EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

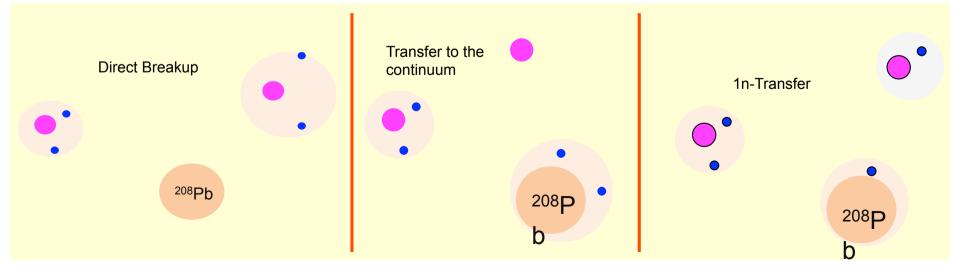
Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Effects of the neutron halo in ¹⁵C scattering at energies around the Coulomb barrier (INTC-P-468)

Spokespersons: I. Martel, O. Tengblad

Local contact: Razvan Lica

Collaboration: IEM-CSIC (Madrid, Spain)-U. Lisboa (Portugal)- UNAM (México) – INFN (Catania, Italy)-U. Warsaw (Poland)-U. Belfast (UK)–NCNR (Otwock, Poland)-HINP (Ioanina, Greece) – U. Huelva (Spain) – IKS (Heverlee, Belgium)- RBI (Zagreb, Croatia) – HNINP (Crakow, Poland) – CERN (Geneva, Switzerland).


Halo Nuclei

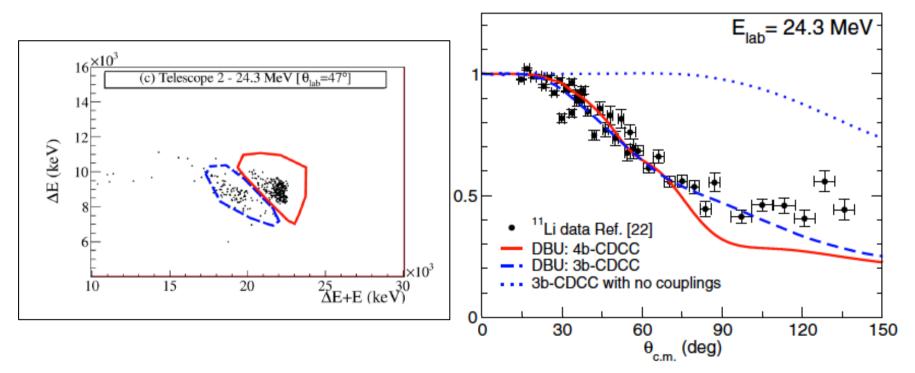
Common "Structural" properties

- Rather inert core plus one or two barely unbound extra neutrons
- Extended neutron distribution, large "radius". → "halo"
- Low binding energy
- Very few excited states –if any.

Reaction properties at near-barrier energies:

- \rightarrow Strong absorption in elastic channel
- \rightarrow Large cross section for fragmentation
- \rightarrow They are easily polarizable:
 - In the scattering process the forces between target and core/ halo are different \rightarrow distortion effects \rightarrow e.g. Coulomb dipole polarizability

11Li → Borromean


Halo

Experiment 1104 @ TRIUMF (Vancouver, Canada)

Measure the elastic scattering of ¹¹Li on ²⁰⁸Pb at energies below and above the Coulomb barrier (~ 27 MeV).

