

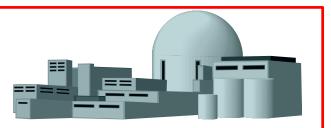
Proposal for the (n,γ) cross section measurements of ²⁴⁴Cm and ²⁴⁶Cm at n_TOF EAR-2

A. Kimura, E. Mendoza, <u>D. Cano-Ott</u>, H. Harada and the n_TOF collaboration

¹Japanese Atomic Energy Agency JAEA - Japan ²Centro de Investigaciones Energéticas Mediamabientales y Tencnloógicas CIEMAT - Spain

Motivation

Es242	Es243	Es244	Es245	Es246	Es247	Es248	Es249	Es250	Es251
40 s	21 s	37 s	1.1 m (3/2-)	7.7 m (4-,6+)	4.55 m (7/2+)	27 m (2-,0+)	102.2 m 7/2(+)	8.6 h (6+)	33 h (3/2-)
								*	
EC,α	EC,α	EC,α	EC,α	EC,α	EC,α	EC,a	EC,α	EC,α	EC,α
Cf241	Cf242	Cf243	Cf244	Cf245	Cf246	Cf247	Cf248	Cf249	Cf250
3.78 m	3.49 m 0+	10.7 m (1/2+)	19.4 m 0+	45.0 m (5/2+)	35.7 h 0+	3.11 h	333.5 d 0+	351 y 9/2-	13.08 y 0+
	0+	(1/2+)	0+	(6/2+)	0+	(7/2+)	0+	9/2-	0+
EC,α	α	EC,α	α	EC,α	EC,α,sf,	EC,α	α,sf	α,sf	α,sf
Bk240	Bk241	Bk242	Bk243	Bk244	Bk245	Bk246	Bk247	Bk248	Bk249
4.8 m		7.0 m	4.5 h	4.35 h	4.94 d	1.80 d	1380 y	9 y	320 d
	(7/2+)		(3/2-)	(1-)	3/2-	2(-)	(3/2-)	(6+) *	7/2+
EC		EC	EC,α	ΕС,α	EC a	FC,α		a	β-,α,sf,
Cm239	Cm240	Cm241	Cm242	Cm243	Cm244	Cm245	Cm246	Cm247	Cm248
2.9 h	27 d	32.8 d	162.8 d	29.1 y	18.10 v	8500 v	4730 v	1.56E+7 x	3.4 E+6 y
(7/2-)	0+	1/2+	0+	5/2+	0+				
EC,α	EC,α,sf,	EC,α	α,sf	EC,α,sf,	α,sf	sf	α,sf	x	a,sf
Am238	Am239	Am240	Am241	Am242	All245	n244	Allized	Am246	Am247
98 m	11.9 h	50.8 h	432.2 y	16.02 h	7370 y	10.1 h	2.05 h	39 m	23.0 m
1+	(5/2)-	(3-)	5/2-	1- *	5	- *	(5/2)+	(7-) *	(5/2)
EC,α	EC,α	EC,α	α,sf	EC,β [.]	α,sf		β-	β-	β-
Pu237	Pu238	Pu239	Pu240	Pu241	Pu242	u243	Pu244	Pu245	Pu246
45.2 d	87.7 y	24110 y	6563 y	14.35 y	3.733E+5 y	4.956 h	8.08E+7 y	10.5 h	10.84 d
7/2-	0+	1/.					0+	(9/2-)	0+
EC,α	α,sf	α,sf	af	β·,α,sf,	α,sf	β-	α,β·β·,sf,	β·	β-
Np236	Np237	Np238	239 5 d	Np240	Np241	Np242	Np243	Np244	
1.54E5 y	2.144E+6 y	2.117 d	≥ ¥ed	61.9 m	13.9 m	5.5 m	f.8 m	2529 m	
(6-)	5/2+	2+		(5+)	(5/2+)	(6)	(5/2-)	(7-)	
ΕC,β',α,	α,sf	β.	β-	Q-	β-	β-	β·	β-	
U235	U236	U237	U238	V239	U240	U241	U242		
7.038E+8 y	2.342E7 y	6.75 d	4.468E+9 y	3.15 m	14.1 h		16.8 m		
7/2-	0+	1/2+	0+		0+		0+		
α, ²⁰ Ne,sf,* 0.7200	α,sf	β-	α,β·β·,sf, 99.2745	β-	β-		β-		



