping system
- * reflective mirrors
- low noise (n) single photodetectors
- ❖ monitoring system, running time (t) ~ months
- * readout electronics and DAQ

Expected results

Vessel/vacuum

- Al vessel
- \star diam ~ 50 cm, length ~ 10 m
- * weigth ~ 500 kg (?)

Cost (very prelim.):

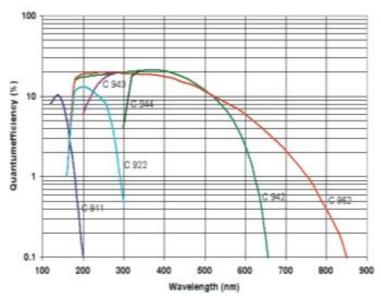
design+ construction+ delivery (?) ~ 20 kEuro

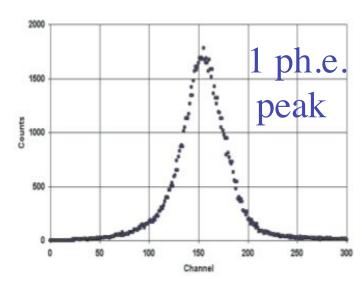
- vacuum $< 10^{-5}$ torr, composition?
- vessel low outgassing rate
- ❖ oil-free turbopump, speed >1000 l/s
- valve, gauges, joints, ...

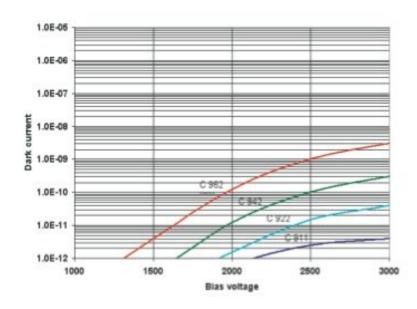
requirements for photodetector (PD)

- photocathode area $> \sim 1 \text{ cm}^2$
- spectral sensitivity 300 600 nm
- quantum efficiency I ~ > 25 %
- \bullet gain $> \sim 10^5$
- good single photoelelectron spectrum peak/vall. 10:1
- low noise level \leftarrow 10 cps at $q_{th} \sim 0.2$ ph.e.
- stability of counting rate over month(s)
- sensitivity to magnetic field (B field @CAST?)
- work in vacuum (?)
- ability to work at cryogenic temperatures(?)

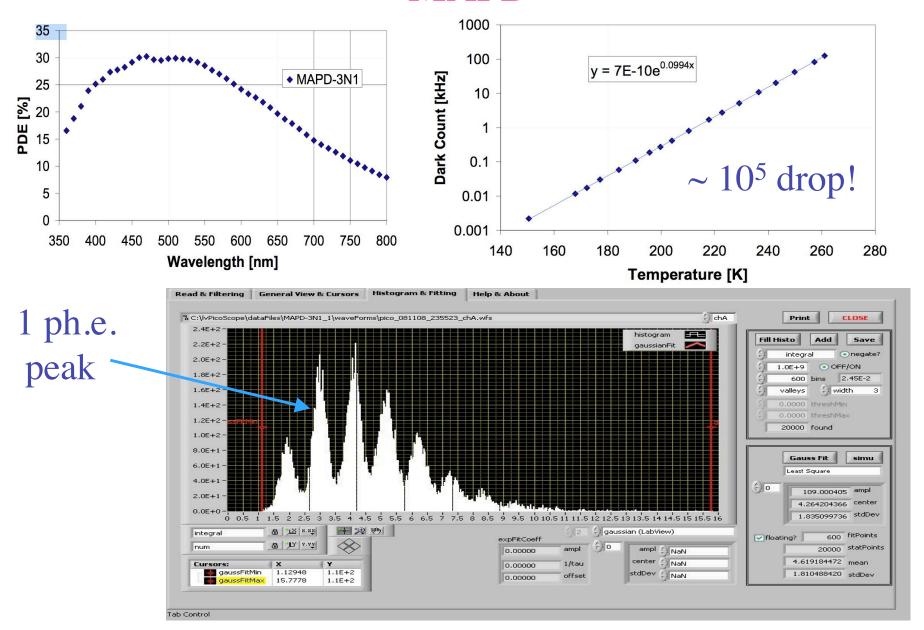
available PDs


- $area > 1 cm^2$
- PM photomultiplier
- CPM channel PM


area $\sim 1x1 \text{ mm}^2 - 3x3 \text{ mm}^2$

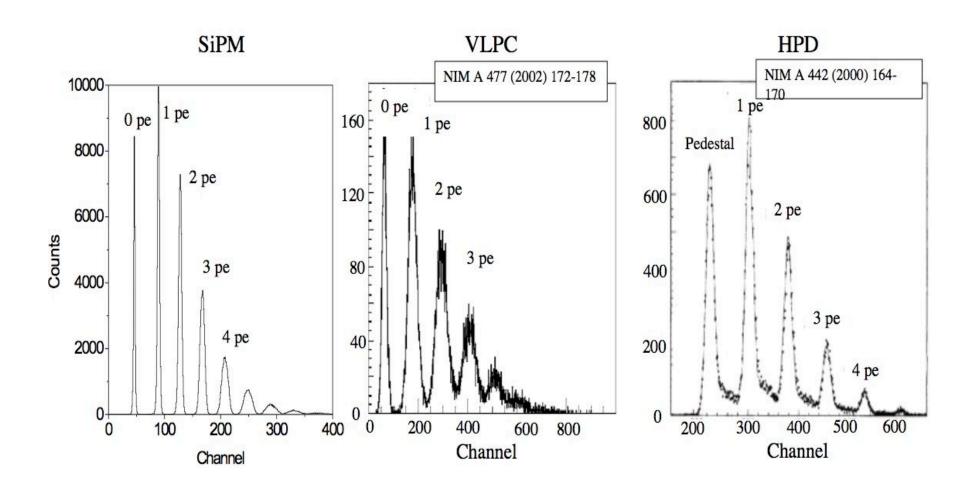

- * APD avalanche photodiode
- SiPM silicon PM
- MPPC multi-pixel photon counter
- * MAPD micro-channel APD