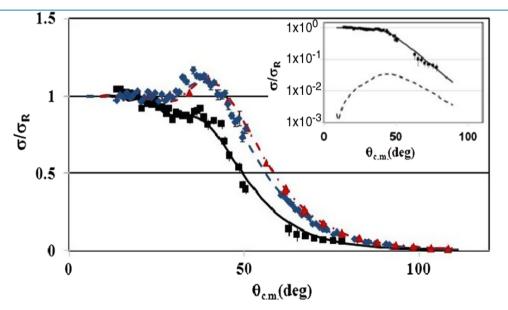
Energies:
$$2.2 \text{ MeV/u} = 24.2 \text{ MeV}$$

- 2.7 MeV/u = 29.7 MeV
- Measure the inclusive break-up cross section by detecting ⁹Li and α fragments.
- Average intensity on target 4,3 * 10³ pps, ~ 25 Shifts; 1,9 mg/cm² ²⁰⁸Pb

J. P. Fernández-García et al., PHYSICAL REVIEW C 92, 044608 (2015)

PRL 105, 022701 (2010) PHYSICAL REVIEW LETTERS

week ending 9 JULY 2010


Elastic Scattering and Reaction Mechanisms of the Halo Nucleus ¹¹Be around the Coulomb Barrier

A. Di Pietro,¹ G. Randisi,^{1,2,*} V. Scuderi,^{1,2} L. Acosta,³ F. Amorini,^{1,2} M. J. G. Borge,⁴ P. Figuera,¹ M. Fisichella,^{1,2} L. M. Fraile,^{5,†} J. Gomez-Camacho,⁶ H. Jeppesen,^{5,‡} M. Lattuada,^{1,2} I. Martel,³ M. Milin,⁷ A. Musumarra,^{1,8} M. Papa,¹ M. G. Pellegriti,^{1,2} F. Perez-Bernal,³ R. Raabe,⁹ F. Rizzo,^{1,2} D. Santonocito,¹ G. Scalia,^{1,2} O. Tengblad,⁴ D. Torresi,^{1,2} A. Maira Vidal,⁴ D. Voulot,⁵ F. Wenander,⁵ and M. Zadro¹⁰
¹*INFN-Laboratori Nazionali del Sud and Sezione di Catania, Catania, Italy*²*Dipartimento di Fisica ed Astronomia, Universitá di Catania, Catania, Italy*³*Departamento de Fisica Aplicada, Universidad de Huelva, Huelva, Spain*⁴*Instituto de Estructura de la Materia CSIC, Madrid, Spain*⁵*ISOLDE, CERN, CH-1211 Geneva 23, Switzerland*⁶*Departament of Physics, Faculty of Science, University of Zagreb, Capetb, Croatia*⁸*Dipartiment od Fisica e Chimiche per l'Ingegneria, Universitá di Catania, Catania, Italy*⁹*Institutu voor Kern-en Stralingsfysica, Katholieke Universitá Leuven, Belgium*¹⁰*Division of Experimental Physics, Ruder Bošković Institute, Zagreb, Croatia*¹⁰*Division of Experimental Physics, Ruder Bošković Institute, Zagreb, Croatia*¹⁰*Division of Experimental Physics, Ruder Bošković Institute, Zagreb, Croatia*

Collisions induced by 9,10,11 Be on a 64 Zn target at the same c.m. energy were studied. For the first time, strong effects of the 11 Be halo structure on elastic-scattering and reaction mechanisms at energies near the Coulomb barrier are evidenced experimentally. The elastic-scattering cross section of the 11 Be halo nucleus shows unusual behavior in the Coulomb-nuclear interference peak angular region. The extracted total-reaction cross section for the 11 Be collision is more than double the ones measured in the collisions induced by 9,10 Be. It is shown that such a strong enhancement of the total-reaction cross section with 11 Be is due to transfer and breakup processes.

DOI: 10.1103/PhysRevLett.105.022701

PACS numbers: 25.60.Bx, 25.70.Bc

REX-ISOLDE at CERN

¹¹Be + ⁶⁴Zn @ 24,5 MeV

The target was tilted at 45° to facilitate the measurement in the angular region around 90°.

Average intensity of 10⁴ pps on target

FIG. 1 (color online). Elastic-scattering angular distributions on ⁶⁴Zn: ⁹Be (triangles), ¹⁰Be (diamonds), and ¹¹Be (squares). The lines represent the OM calculations for ⁹Be (dot-dashed line), ¹⁰Be (dashed line), and ¹¹Be (full line). The inset shows the measured AD (symbols) and OM fit (full line) for the ¹¹Be + ⁶⁴Zn system together with the result of the calculation for the inelastic excitation of ($\frac{1}{2}^{-}$, $E_x = 0.32$ MeV, dashed line). The error bars are statistical for ^{10,11}Be and statistical + systematic for ⁹Be on ⁶⁴Zn. See text for details.