Motivation

Neutron Capture Cross Sections of

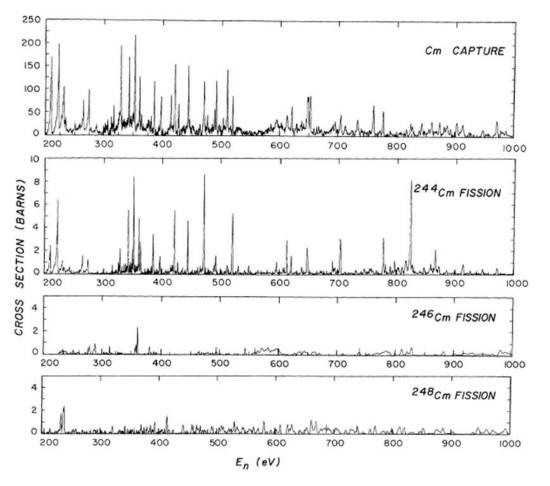
- minor actinides (MAs) and
- long-lived fission products (LLFPs)

are important.

- for improving the performance and safety of our actual reactors,
- for designing new types of reactors, for reducing the high-level radioactive Waste (transmutation),

The reported uncertainties of c.s. Libraries are (too) often questionable!

Especially, ²⁴⁴Cm and ²⁴⁶Cm are very important:


- Share nearly 50% of the total actinide decay heat in spent reactor fuels even after three years of cooling.
- ²⁴⁴Cm is one of the main neutron emitters in the irradiated nuclear fuel (fuel safety).
- Both capture and fission cross sections (transmutation) are known poorly.
- Cm isotopes open the path to the production of higher Z elements: Bk, Cf...
- Only two previous measurements available (extreme difficulties).

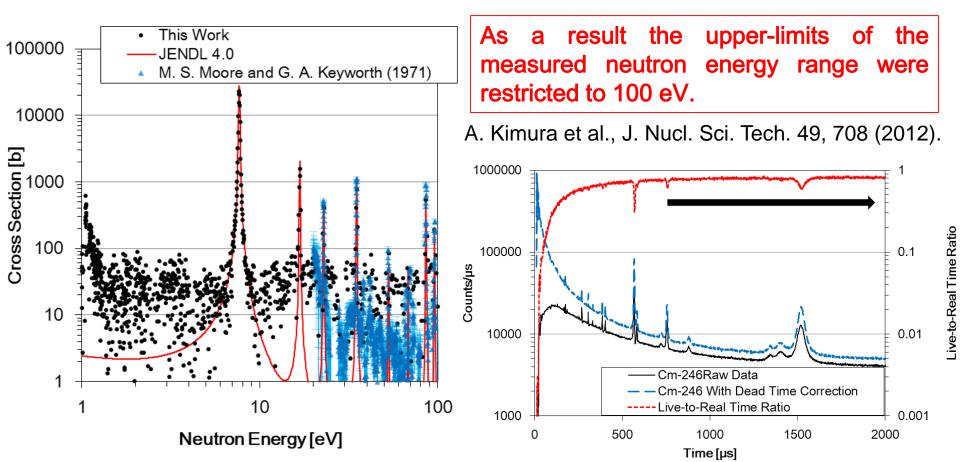
Experiment by Moore et al.

This experiment was performed with the neutron time-of-flight (TOF) method in 1969 **using a under-ground nuclear explosion (one single pulse)** as a pulsed neutron source and Moxon-Rae detectors operated in current mode.

The data had to be corrected with some assumptions, because the **sample** had been **shifted from the correct position** in their experiment.

→Accuracy questionable due to systematic uncertainties

[1] M. S. Moore and G. A. Keyworth, Physical Review C, 3, 1656 -1667 (1971)



Experiment by Kimura et al.

In the experiment at J-PARC Ge detectors were used for detecting the (n,γ) cascades.

