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1-Dark Energy and Chameleons

a) Dark Energy
b) Why Chameleons?

2-Chameleons coupled to photons

a) Chameleons and CAST

b) Chameleonic optics
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Like during primordial
inflation, scalar fields can
trigger the late acceleration
of the universe.

An attractive possibility:
behaviour.

The mass of the field now is
of order of the Hubble rate.
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Long lived scalar fields which cou?(le with ordinary matter
lead to the presence of a new Yukawa interaction:
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This new force would have gravitational effects on the
motion of %Iane‘rs, the laboratory tests of gravity etc..
Stringent bounds on fifth forces exist.
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If coupling O(1), then need a new
mechanism: chameleons! They are
hidden in a dense environment



Chameleon field: field with a matter dependent mass
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A way to reconcile

Nearly massless field on cosmological Massive field in the laboratory
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Where do Chameleons Come from?

Effective field theories with gravity and scalars
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5= [d*ev=g( R—%(a¢)2—V(¢)+ﬁm(¢m,A2(¢)gw))

deviation from Newton's law
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The Ratra- Peebles Example
Potential of the form:
v=/\g+’\;’o‘+..
Cosmology implies that:
Ag ~ 1073 eV

Gravitational tests lead to a similar constraint on A



The Chameleon Mechanism

When coupled to matter, scalar fields have a
matter dependent effective potential:

Verr(d) = VI(d) + pmA(e)
V;:(0)
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The mass of the scalar field becomes environment dependent. When the
density of matter gets larger, the mass gets larger too hence the range of
the fifth force becomes smaller

d > m(p)~ 1, usual gravity
d < m(p)~ 1, modified gravity

0, 4> m(p)~ 1
2, d < mip) !
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The environment dependent mass is enough to hide the fifth force in dense
media such as the atmosphere, hence no effect on

|
p= 10 *g/cm’

It is not enough to explain why we see no deviations from Newtonian gravity
in the
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carried in vacuum
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For compact bodies, gravity is screened off by the thin
shell effect. The field outside a compact body of radius R

interpolates between the minimum inside and outside the
body

Inside the solution is nearly constant up to the boundary of
the object and jumps over a
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bodies with large Newtonian potential on their surface
interact very weakly!
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In a typical experiment, one measures the force between two test
objects and compare to Newton's law.

In a vacuum chamber, the chameleon “resonates” and the field
value adjusts itself according to:

Mvacl ~ 1

The vacuum is not dense enough to lead to a large chameleon mass,
hence the need for a :

dvac < 10 Bmp

Typically for masses of order 40 g and radius 1 cm, the thin shell
requires for the Ratra-Peebles case:

A < 103/ (a8 163 av



- The PVLAS Puzzle - 2

1. Vacuum Magnetic Dichroism and Birefringence

e Send linearly polarized laser beam

—  through transverse magnetic field = By By
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PVLAS experimental results could be seen as a constraint on the coupling:

Limits on mass of scalar quite stringent:

m < 10 3eV, M > 10°GeV
No contradiction with CAST experiments on scalar emitted from the sun!

M > 1019Gev

What if 10°< M <109 ?

CHAMELEON ?
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The energy density depends on the magnetic field:

HZ
p= Pnaﬁ+—

The mass of the chameleon is given by:
An+4

— (”"4+"'M YL/ (1) mP=n(n+1)%5

No chameleon production in the sun if massive enough:

For a density pmun/pgs=10'* the mass in the sun is:

Hence chameleons evade the CAST bound. Similar result for chameleons
produce at the surface of the sun where the density is smaller.



Testing Chameleons in the Laboratory T

Measuring the induced ellipticity of polarised
laser beam through a magnetic field

Ellipticity predictions: n=1 & A=2.3x 1072 eV
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Chameleon to matter coupling: M (GeV)



Testing Chameleons in the Laboratory IT

Necessitates to see deviations from the
Casimir force of order 1% at 10 microns.

Behaviour of Chameleonic Pressure for V =A3(1+A”/¢”); n=1
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The chameleon mechanism is a powerful effect allowing to hide scalar fields
in dense media

Still these fields are detectable in laboratory experiments