What did we learn from these experiments?

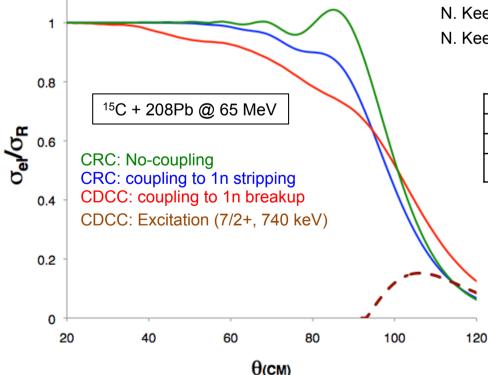
- □ Long range absorption dominant in elastic scattering ⇒ Suppress the rainbow in elastic cross sections.
- Long range absorption is produced by nuclear and Coulomb coupling to the continuum.
- Breakup mechanism is dominated by neutron transfer to the continuum.

Do these features occur in other halo nuclei?

What makes ¹⁵C interesting?

¹⁵C have been studied by nuclear reactions at high energies (100 MeV/u).

- narrow parallel momentum distributions of breakup ($^{14}C + n$)


- high reaction cross sections

→ nuclear halo

D. Bazin, et al. PRC 57(1998) 2156

Nucleus	Be target	Ta target	
¹⁴ B	$57 \pm 2 \text{ MeV/}c$	$48 \pm 3 \text{ MeV/}{c}$	
¹⁵ C ¹⁷ C	$67 \pm 3 \text{ MeV/}c$	$67 \pm 1 \text{ MeV/}{c}$	
¹⁷ C	145 ± 5 MeV/c		
¹⁹ C	$42 \pm 4 \text{ MeV/}c$	$41 \pm 3 \text{ MeV/c}$	

At low collision energies, ¹⁵C scattering should be dominated by the competition between neutron transfer and breakup, and several theoretical studies has been carried out in the past: Coupled Reaction Channel calculations (CRC) and Continuum Discretized Coupled Channel Calculations (CDCC).

N. Keeley and N. Alamanos, Phys. Rev. C 75 (2007) 054610.

N. Keeley, K.W. Kemper and K. Rusek, Eur. Phys. J. A 50 (2014) 145.

CRC	-	CDCC		
Total reaction (mb)	927	Total reaction (mb)	1379	
1-n stripping (mb)	265	Breakup (mb)	462	
		Excitation(5/2+,740keV) (mb)	45	

→Large effects due to ¹⁵C halo!!
 →Large difference 1n-stripping/breakup

□ However, there are no data on ¹⁵C scattering at low collision energies

Purpose of this experiment

Investigate the halo nature of ¹⁵C and study the relevant reactions channels dominating the scattering with ²⁰⁸Pb target of at energies around the Coulomb barrier.

Quantities to be measured: Angular distribution of ¹⁵C (elastic/quasielastic scattering)

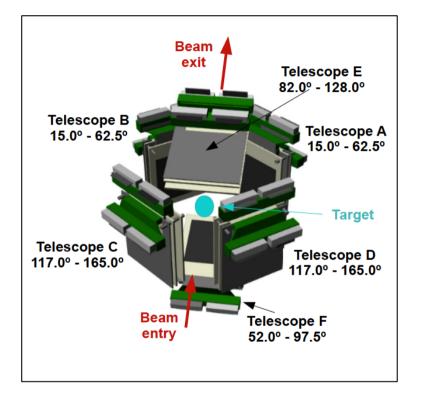
In addition (expected) angular distribution of ¹⁴C fragments (1n transfer/breakup)

Target: ²⁰⁸Pb target, doubly closed-shell nucleus, with large Z=82, well known structure and large separation energy between ground and first excited states.