- In the neutron energy range above 100 eV, the measurement at J-PARC required severe dead time corrections (up to 90%) due to the high counting rates and the long decay times of the detectors.
- Dependence on the electromagnetic de-excitation pattern.

The experiment proposed at EAR-2

The uncertainties of the reported data sets are much larger than the required accuracy of 4.1–25.7% especially in the neutron energy range over 100eV.

Avdantages/improvementes of the experiment proposed at n_TOF EAR-2:

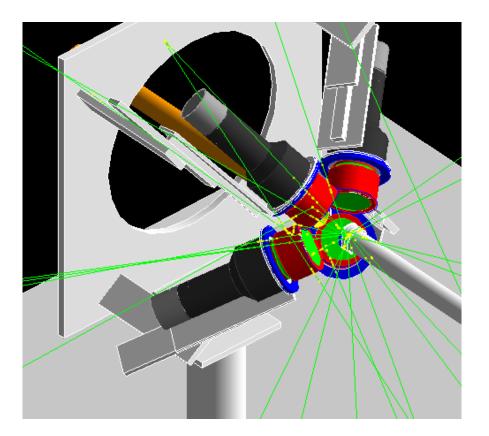
- The EAR-2 neutron rate is 250 times larger than at EAR-1 (25 time more fluence in 10 times less time) which permits to reduce to reduce the influence of background due to decay γ-rays (i.e. smaller time windows). The n_TOF EAR-2 was built for the measurement of highly radioactive samples.
- The use of a high performance digital acquisition system (12/14 bits resolution, 1 Gsample/s)
- The use of the total energy detector technique based on very fast (40 ns vs ~100 $\mu s)$ C₆D₆ detectors.

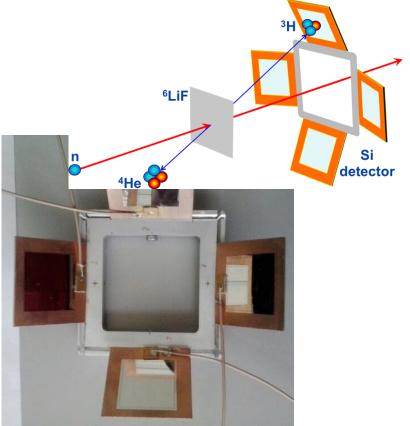
We expect as well to be able to obtain results in the range up to 300 eV.

The Cm samples

Two sealed ²⁴⁴Cm samples and one ²⁴⁶Cm sample are available and will be provided by JAEA.

	STATISTICS.		Samples:
		²⁴⁴ Cm (T _{1/2} =18.1y: MA) Net weight = 0.6 mg Activity = 1.8 GBq (x2)	
			²⁴⁶ Cm (T _{1/2} =4753y: MA)
	²⁴⁴ Cm sample (mole %)	²⁴⁶ Cm sample (mole %)	Net weight = 2.1 mg
²⁴⁴ Cm	88.5±1.7 (0.46 mg)	24.1±0.4 (0.50mg)	Activity = 12.1 MBq
²⁴⁵ Cm	3.14±0.40 (0.02 mg)	1.11±0.29 (0.02 mg)	(²⁴⁴ Cm: 1.7GBq)
²⁴⁶ Cm	8.36±0.39 (0.04 mg)	62.3±1.4 (1.30mg)	
²⁴⁷ Cm		2.99±0.37 (0.06mg)	Both of the samples
²⁴⁸ Cm		9.53±0.25 (0.20mg)	Chemical form = CmO_2
²⁴⁰ Pu	32.1±0.8 (0.17mg)	7.42±0.15 (0.15mg)	Container = Al capsule

