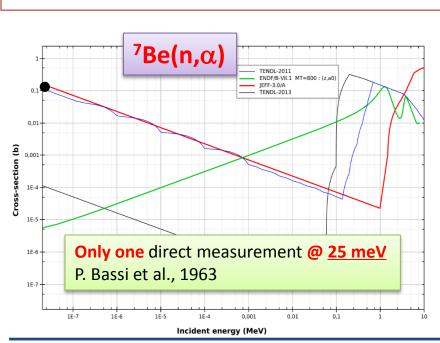


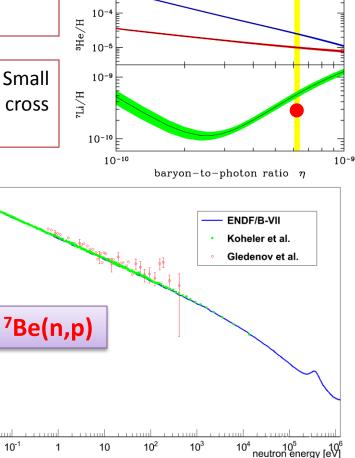
Challenging 7 Be(n, α) and 7 Be(n,p) cross-sections measurement at CERN

M. Barbagallo, N. Colonna, A. Musumarra, J. Andrejewski, L. Cosentino, E. Maugeri, B. Langhans, J. Perkowski, M. Mastromarco, A. Gawlik, D. Schumann, A. Mengoni, P. Finocchiaro F. Kappeler, L. Damone, A. Pappalardo, O. Aberle, S. Heinitz, R. Dressler, E. Chiaveri and the **n_TOF collaboration**.

K. Johnston, J. Schell, J. M. Correia, M. Borges-Garcia, U. Koester, B. Marsh, T. Goodacre, R. Catherall, A. Bernardes, T. Stora, J. Ballof, B. Crepieux.

53rd INTC meeting, CERN, 29 June 2016




Cosmological Lithium Problem and ⁷Be

A serious discrepancy (factor 2-4) between the predicted abundance of ⁷Li and value inferred by measurements (Spite et al.)

Approximately 95% of primordial 7 Li is produced from the electron capture decay of 7 Be $(\underline{T}_{1/2}=53.2 \text{ d})$.

⁷Be is destroyed via (**n,p**) and (p,x), (d,x), (3 He,x), ... reactions. Small contribution of the (**n,α**) reactions according to **estimated** cross section.

baryon density $\Omega_b h^2$

0.26

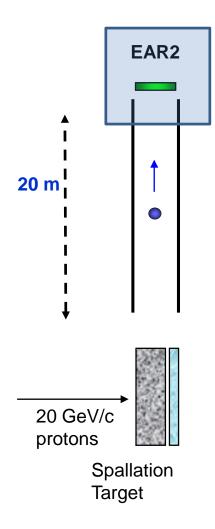
0.25

0.24

D/H

CLiP

M. Barbagallo, Challenging ⁷Be(n,a) and ⁷Be(n,p) cross-section measurement at CERN, 53rd INTC Meeting, CERN, June 2016


Cross Section [barn] 10⁴

 10^{2}

n_TOF program on ⁷Be(n,cp)

EAR2 further extends the measurement capability of the n_TOF facility

The much higher flux in EAR2 allows to:

- measure short-lived radioisotopes (down to a few weeks)
- collect data on a much shorter time
- measure (n,charged particle) reactions with thin samples
- measure samples of very small mass (<<1 mg)</p>

Two different measurements at n_TOF

(CERN-INTC-2014-049/INTC-P-417)

i)
$$n+^7Be \rightarrow \alpha+\alpha$$

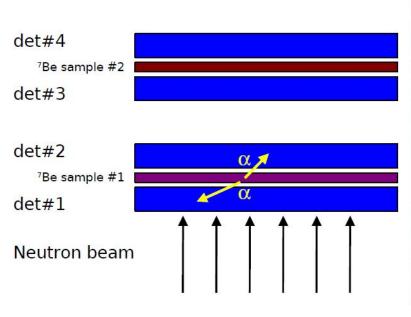
- Coincidences technique (2015)