Energy: 65 MeV (around the barrier)

Data analysis: CRC (1n-stripping), CDCC (breakup) + Polarization potentials.

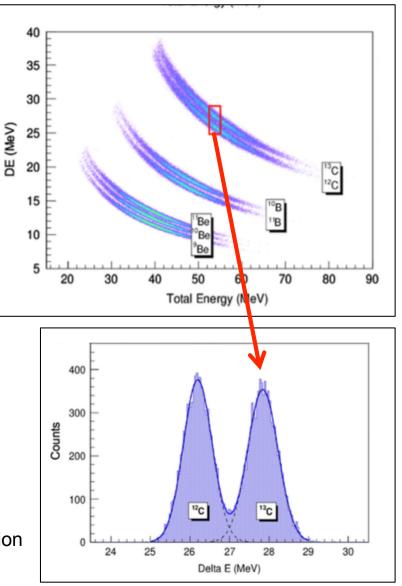
What can we learn from this experiment?

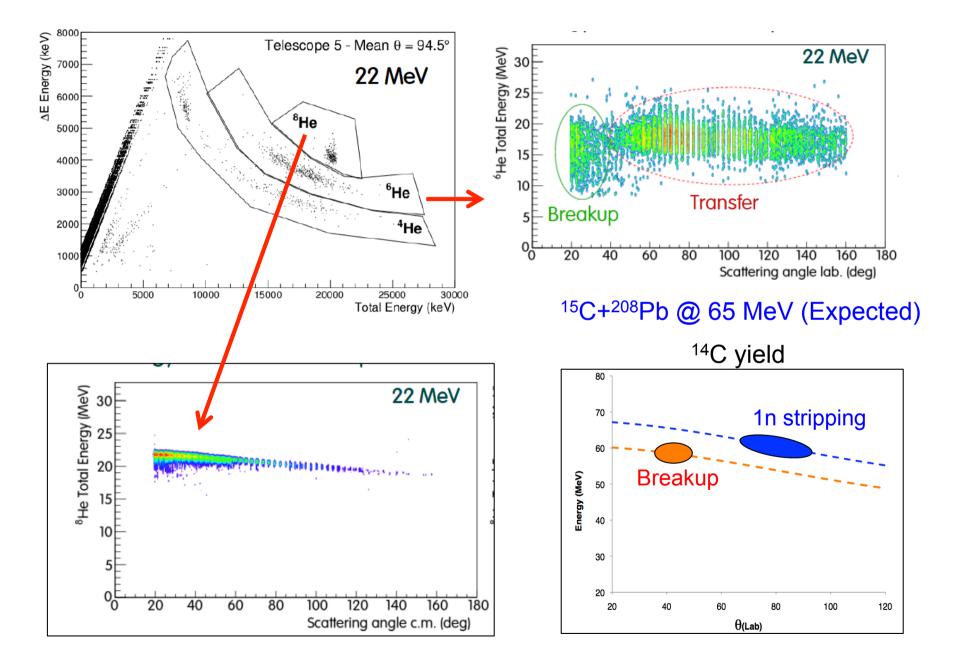

- 1. Long range absorption effects
- 2. OM nuclear potentials and total reaction cross section
- 3. Competition between neutron stripping and direct breakup
- 4. Coupling effects due to coulomb and nuclear potentials
- 5. Total reaction cross sections at Coulomb barrier energies
- 6. Total ¹⁴C yields

This would be the first dynamical study carried out so far for the halo nucleus ¹⁵C at Coulomb barrier energies.

Experimental set-up

GLObal Reaction Array: GLORIA


G. Marquínez-Durán, Nucl. Inst. Meth. A755 (2014) 69.


- 6 DSSSD particle telescopes (40mm, 1mm).
- Total solid angle = 26 %
- -"Continuum" angular distributions between 15°-165° Lab.