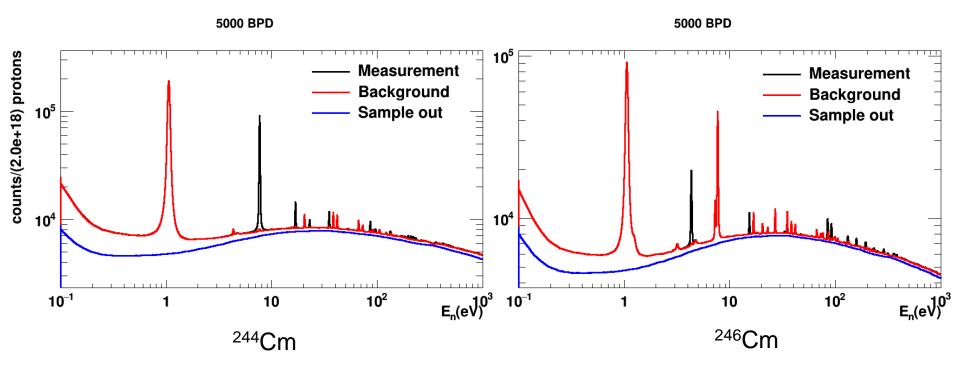

Ciemat


Centro de Investiga ergéticas, Medioamé y Tecnológicas

The detector setup

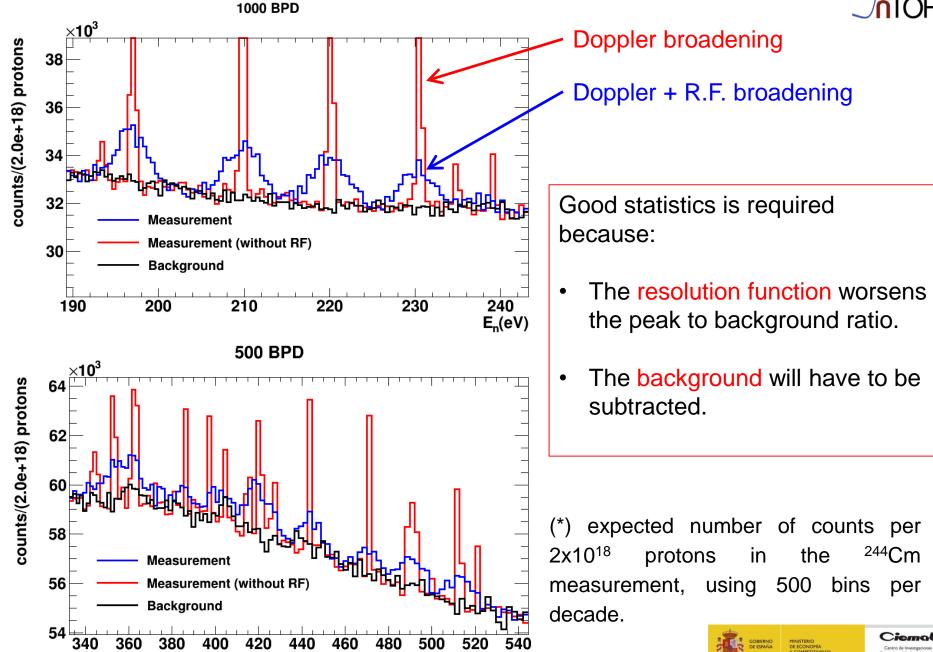
- We will use a set of four C₆D₆ detectors (20% efficiency). These detectors have been used successfully during the first (n,γ) cross measurements performed at EAR-2 in 2015.
- The neutron beam intensity will be monitored with a neutron transparent silicon flux monitor.

Rate estimates for the proposal

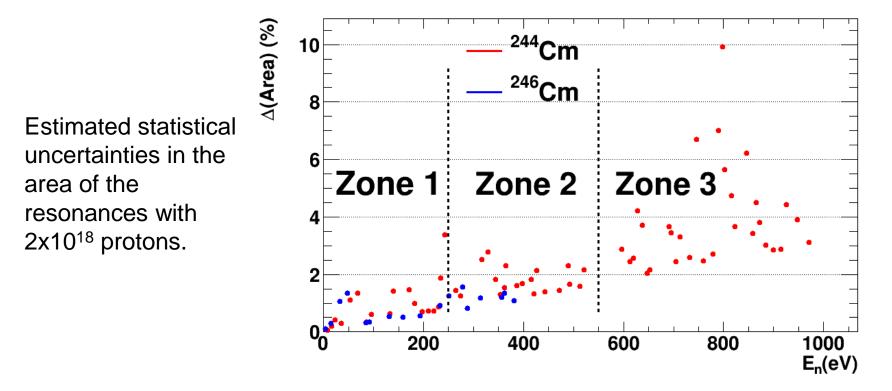


•A 20% total detection efficiency for the setup with 4 x C_6D_6 detectors

•The EAR-2 background has been determined experimentally (in 2015). An attempt for optimising the C_6D_6 setup for reducing the background (with active/passive shielding) is currently in progress.


