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Corrections to Black Hole Entropy

• Precision studies of BHs in string theory usually focus on BPS
black holes (and their near BPS relatives).

• Conventional wisdom: far from BPS there are large and
complicated corrections.

• This talk: explicitly compute corrections to black hole entropy
far from the BPS limit.

• Two types: quantum corrections and higher derivative
corrections.

• Generally the corrections are found to be fairly complicated, as
expected.
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Environmental Dependence
• Black holes are often solutions to many different theories.

• For example, Kerr-Newman black holes are usually considered
solutions to the Einstein-Maxwell theory

L =
1

16πGN

(
R− 1

4
FµνF

µν

)
• A simple variation: augment the theory by adding a field that

appears only quadratically in the action (such as a fermion ψ.)

• The solution is “the same” because it is consistent to assume
that the additional field vanishes ψ = 0.

• Environmental dependence: corrections depend on such
additional fields (for example, these fields run in quantum loops).

• This talk: Kerr-Newman black holes are simpler in an
environment withN ≥ 2 supersymmetry .
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This Talk

• Embedding of Kerr-Newman black holes into theories with
N ≥ 2 SUSY.

• Quantum corrections to black hole entropy.

• Higher derivative corrections to black hole entropy: Weyl2.

• Discussion: structure of black hole entropy.

Collaborator: Anthony M. Charles.
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Black Hole Solutions
• Starting point: consider any solution to Einstein-Maxwell

theory

L =
1

16πGN

(
R− 1

4
FµνF

µν

)
• The general asymptotically flat stationary black holes:

Kerr-Newman (quantum numbers: M, J, Q).

• Special cases:

- Schwarzchild: M general but J=Q=0

- Kerr: M and J general but Q=0

- Reissner-Nordström: M and Q general but J=0

- BPS M=Q and J=0

• We want to consider these as solutions toN ≥ 2 SUGRA.
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N=2 SUGRA
• The simplest case: N = 2 minimal SUGRA has bosonic part

identical to Einstein-Maxwell theory.

• The solution remains a solution after two gravitini multiplets are
added because they can be consistently set to zero.

• Coupling to nV vector multiplets is a more significant
challenge:

L =
1

2κ2
R− gαβ̄∇µzα∇µz

β̄ +
1

2
Im
[
NIJF

+I
µν F

+µνJ
]

• Comments:

- Complex scalar fields in vector multiplets: zα, α = 1, . . . , nV .
- Vector fields AI

µ include the graviphoton so I = 0, . . . , nV
(one more value).

- Kähler metric gαβ̄ and vector couplingsNIJ depend on scalars
and are related by special geometry.
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Adding Scalars to Kerr-Newman
• Kerr-Newman does not have scalars so to maintain the “same”

solution we take theN = 2 scalars constant .

• An obstacle: generally the vector fields source the scalars so
they cannot be constant.

• The sources on the scalars all cancel if we specify theN = 2
vectors in terms of the Einstein-Maxwell vector as:

F+I
µν = XIF+

µν .

with XI projective coordinates for the scalars.

• Interpretation 1: specify moduli, then pick the vectors (QI, PI) so
that the BPS attractor equations are satisfied for these moduli.

• Interpretation 2: the Einstein-Maxwell field is the graviphoton.
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More General Embedding

• We consider all theories withN ≥ 2 SUSY .

• It is convenient to summarize the matter content in terms of
N = 2 fields: one SUGRA multiplet,N − 2 (massive) gravitini,
nV vector multiplets, nH hyper multiplets.

• This decomposition is useful for both BPS and non-BPS.

• Our embedding takes the geometry unchanged, matter fields
“minimal”, and guarantees that all equations of motion ofN ≥ 2
SUGRA are satisfied.

• We want to compute quantum corrections of Kerr-Newman as a
solution inN ≥ 2 SUGRA.
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Quantum Corrections: Generalities
• The entropy of a large black hole allows the expansion:

S =
A

4G
+

1

2
D0 logA + . . . .

• Taking all parameters with dimension length large: area
A ∼ (2MG)2 by dimensional analysis up to a function of
dimensionless ratios J/M 2, Q/M that is nontrivial.

