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Motivation - Island of inversion
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•  Ground states and low-lying excitations from intruder 
configurations have been observed. 

 
•  Prevalence of intruder orbitals is indicative of weakening N=20 

shell closure. 
 
•  In the Ne, Al and Na isotopes there is a soft transition to a 

deformed ground state. 
 
•  In Mg isotopes this transition is sharper with 31Mg inside the 

island and 30Mg outside. 

•  Measurements of the single-particle properties moving in to 
the island of inversion provide important systematic information 
on the behavior of the relevant orbitals and shell gaps. 

•  In particular the difference between the 1d3/2 and 1f7/2 and 1f7/2 

and 2p3/2 which define the N=20 and 28 shell gaps. 



Motivation  - Changing shell structure
•  The island of inversion is indicative of a 

weakening shell gap. 

•  In the oxygen isotopes the N=20 shell gap 
has been shown to disappear with the 
emergence of an N=16 shell gap in 24O. 

•  Again measurement of the single-particle 
states involved in this evolution of single-
particle structure will provide valuable 
comparison with theory. 

•  29Mg is an N=17 isotone – single-particle 
structure outside N=16 informative in 
tracking disappearance of N=20 shell gap. 
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Shell model calculations
•  Calculations using the SDPF-MU 

interaction with 0p-0h excitations only for 
the positive-parity states. 

•  1p-1h excitations for the negative-parity 
states. 

•  Are higher order excitations (2p-2h,
3p-3h) needed to describe the observed 
spectra? 

 
•  At what point are they needed?  

•  Observation of previously unobserved 
and unbound 1/2- states will provide 
further important quantities for comparison 
with SM. 
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Proposed measurements

Propose measurement of 28Mg and 30Mg(d,p) reactions at 7.5 MeV/u using the ISOL 
Solenoid Spectrometer (ISS) 

•  States of interest are intruder states from above the valence shell. 

•  Neutron-adding reactions ideal probe for studying single-particle properties of these states. 

•  Complement knock-out data which probe occupied states. 

•  Generally perform reactions at ~5-10MeV/u to maximize direct reaction cross section. 

•  28Mg – no published data, 30Mg was an early TREX experiment, suffered from low statistics 
and gamma-ray detection efficiency due to long-lived states. 

•  Challenges in inverse kinematics due to kinematic compression for fixed angle 
measurements. Solution proposed here is use a solenoid. 
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ISOL Solenoid Spectrometer
•  4T superconducting former MRI magnet. 

To be installed on 2nd beamline in 
ISOLDE hall. 

 
•  Same principles as successfully 

implemented at ANL in HELIOS. 

•  Does not suffer from any kinematic 
compression. 

•  ~75 keV Q-value resolution achieved for 
charged particles. 

•  Does not require coincident γ-ray 
detection - not affected by lifetime of 
states. 



Experimental set up
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•  Monitor detector to monitor target thickness. 
•  ΔE-E recoil detector (annular silicon) used to remove beam contamination.  
•  Zero-degree detector to ascertain degree of contamination and monitor beam intensity. 
•  Target ladder can hold multiple CD2 targets. 



Solenoid spectrometer simulations
30Mg(d,p) 28Mg(d,p) 

Expected resolution ~80 keV assuming: 
•  40 keV intrinsic detector resolution 
•  100 µg/cm2 CD2 targets 
•  HIE-ISOLDE beam properties. (2.3mm beam 

spot, divergence = 1.8 mrad, ΔE = 0.26%) 
•  ANL array geometry. 
•  Comparable to achieved resolution at ANL. 
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Angular distributions – choice of beam energy

Generally aim to measure transfer 
reactions at 5-10MeV/u to maximise direct 
reaction contribution. 
 
7.5 MeV/u chosen as a trade off between 
high cross sections and angular 
coverage of finite silicon array. 
 
These measurements could run at 5.5 
MeV/u but with reduced angular coverage. 
This affects the higher energy states 
proportionately more. 
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Comments on contamination
•  28Mg – 50% 28Al contamination. 30Mg – 10% 30Al contamination. 
 
•  Recoil detection used to select reaction of interest so contamination levels are not 

limiting for this measurement. Majority of scattered beam passes through center of 
recoil detector.  

 
•  For 28Mg increased rate due to Al contamination is within limit for recoil detection. Recoil 

detectors have been used with beams of >10^7 at ANL within this limit. Total expected 
beam with 50% contamination is ~10^6 giving expected recoil rate of 3kHz. 

•  Kinematics of Al(d,p) very different to Mg(d,p) – only states above 6 MeV incident on array 
in region of interest. 

 
•  Reduction in 28Al is not critical to measurement – but reduced rate without loss of Mg 

intensity would always be welcome. Release characteristics can be used to reduce 28Al. 



Summary of request
•  Request a total of 33 shifts. 

•  9 shifts for 28Mg(d,p) at 7.5 MeV/u. Assuming 100ug/cm^2 targets and 6x10^5 expect 
~800-1500 counts a day in the whole array for a state with S=1. Coverage is 50% in 
azimuthal angle and 85% in theta angle. Target is <5% statistical error on absolute 
cross section.  

•  21 shifts for 30Mg(d,p) at 7.5 MeV/u. Assuming 6x10^4 expect ~80-150 counts a day in 
the whole array for a state with S=1. Target is <10% statistical error on absolute cross 
section. 

 
•  3 shifts for optimizing tune of RIBs in to ISS and change of beam between reactions. 

•  Beams delivered to ISOL Solenoid Spectrometer.  

•  Experiment could be performed at 5.5 MeV/u if necessary. 
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Choice of beam energy
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Previous 30Mg(d,p) measurements at ISOLDE

•  Angular momentum assignments difficult due to limited angular coverage. 
•  Only identified fist two excited states. 
•  Some issues with gamma-ray efficiency due to long lived states. 
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Kinematic effects: 
•  via kinematic shift often limits resolution of any 

detector with finite acceptance. 
 
•  via differential kinematic shift dictates the 

separation of different excited states in ion energy. 
 
•  BOTH affect the resolution obtained in a Q-value 

spectrum. 
 

Despite same velocity in CM, 
LAB velocity changes with 
angle; resolution implications. 
Kinematic shift: 
 ⇥ =

1
p

dp

d�

Figure courtesy of Benjamin Kay 



Measured quantities: 
 position, z 
 cyclotron period Tcyc 
 particle energy 

Light particle from reaction follow helical 
orbits, returning to the axis after one orbit 
where they are detected in position sensitive 
silicon detectors. 



θLAB z 

For a particular E*, different 
CM angles have different 
lab velocities leading to 
different z. 
 
For a particular z, energies 
in CM and ion energies in 
LAB related by an additive 
offset. 

Eliminates differential 
kinematic shift; spacing of 
energies in CM same as in 
LAB. 
 
Contribution due to position 
resolution small (~15keV). 
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mV 2

cm

2
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When target effects 
dominate ion-
energy resolution, 
Q-value spectrum 
still benefits from 
the lack of 
compression. 



•  Used HELIOS to measure d(86Kr,p)87Kr reaction. 
•  Achieved best (published) resolution to date – 75keV. 





Installation in the ISOLDE Hall 
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Layout from Yacine Kadi 





Next steps 

Clean & perform vacuum tests 
Cool magnet 
Energise & verify field 
Move to XT02 by end of January 2017 
Finalise shielding calculations 
Field mapping 
Stable beam tuning tests from Summer 2017 
Early implementation experiments 2018 
Early 2019 – commission new Si array 
Longer term – move to TSR 
 