(4 μg, PSI)

ii)
$$n+^{7}Be -> p+^{7}Li$$

- Telescope technique (2016)

(100 ng, PSI+ISOLDE)

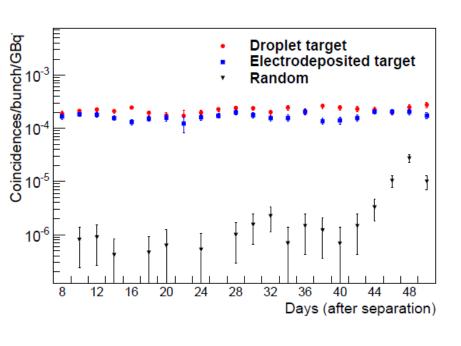


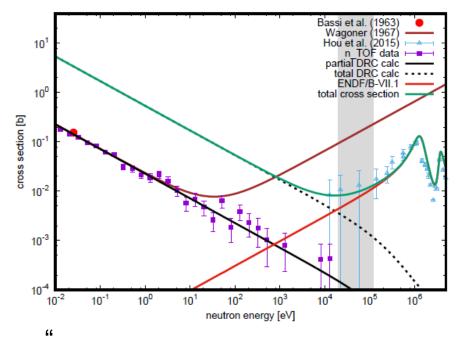
⁷Be(n, α) measurement

Silicon detectors directly inserted in the beam (3x3 cm² active area, 140 μm thickness)

Detection of high energy α -particles (Q value 19 MeV)

Strong rejection of background (sample preparation)





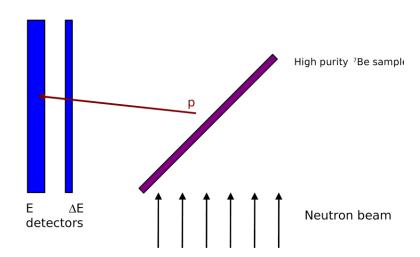
- L. Cosentino et al., "Experimental setup and procedure for the measurement of the 7Be(n,α) α reaction at n_{TOF} ", NIM A 830 (2016) 197-205
- M. Barbagallo, " 7 Be(n,a) and 7 Be(n,p) cross-section measurement for the Cosmological Lithium Problem at the n_TOF facility at CERN", accepted for publication on "Il Nuovo Cimento".

Results of the 7 Be(n, α) measurement

M. Barbagallo et al., "The 7 Be(n, α) 4 He reaction and the Cosmological Lithium Problem: measurement of the cross section in a wide energy range at n TOF (CERN)" Submitted to Physical Review Letter

of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the present results hint to a minor role of this reaction in BBN, leaving the long-standing Cosmological Lithium problem unsolved.

PACS numbers: 23.40.-s, 24.10.Lx, 28.20.Fc



⁷Be(n,p) cross-section measurement @EAR2

Silicon telescope outside of the beam.

Detection and identification of protons of 1.4

MeV and 1 MeV

1 GBq high purity sample needed

- First joint n_TOF-ISOLDE experiment
- First time ever measurement of a neutron induced reaction cross-section using a target produced with a radioactive beam.

⁷Be(n,p) experiment

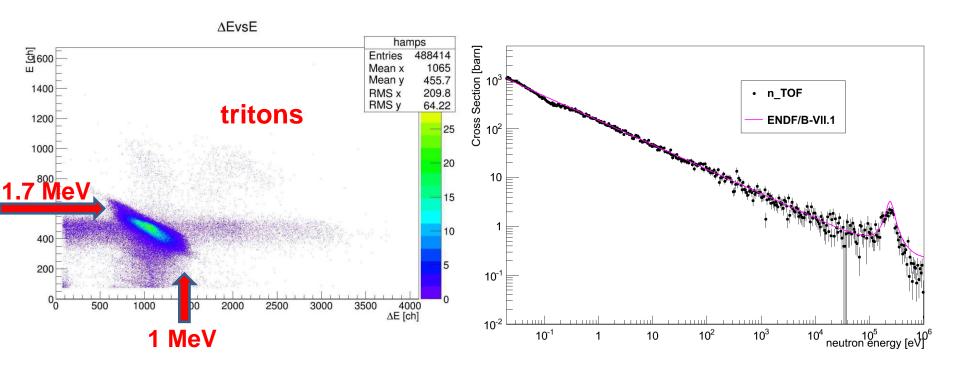
A three steps experiment:

- Extraction of 200 GBq from water cooling of SINQ spallation source at PSI
- Implantation of 30 keV ⁷Be beam on suited backing using ISOLDE-GLM off-line separator (and RILIS)
- Measurement at n_TOF-EAR2 using a silicon telescope

⁷Be(n,p) experiment

A three steps experiment:

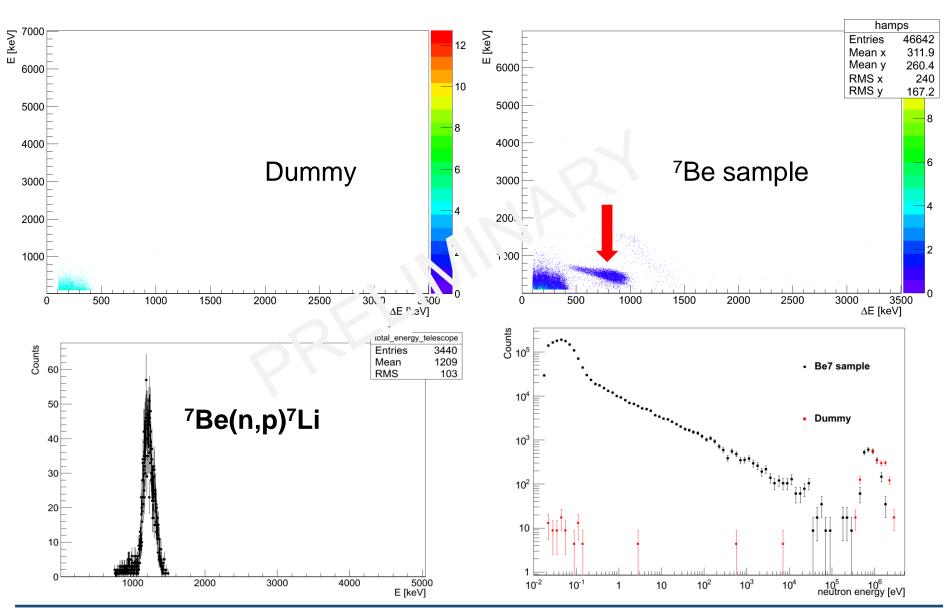
- Extraction of 200 GBq from water cooling of SINQ spallation source at PSI
- Implantation of 30 keV ⁷Be beam on suited backing using ISOLDE-GLM off-line separator (and RILIS)
- Measurement at n_TOF-EAR2 using a silicon telescope



20 MBq (16/04) 1.1 GBq (14/05)

⁷Be(n,p) cross-section measurement @EAR2

The detection system was characterized using the well-known 6 Li(n, α) reaction.



Upper energy limit for detection --> 1 MeV neutron energy

Preliminary result on ⁷Be(n,p) cross-section measurement

M. Barbagallo, Challenging ⁷Be(n,a) and ⁷Be(n,p) cross-section measurement at CERN, 53rd INTC Meeting, CERN, June 2016

Conclusions

- Uncertainties in nuclear data strongly affect the Big Bang Nucleosynthesis calculations for the abundance of ⁷Li and could probably explain (at least shade new light on) the Cosmological Lithium Problem.
- 7 Be(n, α) 4 He cross-section has been measured for the first time in a wide energy range, using n_TOF-EAR2 neutron beam and two samples prepared at PSI. Although they hint to a minor role of this reaction in BBN, the results obtained for this measurement reveal that the reaction rate currently used in BBN calculation requires substantial revision.
- The ⁷Be(n,p)⁷Li cross-section measurement has been performed at n_TOF-EAR2, using a **1.1 GBq** pure sample implanted at **GLM beam line of ISOLDE**, starting from a 200 GBq ⁷Be solution collected at **PSI**.
- Preliminary results from the ⁷Be(n,p)⁷Li cross-section measurement are more than extremely encouraging, already proving that a final answer on the role of this reaction in BBN can be provided by this experiment.
- The first fruitful collaboration between the n_TOF and the ISOLDE facilities and teams.