Kerr-Newman Black Holes in Supergravity

Finn Larsen

Michigan Center for Theoretical Physics

CERN, June 28, 2016 .

Corrections to Black Hole Entropy

- Precision studies of BHs in string theory usually focus on BPS black holes (and their near BPS relatives).
- Conventional wisdom: far from BPS there are large and complicated corrections.
- This talk: explicitly compute corrections to black hole entropy far from the BPS limit.
- Two types: quantum corrections and higher derivative corrections.
- Generally the corrections are found to be fairly complicated, as expected.

Environmental Dependence

- Black holes are often solutions to many different theories.
- For example, Kerr-Newman black holes are usually considered solutions to the Einstein-Maxwell theory

$$
\mathcal{L}=\frac{1}{16 \pi G_{N}}\left(R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right)
$$

- A simple variation: augment the theory by adding a field that appears only quadratically in the action (such as a fermion ψ.)
- The solution is "the same" because it is consistent to assume that the additional field vanishes $\psi=0$.
- Environmental dependence: corrections depend on such additional fields (for example, these fields run in quantum loops).
- This talk: Kerr-Newman black holes are simpler in an environment with $\mathcal{N} \geq 2$ supersymmetry.

This Talk

- Embedding of Kerr-Newman black holes into theories with $\mathcal{N} \geq 2$ SUSY.
- Quantum corrections to black hole entropy.
- Higher derivative corrections to black hole entropy: Weyl ${ }^{2}$.
- Discussion: structure of black hole entropy.

Collaborator: Anthony M. Charles.

Black Hole Solutions

- Starting point: consider any solution to Einstein-Maxwell theory

$$
\mathcal{L}=\frac{1}{16 \pi G_{N}}\left(R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right)
$$

- The general asymptotically flat stationary black holes: Kerr-Newman (quantum numbers: M, J, Q).
- Special cases:
- Schwarzchild: M general but $\mathrm{J}=\mathrm{Q}=0$
- Kerr: M and J general but $\mathrm{Q}=0$
- Reissner-Nordström: M and Q general but $\mathrm{J}=0$
- BPS $\mathrm{M}=\mathrm{Q}$ and $\mathrm{J}=0$
- We want to consider these as solutions to $\mathcal{N} \geq 2$ SUGRA.

N=2 SUGRA

- The simplest case: $\mathcal{N}=2$ minimal SUGRA has bosonic part identical to Einstein-Maxwell theory.
- The solution remains a solution after two gravitini multiplets are added because they can be consistently set to zero.
- Coupling to n_{V} vector multiplets is a more significant challenge:

$$
\mathcal{L}=\frac{1}{2 \kappa^{2}} R-g_{\alpha \bar{\beta}} \nabla^{\mu} z^{\alpha} \nabla_{\mu} z^{\bar{\beta}}+\frac{1}{2} \operatorname{Im}\left[\mathcal{N}_{I J} F_{\mu \nu}^{+I} F^{+\mu \nu J}\right]
$$

- Comments:
- Complex scalar fields in vector multiplets: $z^{\alpha}, \alpha=1, \ldots, n_{V}$.
- Vector fields A_{μ}^{I} include the graviphoton so $I=0, \ldots, n_{V}$ (one more value).
- Kähler metric $g_{\alpha \bar{\beta}}$ and vector couplings $\mathcal{N}_{I J}$ depend on scalars and are related by special geometry.

Adding Scalars to Kerr-Newman

- Kerr-Newman does not have scalars so to maintain the "same" solution we take the $\mathcal{N}=2$ scalars constant.
- An obstacle: generally the vector fields source the scalars so they cannot be constant.
- The sources on the scalars all cancel if we specify the $\mathcal{N}=2$ vectors in terms of the Einstein-Maxwell vector as:

$$
F_{\mu \nu}^{+I}=X^{I} F_{\mu \nu}^{+} .
$$

with X^{I} projective coordinates for the scalars.

- Interpretation 1: specify moduli, then pick the vectors $\left(Q^{I}, P_{I}\right)$ so that the BPS attractor equations are satisfied for these moduli.
- Interpretation 2: the Einstein-Maxwell field is the graviphoton.