• In the same limit, the logarithmic correction is logA ∼ log 2MG
up to the function D0 of dimensionless ratios that is interesting.

• The area A and the coefficient D0 can both be computed from
the low energy theory : only massless fields contribute.

• They each offer an infrared window into the ultraviolet theory .
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Quantum Fluctuations: Strategy
• All contributions from quadratic fluctuations around the classical

geometry take the schematic form

e−W =

∫
Dφ e−φΛφ =

1√
detΛ

.

• The quantum corrections are encoded in the heat kernel

D(s) = Tr e−sΛ =
∑
i

e−sλi .

• The effective action becomes

W = −1

2

∫ ∞
ε2

ds

s
D(s) = −1

2

∫ ∞
ε2

ds

s

∫
dDxK(s) .

• The leading corrections are encoded in the the s-independent
term in D(s) denoted D0, a.k.a. the 2nd Seeley-deWitt
coefficient, a.k.a. the trace anomaly.
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Interactions
• In principle: computations are straightforward applications of

techniques from the 70’s.

• But: our embedding into SUGRA gives nonminimal couplings.

• For example, for fermions inN = 2 hypermultiplets the
background enter through Pauli couplings

Lhyper = −2ζAγ
µDµζ

A − 1

2

(
ζ
A
FµνΓ

µνζBεAB + h.c.
)
.

• Bosons inN = 2 vector multiplets (some effort to show)

Lvector = −gαβ̄
(
∇µz

α∇µz̄β̄ +
1

2
fαµνf

µνβ̄ − 1

2
(F−µνf

αµνz̄β̄ + h.c.)

)
• Such nonminimal couplings force us to compute some new heat

kernels.
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Heat Kernel Technology
• Perturbative expansion of the (equal point) heat kernel density:

K(x, x; s) =

∞∑
n=0

sn−2a2n(x)

• We need a4 (the D0 coefficient is the spacetime integral over a4)

• Schematic for Λ:

Λn
m = −(DµDµ)Inm − (2ωµDµ)nm − P n

m

• General result:

(4π)2a4(x) = Tr

[
1

2
E2 +

1

12
ΩµνΩ

µν +
1

180
(RµνρσR

µνρσ −RµνR
µν)I

]
.

Notation:

E = P−ωµωµ−(Dµωµ) , Dµ = Dµ+ωµ , Ωµν ≡ [Dµ,Dν] .
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Examples
• Lagrangian for minimally coupled scalar with mass m:

L = −1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 .

Heat kernel coefficient

(4π)2aminimal scalar
4 (x) =

1

2
m4 +

1

180
(RµνρσR

µνρσ −RµνR
µν) .

• Gravitino in theN = 2 SUGRA multiplet:

Lgravitini = − 1

2κ2
Ψ̄Aµγ

µνρDνΨAρ +
1

4κ2
Ψ̄Aµ

(
F µν + γ5F̃

µν
)
εABΨBν

Heat kernel coefficient:

(4π)2agravitino
4 (x) = − 1

360
(212RµνρσR

µνρσ − 32RµνR
µν

−360Rµν(F
µρF ν

ρ − F̃ µρF̃ ν
ρ) + 180Rµνρσ(F µνF ρσ − F̃ µνF̃ ρσ)

+45(F µρFνρ − F̃ µρF̃νρ)(FµσF
νσ − F̃µσF̃ νσ)

)
.
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Simplifications
• General form of 2nd Seeley-deWitt coefficient:

a4(x) = α1RµνρσR
µνρσ + α2RµνR

µν + α3RµνρσF
µνF ρσ + ...

• After simplifications using Einstein equation, Bianchi identities, ....

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 ,

Euler density

E4 = RµνρσR
µνρσ − 4RµνR

µν + R2 .

