

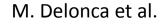
Technical Report

Richard Catherall EN-STI

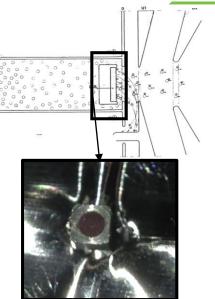
ISOLDE Technical Coordinator

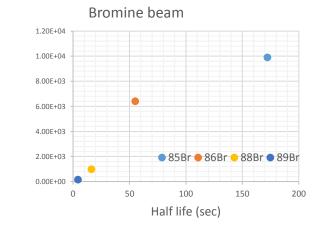
INTC meeting 29th June 2016

- Target developments
- RILIS developments
- MEDICIS
- HT tests


The LIEBE project: toward short lived isotopes

- Preparation of LIEBE tests in spring 2016:
 - Installation of 100+ cables in the target area
 - Full installation sequence tested with the Kuka robot
- Production of target on-going:
- All parts produced,
- First sub-assembly done, heating elements installed & tested,
- Test of the pump on-going at IPUL laboratory.


Negative beams @ PSB : Target tests Th/Ta-MK4 576


- TISD + negative At beams delivered to Lol 148 in June 2016
 - Mixed Th/Ta target charge

- Slow release and good **stability** of production over time (5 days of operation)
- Measured beam on-line:
 - At- beams : not available elsewhere?
 - 204At (9.2min) \approx 9e3/uC \rightarrow 5e3 /uC after 5 days
 - 206At (29.4min)≈ 6e3 /uC
 - I:
- I22I (3.6min) ≈ 6e5 /uC
- I 28I (25min)≈ 9e5 /uC
- I 37I (24.2sec) ≈ 9e4 /uC
- I 38I (6.4sec) ≈ 9e4 /uC

- CI:
 - 38Cl (37.18min) ≈ 1e5 /uC
 - 40Cl (1.35min) ≈ 9e4 /uC
 - 41Cl (38.4sec) ≈ 3.5e2 /uC
 - 42Cl (6.9sec) ≈ 1.4el /uC

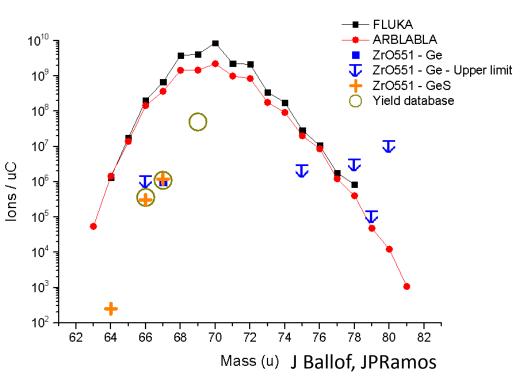
TISD team, Target production team, offline testing team

Yield (/uC)

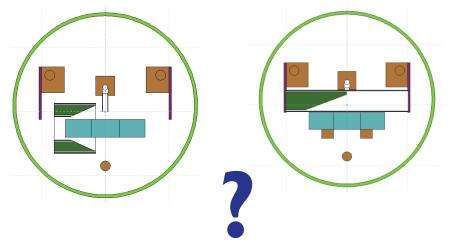
Neutron-defficient germanium sulfide beams