More General Embedding

- We consider all theories with $\mathcal{N} \geq 2$ SUSY.
- It is convenient to summarize the matter content in terms of $\mathcal{N}=2$ fields: one SUGRA multiplet, $\mathcal{N}-2$ (massive) gravitini, n_{V} vector multiplets, n_{H} hyper multiplets.
- This decomposition is useful for both BPS and non-BPS.
- Our embedding takes the geometry unchanged, matter fields "minimal", and guarantees that all equations of motion of $\mathcal{N} \geq 2$ SUGRA are satisfied.
- We want to compute quantum corrections of Kerr-Newman as a solution in $\mathcal{N} \geq 2$ SUGRA.

Quantum Corrections: Generalities

- The entropy of a large black hole allows the expansion:

$$
S=\frac{A}{4 G}+\frac{1}{2} D_{0} \log A+\ldots
$$

- Taking all parameters with dimension length large: area $A \sim(2 M G)^{2}$ by dimensional analysis up to a function of dimensionless ratios $J / M^{2}, Q / M$ that is nontrivial.
- In the same limit, the logarithmic correction is $\log A \sim \log 2 M G$ up to the function D_{0} of dimensionless ratios that is interesting.
- The area A and the coefficient D_{0} can both be computed from the low energy theory: only massless fields contribute.
- They each offer an infrared window into the ultraviolet theory.

Quantum Fluctuations: Strategy

- All contributions from quadratic fluctuations around the classical geometry take the schematic form

$$
e^{-W}=\int \mathcal{D} \phi e^{-\phi \Lambda \phi}=\frac{1}{\sqrt{\operatorname{det} \Lambda}}
$$

- The quantum corrections are encoded in the heat kernel

$$
D(s)=\operatorname{Tr} e^{-s \Lambda}=\sum_{i} e^{-s \lambda_{i}}
$$

- The effective action becomes

$$
W=-\frac{1}{2} \int_{\epsilon^{2}}^{\infty} \frac{d s}{s} D(s)=-\frac{1}{2} \int_{\epsilon^{2}}^{\infty} \frac{d s}{s} \int d^{D} x K(s)
$$

- The leading corrections are encoded in the the s-independent term in $D(s)$ denoted D_{0}, a.k.a. the 2nd Seeley-deWitt coefficient, a.k.a. the trace anomaly.

Interactions

- In principle: computations are straightforward applications of techniques from the 70's.
- But: our embedding into SUGRA gives nonminimal couplings.
- For example, for fermions in $\mathcal{N}=2$ hypermultiplets the background enter through Pauli couplings

$$
\mathcal{L}_{\text {hyper }}=-2 \bar{\zeta}_{A} \gamma^{\mu} D_{\mu} \zeta^{A}-\frac{1}{2}\left(\bar{\zeta}^{A} F_{\mu \nu} \Gamma^{\mu \nu} \zeta^{B} \epsilon_{A B}+\text { h.c. }\right)
$$

- Bosons in $\mathcal{N}=2$ vector multiplets (some effort to show)

$$
\mathcal{L}_{\text {vector }}=-g_{\alpha \bar{\beta}}\left(\nabla_{\mu} z^{\alpha} \nabla^{\mu} \bar{z}^{\bar{\beta}}+\frac{1}{2} f_{\mu \nu}^{\alpha} f^{\mu \nu \bar{\beta}}-\frac{1}{2}\left(F_{\mu \nu}^{-} f^{\alpha \mu \nu} \bar{z}^{\bar{\beta}}+\text { h.c. }\right)\right)
$$

- Such nonminimal couplings force us to compute some new heat kernels.

Heat Kernel Technology

- Perturbative expansion of the (equal point) heat kernel density:

$$
K(x, x ; s)=\sum_{n=0}^{\infty} s^{n-2} a_{2 n}(x)
$$

- We need a_{4} (the D_{0} coefficient is the spacetime integral over a_{4})
- Schematic for Λ :

$$
\Lambda_{m}^{n}=-\left(\mathcal{D}^{\mu} \mathcal{D}_{\mu}\right) I_{m}^{n}-\left(2 \omega^{\mu} D_{\mu}\right)_{m}^{n}-P_{m}^{n}
$$

- General result:

$$
(4 \pi)^{2} a_{4}(x)=\operatorname{Tr}\left[\frac{1}{2} E^{2}+\frac{1}{12} \Omega_{\mu \nu} \Omega^{\mu \nu}+\frac{1}{180}\left(R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-R_{\mu \nu} R^{\mu \nu}\right) I\right] .
$$

Notation:
$E=P-\omega^{\mu} \omega_{\mu}-\left(D^{\mu} \omega_{\mu}\right), \quad \mathcal{D}_{\mu}=D_{\mu}+\omega_{\mu}, \quad \Omega_{\mu \nu} \equiv\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right]$.