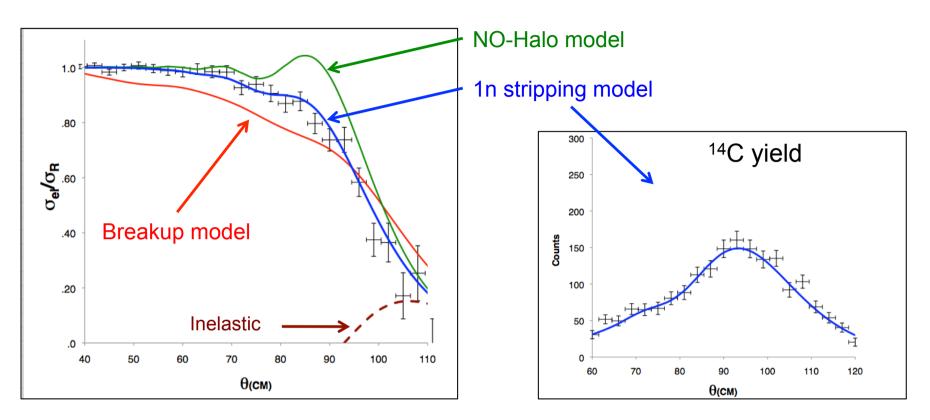
- E_{res} ~30 keV

Montecarlo simulations for light ion detection

⁸He+²⁰⁸Pb @ 22 MeV (GANIL, E587S)

PREDICTIONS

Present situation (After TAC revision)


I=1,5 x 10⁵ pps (primary target) Transmission= 7,5% I= 1,1x10⁴ pps (on reaction target) T=2 mg/cm2 $\Delta \theta$ =3° Request: 30 Shifts

Original proposal:

I=7,9 x 10⁵ pps (primary target) Transmission= 5% I= 4,0x10^{4 pps} (on reaction target) T=1,3 mg/cm2 $\Delta \theta$ =3° Request: 30 Shifts

Expected yields at 65 MeV (30 shifts):					
GLORIA: 25% efficiency	Target: 2 mg/cm ^{2 208} Pb	<mark>♂_{el} (80º Lab) =450 mb/sr</mark>	σ _{tran} (80° Lab) = 50 mb/sr		
	Y _{el} = 1027 events	(3% uncertainty at 80°)			
Y _{1n} = 122 events (9% uncertainty at 80°)					

PREDICTIONS

Beam-time request

We request 30 shifts on 15C (5+) with A/Q=3 at a beam energy of 65 MeV (4,33 MeV/u).

ISOLDE ¹⁵C production (CaO target, 1.4 GeV) ~ 1.5 x 10⁵ pps (**Revised** Isolde Yields Data Base)

Transport, Charge breeding (REX-EBIS) and HIE-ISOLDE acceleration 7,5% \rightarrow 1,1 x 10⁴ pps at reaction target.

TAC Review

Modification of 15 C yield from of 7,9 x 10⁵ pps to 1,5 x 10⁴ pps at primary target.

-Revised beam transmission from 5% to 7,5% -Increase target thickness from 1,3 mg/cm² to 2 mg/cm²

Expected beam contaminant ¹⁵N at a rate of 3,5 x 10³ pps on target.

-¹⁵N will be separated in silicon telescopes from Carbon isotopes

- Rutherford scattering (Eb=76 MeV, also check with OM calculation) → no effect on reaction channels

-¹⁵N scattering will be measured (with no ¹⁵C) between proton pulses, any background can be subtracted

- Low rate, no effect on DACQ

- Cross-check of detector setup and solid angles

Electrical installation.

- The XT02 reaction chamber is a semi-permanent installation that is being prepared to serve most of the reaction experiments to be performed at XT02.

- The electrical installations are being prepared, new cable trays have been installed, both on the Chamber support and around the XT02 experimental "footprint", so that all cabling reaches the electronic racks via these cable trays.

-The electronic racks have been installed and are professionally prepared with mains distribution.

-The experimental set-up will fit inside the reaction chamber.

-The safety control of the set-up is being prepared and should be performed by Sept. 2016.