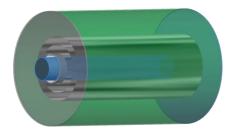
	a 12	B* 7	В* Вр.3.55	<u>д</u> *	γ 352 μp	y 111; 315; 161; 265	y 98; 67; 692 pp 1.81; 2.23	7 50, 426, 377	y 147; 1095, 830.	no μ* γ46	254; 84; 1 M 1933. 87.	w 50	280; 121; 401 # 330	or 22 + 63
		As 74.92160	As 64 40 ms	As 65 0.19 s	As 66 96 ms	As 67 42.5 s	As 68 2.53 m	As 69 15.1 m	As 70 53 m	As 71 65.28 h	As 72 26.0 h	As 73 80.3 d	As 74 17.77 d	As 75 100
	33					μ ⁺ 4.7; 5.0 γ 123; 121;	р ⁺ 4.7; 6.1 у 1016; 762;	β ⁺ 3.0 γ 233; 146;	8* 2.1, 2.8. γ 1040; 668; 1114; 745;	6 0 ⁺ 0.8	8* 2.5; 3.3	no β* γ 53	в ⁺ 0.9; 1.5., 87 1.4.	
Ge 60	Ge 61 40 ms	Ge 62 130 ms	Ge 63 95 ms	Ge 64 64 s	Ge 65 31 s	Ge 66 2.3 h	Ge 67 18.7 m	Ge 68 270.82 d	Ge 69 39.0 h	Ge 70 20.38	Ge 71 11.43 d	Ge 72 27.31	Ge 73 7.76	Ge 74 36.72
B* 7	р* Бр.3.10	B *	в*	(1 ⁺ 3.0; 3.3 y 427; 667; 128	β ⁺ 4.6; 5.2 γ 650; 62; 809; 191 8p 1.28	* (l* 0.7; 1.1 7302, 44; 109; 273	β ⁺ 3.0, 3.2 γ 167; 1473	πο μ.* πο τ πο τ σ 1.0	р* 1.2 у 1107; 574; 872; 1336	ir 3.0	nov	er 0.9	e 15	or 0.14 + 0.2
	Ga 60 70 ms	Ga 61 168 ms	Ga 62 115.99 ms	Ga 63 31.4 s	Ga 64 2.62 m	Ga 65 15 m	Ga 66 9.4 h	Ga 67 78.3 h	Ga 68 67.63 m	Ga 69 60.108	Ga 70 21.15 m	Ga 71 39.892	Ga 72 14.1 h	Ga 73 4.86 h
	β* 8.3; 12.2 γ 1004; 3848 βρ 5a 7	μ* 8.2. γ88; 418; 124; 756	β* 8.1	р* ~4.5 у 637: 627; 193: 650	β* 2.9; 6.1 γ 992; 808; 3366; 1387; 2195	β* 2.1; 2.2. γ115; 61; 153; 752.	β ⁺ 4.2 γ 1039; 2752; 834; 2190; 4296	no μ* γ 93: 185: 300	5 ⁺ 1.9	17 1.68	рт 1.7 у (1040; 176)	-4.7	β 1.0; 3.2 γ834; 2202; 630; 2508	β 1.2; 1.5., γ297; 53; 3

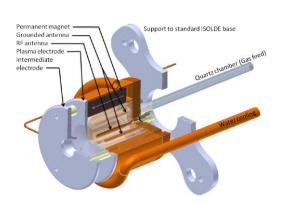
Mass	Ge	Ga
66	3.6E+05	4.4E+08
67	1.1E+06	8.0E+08
68	5.0E+07	6.1E+08

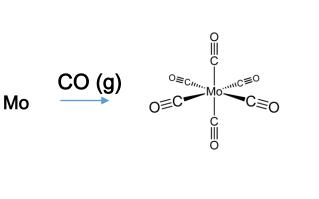

Atomic Ge beams come with strong **isobaric contaminations** of Ga, AlCl and others

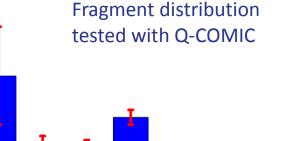
Solution: Shift to other mass region


 $\mathrm{Ge} + \mathrm{S} \to \mathrm{GeS}$

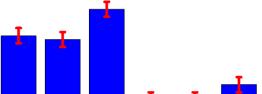

- Sulfur supplied by mass marker
- Database yields can be obtained Ratio ${}^{67}\text{Ge} / {}^{67}\text{Ge}{}^{32}\text{S} = 1 / 1$
- Significantly lower contaminations




Neutron Converter and molecular beams **100122** within ENSAR 2 – BeamLab


- Build the optimized converter for ISOLDE
 - Collaboration with TRIUMF and SCK.CEN
 - Cope with higher beam powers 50kW
 - Different target and ion source systems
 - Eg Molecular beams of MCOx