• Note: terms dependent on field strength all cancel .

• Final results can be expressed in terms of c, a only.

• For eachN = 2 multiplet: record c, a for bosons and fermions
independently.
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Integrals
• Form of quantum corrections to the entropy:

δS =
1

2
D0(

Q

M
,
J

M 2
) logAH

• The a-term gives a universal (independent of BH parameters)
contribution to D0 because

χ =
1

32π2

∫
d4x
√
−g E4 = 2 .

• The c-term gives a complicated contribution to D0:∫
d4x
√
−gWµνρσW

µνρσ = 64π2 +
πβQ4

b5r4
H(b2 + r2

H)

[
4b5rH + 2b3r3

H

+ 3(b2 − r2
H)(b2 + r2

H)2 tan−1

(
b

rH

)
+ 3br5

H

]
.

b = J/M , rH = M +
√
M 2 − b2, β = 1/T .
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Results: Logarithmic Corrections
• Contributions from bosons inN ≥ 2 theory:

cboson =
1

60
(137 + 12(N − 2)− 3nV + 2nH)

aboson =
1

90
(106 + 31(N − 2) + nV + nH)

• Contributions from fermions inN ≥ 2 theory:

cfermion =
1

60
(−137− 12(N − 2) + 3nV − 2nH)

afermion =
1

360
(−589 + 41(N − 2) + 11nV − 19nH)

• The c coefficent vanishes inN ≥ 2 theory!

• A huge simplification: Weyl2 terms are complicated in general
backgrounds.

• It is a surprise: SUSY of the background⇒ AdS2 × S2⇒
Weyl2 = 0
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Summary: Quantum Corrections
• Logarithmic corrections to black hole entropy inN ≥ 2 SUGRA

are determined by the coefficient of the Euler invariant.

• This coefficient depends only on the theory (not on parameters
of the black hole) so the logarithmic corrections are universal:

δS =
1

12
(23− 11(N − 2)− nV + nH) logAH .

• These corrections can be reproduced from microscopic theory in
some BPS cases.

• The IR theory is a window into the UV theory: apparently the
deformation (far!) off extremality is independent of coupling!

• A minor caveat: fermionic zero modes (due to enhanced SUSY)
gives a jump at extremality (in most ensembles).
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Higher Derivative Corrections
• String theory corrections can give a Weyl2 term directly in the

action.

• Quantum result: the coefficient of this term does not receive
quantum corrections, it is not renormalized inN ≥ 2 SUGRA.

• A term directly in the action is complicated : the Einstein
equation is modified by the Bach tensor

Bµν = 4RµρR
ρ
ν − gµνRρσR

ρσ − 4

3
RµνR +

1

3
gµνR

2 − 2RµνR
µν

+ 4DρDµRνρ +
1

3
gµνR

2 − 4

3
DµDνR .

• A perturbative approach: evaluate Bµν on the Kerr-Newman
background, use result to correct geometry, evaluate Bµν on the
corrected geometry,....

• This procedure is simple conceptually but the results are
complicated and not illuminating.
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SUSY Theory and BPS Black Holes
• We are interested in corrections withN = 2 SUSY, eg. a Weyl2

term along with its N=2 partners.

• Details of the action: off-shell formalism from reduction of
superconformal supersymmetry, a lot of auxiliary fields.

• To find BPS solutions to the resulting action:

- Constrain solution using BPS conditions (independent of
action in off-shell theory)

- Use action for the final details.

• This program has proven extremely successful :

- Corrections to BPS BH entropy were computed in detail.

- They were found to agree with microscopic considerations.

• Summary of agreements: OSV conjecture relating BPS black
hole entropy to topological string amplitudes.
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SUSY Theory and Kerr-Newman

• We have analyzed the full equations of motion ofN = 2
SUGRA with Weyl2 (including SUSY partners).

• The equations of motion are extremely elaborate due to all the
terms required by SUSY.

• In the simplest case of pureN = 2 SUGRA (no vector multiplets):
the full equations motion are satisfied by Kerr-Newman.