CPM photomultiplier 1



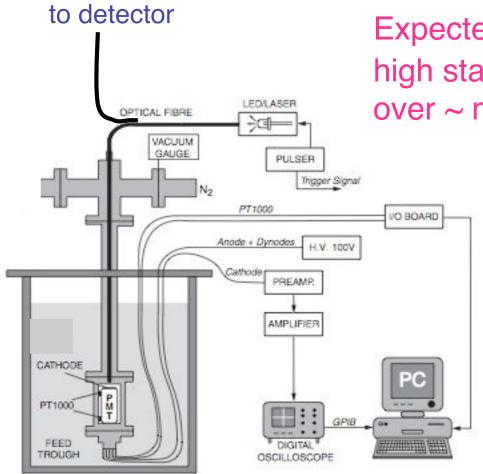
S.N. Gninenko(INR)-On search for eV hidden photons from the Sun, CERN, January 27, 2009

CPM photomultiplier 2


Туре	C 911	C 922*	C 942	C 943	C 944	C 962				
Spectral response (nm)	115-200	165-320	165-650	185-650	300-650	165-850				
Photocathode material	Csl	CsTe	Bialkali	Bialkali	Bialkali	Multialkali				
Min. useful area (mm)	5	5	5	5	5	5				
Window material	MgF ₂	Quartz	Quartz	UV-glass	Boro	Quartz				
Electron multiplication		Channel Electron Multiplier								
Supply voltage (V)		2400 (max. 3000V)								
Current amplification	5 x 10 ⁷	5 x 10 ⁷	5 x 10 ⁷	5 x 10 ⁷	5 x 10 ⁷	5 x 10 ⁷				
Anode sensitivity @ 140 nm (A/W) @ 200 nm (A/W) @ 400 nm (A/W)	6 x 10 ⁵	1 x 10 ⁶	3 x 10 ⁶	3 x 10 ⁶	3 x 10 ⁶	3 x 10 ⁶				
Dark current (pA)	2	10	80	80	80	800				
Bias current (µA)	50	50	50	50	50	50				
Max. anode current		10% of bias current (max. 30 sec)								
Response time Rise time (ns) Pulse width/FWHM (ns)	3 6	3 6	3 6	3 6	3 6	3 6				
Special Types for Photon Counting Type	C 911P	C 922P*	C 942P	C 943P	C 944P	C 962P				
Supply voltage (V)		3000 (max. 3000V)								
Single photo electron gain	3 x 108	3 x 10 ⁸	3 x 108	3 x 108	3 x 108	3 x 10 ⁸				
Dark counts (cps)	0.1	1	10	10	10	100				
Peak to valley	10:1	10:1	10:1	10:1	10:1	10:1				
Max. ambient temp. (°C)	50	50	50	50	50	50				
Preliminary										

MAPD

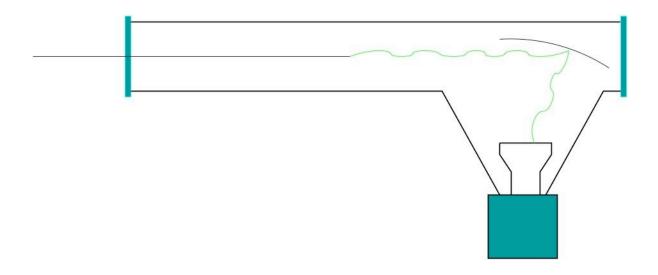
S.N. Gninenko(INR)-On search for eV hidden photons from the Sun, CERN, January 27, 2009


Single ph.e. peak

Photodetectors summary

Photo	Area	Gain	Spectr.	QE,	Noise, Hz,	Δg/g ~ 1%	SER,	Cost
detect.	cm ²		Sensit.,	%,	Tr ~ 0.3	ΔΤ ΔV	fwhm	Euro
			nm	max	ph.e.		%	
PM	>1	108	250-650	~25	< 10 Hz	10°, 3 10 ⁻⁴	~ 50	500-
					T~ 77 K			1500
CPM	~1	108	200-850	28	< 10 Hz	?	~ 20	~ 700
					T~ 300 K			
APD	~ 0.1	104	400-750	>60	?	0.3°,1.10-4		~ 50
SiPM	0.01	2 10 ⁶	400-650	>40	10 ⁵	2.5°,10 ⁻³	~20	~200
	pixel				T~ 300K			
MAPD	~ 0.1	7 104	350-900	>25	1-10 Hz	?	~25	~100
					Crio. T			
MPPC	0.1	10 ⁶	350-700	>25	?	?	~25	~200

Monitoring system


Reference PD

Expected Δn_{γ} / noise < ~ 10^{-3} high stability of noise counting rate over ~ monthes required

Monitoring of stability of

- gain,
- -threshold,
- QE,
- optical system
-
- reference PMT
- * LED
- Am-241 alfa source
 stability ~ 10-3

Prototype: used beam Cherenkov counter?

Present status and plans

- * INR group have sent request for funding in 2009 A. Belov, SG, engineer/mechanician, vessel, vacuum, PD, DAQ, ...
- P. Nedelec group (Lyon U.) is interested in photodetector studying (MacFly), request for funding
 Could start tests in Lyon. Monitoring(?) Electronics.
- Yu. Musienko (INR & North.Univ) help in tests of photodetectors at CERN