•The background due to elastic (and fission) reactions has been estimated with a 0.1% neutron sensitivity of the C_6D_6 detectors.

•An efficiency for detecting fission reactions 2 times larger as the efficiency for capture.


The effect of the resolution function

E_n(eV)

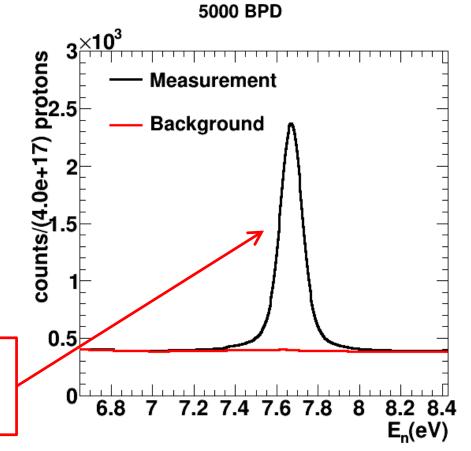
Estimated statistical uncertainties

- **Zone1**, between 1 eV and 200 eV. The measurement proposed at EAR-2 will allow to get resonance integrals with an overall uncertainty below 5%.
- **Zone2**, between 200 eV and 550 eV. The uncertainty in the results in this region will depend largely on the real cross section values and background.
- **Zone3**, between 550 eV and 1 keV. If the experimental conditions are much better than expected, this region could be analysed as well.

Proton request

Number of protons requested for each measurement in EAR-2.

Sample	Purpose	Protons
²⁴⁴ Cm(n,γ)	capture cross section measurement	2.0x10 ¹⁸
²⁴⁶ Cm(n,γ)	capture cross section measurement	2.0x10 ¹⁸
Dummy – ²⁴⁴ Cm	Canning related background	1.0x10 ¹⁸
Dummy – ²⁴⁶ Cm	Canning related background	1.0x10 ¹⁸
Sample out	Beam related background	1.0x10 ¹⁸
Graphite	Neutron Sensitivity	0.5x10 ¹⁸
¹⁹⁷ Au(n,γ)	Validation of the capture measurement	0.5x10 ¹⁸
²⁴⁴ Cm/ ²⁴⁶ Cm/-	No beam related background	0
Total		8.0x10 ¹⁸



Additional Measurement at EAR-1

Short measurement with the TAC in EAR-1:

- To have an alternative (total absorption) normalization to the ²⁴⁰Pu 1 eV resonance. The systematic uncertainty in the normalization is the largest contribution in the overall uncertainty.
- To obtain spectroscopic information about the γ-ray cascades following the ²⁴⁴Cm(n,γ) and ²⁴⁰Pu(n,γ) reactions.

Number of expected counts in the TAC in strongest resonance in the $^{244}Cm(n,\gamma)$ c.s. for $4.0x10^{17}$ protons.