50


40

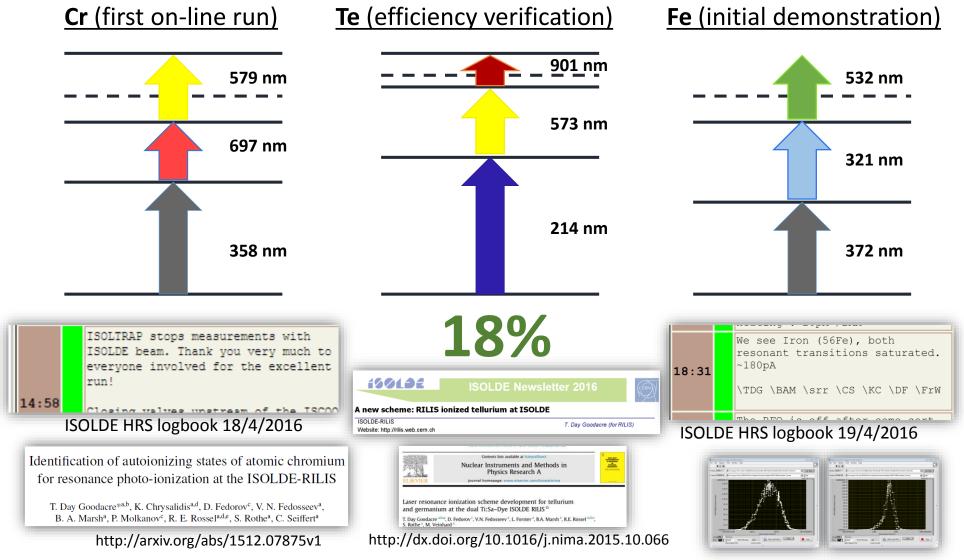
20

10

Mo

Current / pA

Mo(CO) Mo(CO)2 Mo(CO)3 Mo(CO)4 Mo(CO)5 Mo(CO)6


JPRamos, J Ballof

- Target developments
- RILIS developments
- MEDICIS
- HT tests

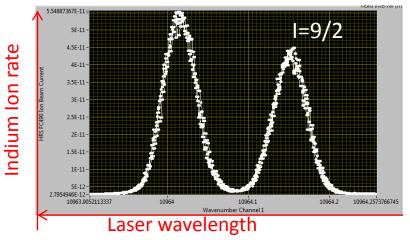
RILIS ionization scheme development milestones in April 2016

Performed during the ISOLDE startup period and the first physics run of 2016

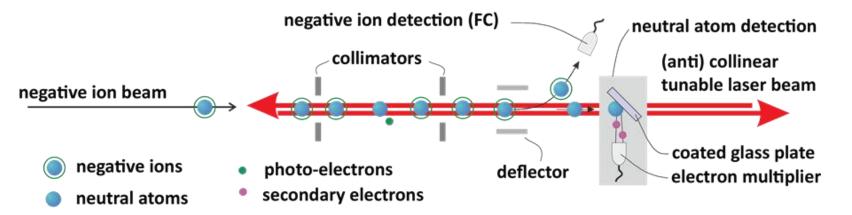
199192

RILIS

B. Marsh


RILIS operation @ ISOLDE in 2016

• 9 RILIS runs so far in 2016: Cr, Cu, Cu, Mg, Ni, Dy, Mn, Mn, In


- RILIS-ionized Beryllium-7 sample preparation for n-TOF
- First isomer-selectively RILIS-ionized indium beams