¹⁵C Collaboration:

CERN – Huelva (Spain) – Madrid (Spain) – Warsaw (Poland) – Belfast (UK) – Leuven (Belgium) – Catania (Italy) –Zagreb (Croatia) – Ioannina (Greece) – Mexico (Mexico) – Cracow (Poland) – Aarhus (Denmark)

I. Martel^{1,2}, X. Aslanoglou¹⁰, L. A. Acosta¹¹, L. Barrón-Palos¹¹, MJG. Borge^{1,3}, T. Cap⁵, E. Chávez-Lomelí¹¹, A. Di Pietro⁸, P. Figuera⁸, JP. Fernández⁸, H.O.U. Fynbo¹³, A. Huerta-Hernandez¹¹, N. Keeley⁵, R. Kotak⁶, M. Madurga¹, G. Marquínez-Durán², A. Pakou¹⁰, K. Rusek⁴, A.K. Orduz², R. Raabe⁷, K. Riisager¹³, N. Soic⁹, O. Sgouros¹⁰, A.M. Sánchez-Benítez², V. Soukeras¹⁰, O. Tengblad³, A. Trzcinska⁴, M. Wolinska-Cichocka⁴, R. Wolski¹²

1 PH Department, CERN, CH-1211 Geneva 23, Switzerland

2 University of Huelva, Avda Fuerzas Armadas sn, 21971 Huelva, Spain

3 Instituto de Estructura de La Materia - CSIC. Serrano 113 bis, ES-28006 Madrid, Spain

4 Srodowiskowe Laboratorium Ciężkich Jonów, Uniwersytet Warszawski, Pasteura 5A, 02-093 Warszawa, Poland

5 National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Poland.

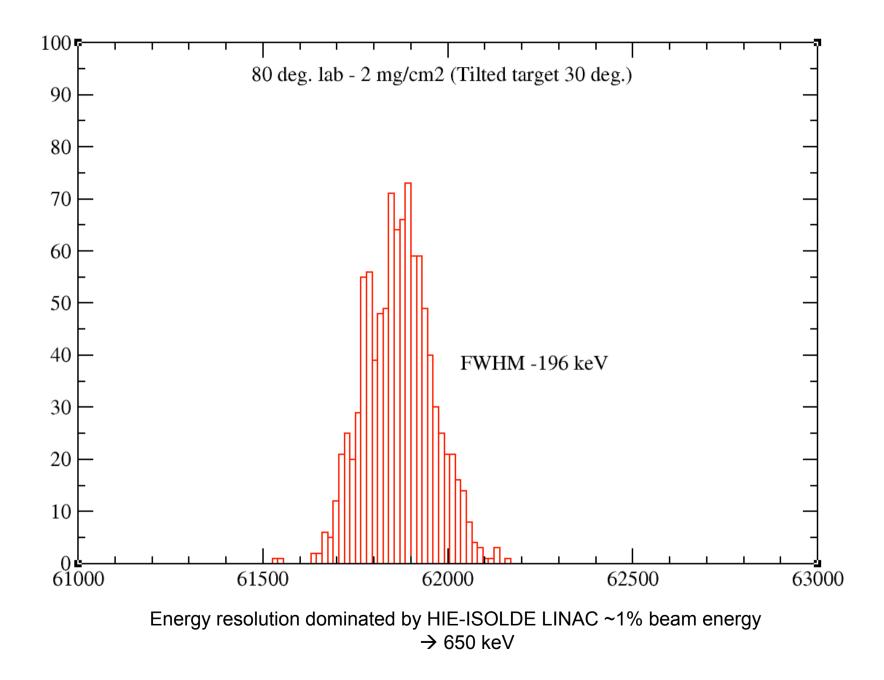
6 Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, County Antrim, BT7 1NN, United Kingdom

7 Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, B-3001 Heverlee, Belgium

8 INFN - Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy

9 Rudjer Boskovic Institute, Bijenicka cesta 54, HR-10000 Zagreb, Croatia

10 Department of Physics and HINP, The University of Ioannina, Ioannina, Greece


11 Departamento de Física Experimental del Instituto de Física, Universidad Nacional Autónoma

de México. Aptdo 20-364, México D. F. 01000, Mexico

12 Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow, Poland

13 Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark.

THANKS FOR YOUR ATTENTION!