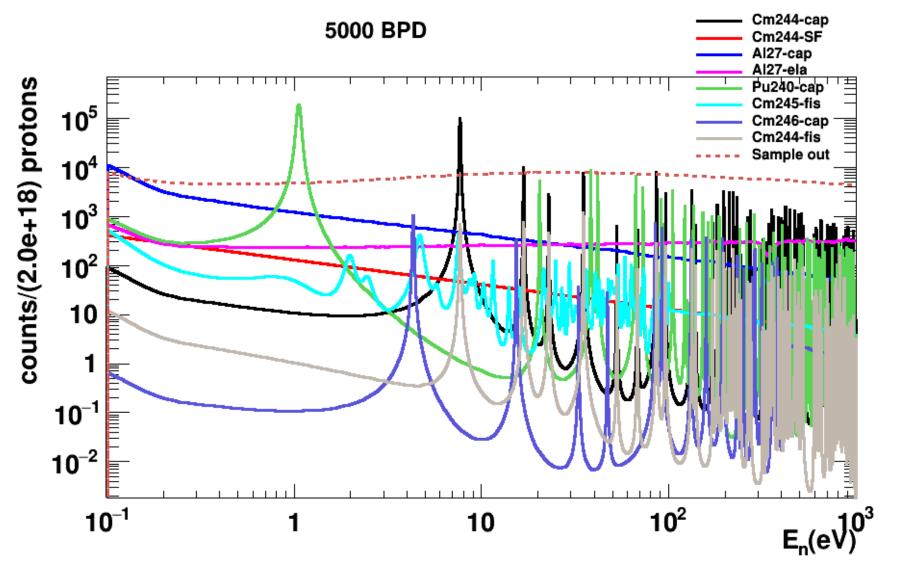
Sample	Purpose	Protons
²⁴⁴ Cm(n,γ)	Capture cascades of the strongest ²⁴⁰ Pu and ²⁴⁴ Cm resonances	0.4x10 ¹⁸
Dummy – ²⁴⁴ Cm	Beam related background	0.1x10 ¹⁸
²⁴⁴ Cm	Background with no correlation with the beam	0
Total		0.5x10 ¹⁸

Summary and conclusions

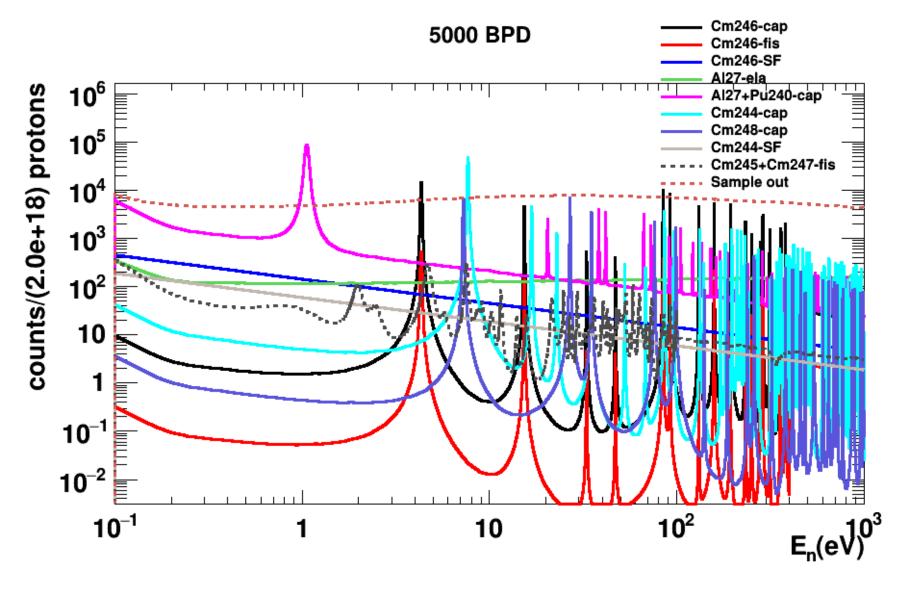
- We propose to measure the capture cross sections of ²⁴⁴Cm and ²⁴⁶Cm at the n_TOF EAR-2 and perform a short measurement at EAR-1 for getting an addition normalization and spectroscopic information (statistical de-excitation models of the nucleus, photon strength functions).
- Both measurements have to be performed with the same systematics since the two isotopes appear in the two samples with different weights.
- Both ²⁴⁴Cm and ²⁴⁶Cm cross sections are required to estimate the production and transmutation Cm and heavier isotopes.
- This is the type of measurements for which EAR-2 was built (250 times more neutron rate than at EAR-1) and will have a large impact/visibility in the nuclear data for nuclear technologies community.

We request a total of:

- 8×10^{18} protons for the measurement at EAR-2
- 0.5×10^{18} protons at EAR-1.


SPARE SLIDES

Background components in the ²⁴⁴Cm experiment



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Background components in the ²⁴⁶Cm experiment