• Cartoon: there is an elaborate cancellation between gravitational
terms (Weyl2), their matter partners (F 4), and cross-terms (RF 2).

• The simplifications are for a theory withN = 2 SUSY but
solutions that preserve no SUSY .
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Wald Entropy

• The geometry is the same, but the Wald entropy is changed.

• Corrections to Wald entropy simplify greatly . Schematically:

∂Riem(Weyl2 + SUSY partners) = ∂Riem

(
(Riem2 − 2Ric2 +

1

3
R2) +

1

4
Ric F 2

)
= ∂Riem

(
Riem2 − 4Ric2 + R2

)
= ∂RiemE4

• The correction to the Wald entropy due to higher order derivatives
is a constant, independent of black hole parameters:

∆S = 256πc2

• The value of the constant is related to the prepotential
according to the OSV conjecture for BPS black holes.
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Entropy Phenomenology
• Entropy of Kerr Newman BHs:

S = 2π

(
(M 2 − 1

2
Q2) +

√
M 2(M 2 −Q2)− J2

)
• The form of the formula is reminiscent of the Cardy formula for

entropy of 2D CFTs:

S = 2π

[√
cLhL

6
+

√
cRhR

6

]
• The resemblance may be an important clue.

• Dependence on angular momentum J accounted for by the
model: identify it with the SU(2)R quantum number in a (0, 4)
CFT (as for 5D BPS BHs).
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Matching Condition

• The levels assigned by the phenomenology satisfy a matching
condition

cLhL
6
− cRhR

6
=

1

4
Q4 = integer = independent of M

• This would be expected from modular invariance of a CFT (at
least in the short string sector cL = cR = 6).

• Complaint: Q2 = n2α with α ' 1/137 in QED is not an integer.

• Response: embedding intoN = 2 SUGRA: Q2 → 4QP .

Dirac’s quantization rule gives QP = 1
2 × integer.

• So: N = 2 of theory gives simplifications for generic black holes.
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Derivative Corrections to Entropy

• Higher derivative corrections (Euler or Weyl2 + SUSY) add a
constant to the entropy .

• The value is independent of mass so same as BPS case so
accounted for by BPS CFT (the OSV conjecture).

• The quantum corrections are also the same as the BPS case so
accounted for by BPS CFT (the OSV conjecture).

• So all corrections pertain to L sector (as for BPS black holes).
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The Inner Horizon Revisited
• For any black hole geometry there is an algorithm to split the

entropy into “L” and “R” contributions:

S+ = SL + SR =
1

2
(S+ + S−) +

1

2
(S+ − S−)

where S± = A±
4GN

with ± referring to outer and inner horizon.

• Higher derivative corrections are the same for outer and inner
horizon.

• This algorithm agrees that all corrections are captured by SL.

• Slogan for matching condition (leading order)
1

(8πG4)
A+A− = integer

• Generalization to higher derivatives using SL,R as simple as using
S± and apparently the correct one.

25



Nonextreme BH Entropy (Scenario)

• Extremal Black hole entropy is accounted for by chiral string
field theory (multiple strings).

• These theories are complicated but we have much experience
with them at the level of indices and/or localization.

• A scenario for nonextreme black hole entropy: couple L and R
chiral string field theory minimally.

• The L theory same as BPS theory, the R theory contains oscillator
excitations but no new corrections.

• This gives the correct result for the black hole entropy.
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Summary

• We evaluated corrections to Kerr-Newman black holes motivated
by string theory: quantum corrections and higher derivative
corrections.

• Perspective: N ≥ 2 SUSY of the theory simplifies results
greatly even when BHs preserve no SUSY.

• Quantum corrections: independent of mass (so the same as for
BPS black holes)

• Higher derivative corrections (Weyl2 + SUSY) also independent
of mass (so the same as for BPS black holes)

• Significance: evidence that black hole entropy far from
extremality is accounted for by weakly coupled strings.
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