LHC Study Abroad Program Outline Of A Proposal

Steven Goldfarb, *University of Michigan*Center for Strategic and International Studies, Washington, DC
1 June 2009

Major Goals Of A Study Abroad Program

- 1. Expose U.S. Undergraduate Students To The Excitement Of Leading-Edge Research
- Provide The Students With A Unique Educational Program
- 3. Enhance The Above With An Invaluable International Cultural Experience

Broad Outline Of The LHC Program

40-50 Undergraduate Students

Probably Junior or Senior Year

Up To 12 Months in Geneva

Summer, Academic Semester, Year

Full Academic Workload

Accredited Courses (No Lost Time)

Participation in LHC Research Projects

Equivalent To A Senior Thesis

Housed Near CERN

Dormitory, Cooking Facilities, etc.

The Students

Who are the students?

- Outstanding Physics Undergraduate Students
 - Build on Successful REU Selection Process
- Students From Other Relevant Fields
 - Computing, Math, ...

Where do they come from?

- Subscribing Universities from Across USA
 - Agree to Crediting System
 - Potentially Providing Teachers, Research Projects
 - Not Necessarily LHC Institutes

The Students

Why 40-50 students?

- 1 Student / 2 U.S. LHC Institutes
- 20 Fold Increase Over Current Exposure

What can they accomplish in one semester or year?

- Complete Academic Program
 - Comparable Level To Top U.S. Research University
 - Physics, Math, Language Or Other Electives
- Extensive Research Project
 - Full Participation With LHC Research Group at CERN
 - Publication Of A Senior Thesis (Or Equivalent)

The Courses

What are the topics?

- High-Level Physics, Math, Computing
- Languages, Other Requisites

Who are the teachers?

- Visiting US Faculty
 - Part-Time Teaching / Part-Time LHC Research
- Local Faculty
 - Geneva-Area Institute

How do students receive credits?

Institutional Agreement for Accepting Credits

The Projects

What are the topics?

- LHC Physics
 - Theoretical Studies, Experimental Analysis, R&D
- Closely Related Topics
 - Computing, Collaboration Science, Journalism, e.g.

Who are the mentors?

- LHC Physicists
 - Experiments, Accelerator, Theory, IT
 - US or Non-US Groups

How do we monitor student progress?

Periodic Interviews, Topic Presentations, Write-Ups

Program Success

Students Completing Coursework

- Satisfied with Quality of Teaching
- In Sync (or Ahead of) Classmates Back Home

Students Completing Projects

- Having Learnt Key Physics Skills
- Excited About The Field of Particle Physics
- Wanting To Do More

Students With New Contacts

- From Their Work Teams and Experiments
- From Their Classmates In The Program

Program Costs & Resources

Primary Costs

- Housing Facilities and Staff
- Instructional Support
- Administrative Support
- Student Subsidies

Potential Resources

- Student Fees
- University Contributions
- US Funding Agencies
- Foundation Support

Next Steps

Major Immediate Challenges

- Identifying proper housing
- Building a robust funding model and securing resource commitments
- Seeking agreement on teaching credits
- Proposing a management structure
- Identifying participating universities
- Coordinating with CERN, Swiss government
- Identifying local university curriculum options
- Developing a plan for identifying instructors

Potential Program Agenda

LHC Study Abroad Program Example Semester

Jun

Orientation Week at CERN
Optional Intensive Language Course
Research Project Begins

Jul-Aug

Summer Student Lecture Program

1st Presentation of Research Project
Continuation of Language Course

Sep-Nov

Beginning of Fall Term Courses
Academic Lecture Program
2nd Presentation of Research Project

Dec

Course Exams
Completion of Research Project Thesis, Defense