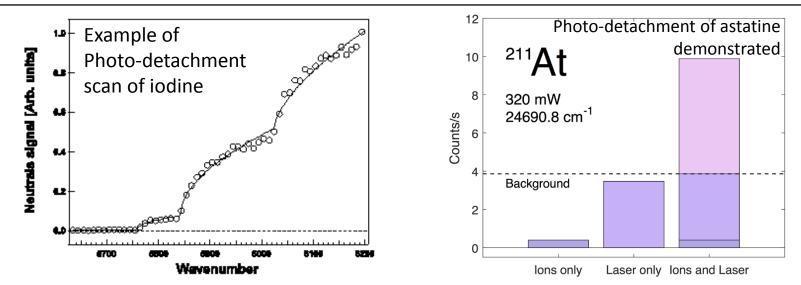
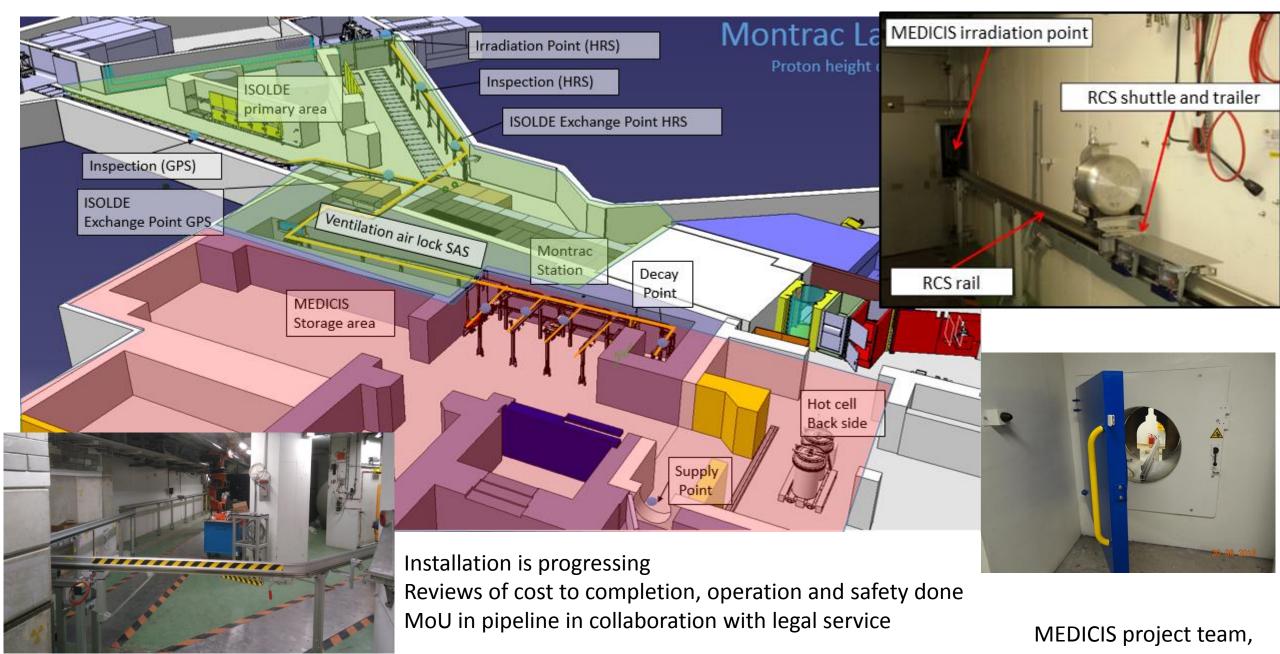


Photo-detachment of negative **astatine** ions

Possibly the world's first demonstration of a photo-detachment of a radioactive ion beam!

Successful completion of LOI I-148, now ready for data-taking for experiment IS-615


S.Rothe (spokesperson), J. Sundberg (PhD work)

- Target developments
- RILIS developments
- MEDICIS
- HT tests

CERN-MEDICIS

- Target developments
- RILIS developments
- MEDICIS
- HT tests

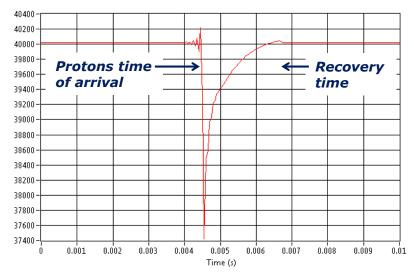
A new 60kV modulator for ISOLDE

The new modulator has been tested in operation at the ISOLDE facility during a dedicated MD.

The new set-up was installed in the HT room running in pulse mode with the ISOLDE target load installed and with proton beam.

https://edms.cern.ch/document/1620992/1

Prototype installation in ASTEC tank (ISOLDE HT room)

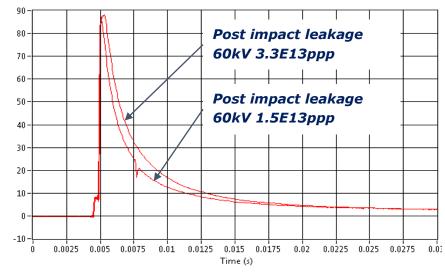

T. Gharsa, J. Schipper

MD test results

The validation tests of the new device has been realized with the *most severe beam induced leakage current* target up to the maximum proton pulse intensity.

Testing conditions*:

The operational voltage range for the test was limited to 30kV due to the replacement of a broken HV amplifier. The global recovery loop gain was also reduced, resulting in a slower transient response.



HV recovery signal (V) : 3.3E13ppp at 1.4Gev – HV = 40kV

A substantial gain in terms of recovery time over the actual modulator was achieved.

	30 kv	40 kv	50 kv*	60 kv*	
1.5E13 ppp	1.2 ms	1.6 ms	2 ms	-	
3.3E13 ppp	1.6 ms	2.5 ms	-	-	

Based on these results an upgrade of the prototype is envisaged to adapt it to the measured loading. As a first approximation, the post impact induced leakage is proportional to $N^{0.5}$, N being the burst intensity.

Beam induced leakage current (mA) : 3.3E13ppp at 1.4Gev

• Thank you for your attention