Examples

- Lagrangian for minimally coupled scalar with mass m :

$$
\mathcal{L}=-\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} .
$$

Heat kernel coefficient

$$
(4 \pi)^{2} a_{4}^{\text {minimal scalar }}(x)=\frac{1}{2} m^{4}+\frac{1}{180}\left(R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-R_{\mu \nu} R^{\mu \nu}\right) .
$$

- Gravitino in the $\mathcal{N}=2$ SUGRA multiplet:

$$
\mathcal{L}_{\text {gravitini }}=-\frac{1}{2 \kappa^{2}} \bar{\Psi}_{A \mu} \gamma^{\mu \nu \rho} D_{\nu} \Psi_{A \rho}+\frac{1}{4 \kappa^{2}} \bar{\Psi}_{A \mu}\left(F^{\mu \nu}+\gamma_{5} \widetilde{F}^{\mu \nu}\right) \epsilon_{A B} \Psi_{B \nu}
$$

Heat kernel coefficient:

$$
\begin{aligned}
(4 \pi)^{2} a_{4}^{\text {gravitino }}(x)= & -\frac{1}{360}\left(212 R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-32 R_{\mu \nu} R^{\mu \nu}\right. \\
& -360 R_{\mu \nu}\left(F^{\mu \rho} F_{\rho}^{\nu}-\widetilde{F}^{\mu \rho} \widetilde{F}_{\rho}^{\nu}\right)+180 R_{\mu \nu \rho \sigma}\left(F^{\mu \nu} F^{\rho \sigma}-\widetilde{F}^{\mu \nu} \widetilde{F}^{\rho \sigma}\right) \\
& \left.+45\left(F^{\mu \rho} F_{\nu \rho}-\widetilde{F}^{\mu \rho} \widetilde{F}_{\nu \rho}\right)\left(F_{\mu \sigma} F^{\nu \sigma}-\widetilde{F}_{\mu \sigma} \widetilde{F}^{\nu \sigma}\right)\right) .
\end{aligned}
$$

Simplifications

- General form of 2nd Seeley-deWitt coefficient:

$$
a_{4}(x)=\alpha_{1} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}+\alpha_{2} R_{\mu \nu} R^{\mu \nu}+\alpha_{3} R_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}+\ldots
$$

- After simplifications using Einstein equation, Bianchi identities,

$$
a_{4}(x)=\frac{c}{16 \pi^{2}} W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}-\frac{a}{16 \pi^{2}} E_{4}
$$

Euler density

$$
E_{4}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}
$$

- Note: terms dependent on field strength all cancel.
- Final results can be expressed in terms of c, a only.
- For each $\mathcal{N}=2$ multiplet: record c, a for bosons and fermions independently.

Integrals

- Form of quantum corrections to the entropy:

$$
\delta S=\frac{1}{2} D_{0}\left(\frac{Q}{M}, \frac{J}{M^{2}}\right) \log A_{H}
$$

- The a-term gives a universal (independent of BH parameters) contribution to D_{0} because

$$
\chi=\frac{1}{32 \pi^{2}} \int d^{4} x \sqrt{-g} E_{4}=2
$$

- The c-term gives a complicated contribution to D_{0} :

$$
\begin{aligned}
\int d^{4} x \sqrt{-g} W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}= & 64 \pi^{2}+\frac{\pi \beta Q^{4}}{b^{5} r_{H}^{4}\left(b^{2}+r_{H}^{2}\right)}\left[4 b^{5} r_{H}+2 b^{3} r_{H}^{3}\right. \\
& \left.+3\left(b^{2}-r_{H}^{2}\right)\left(b^{2}+r_{H}^{2}\right)^{2} \tan ^{-1}\left(\frac{b}{r_{H}}\right)+3 b r_{H}^{5}\right]
\end{aligned}
$$

$$
b=J / M, r_{H}=M+\sqrt{M^{2}-b^{2}}, \beta=1 / T .
$$

Results: Logarithmic Corrections

- Contributions from bosons in $\mathcal{N} \geq 2$ theory:

$$
\begin{aligned}
& c^{\text {boson }}=\frac{1}{60}\left(137+12(\mathcal{N}-2)-3 n_{V}+2 n_{H}\right) \\
& a^{\text {boson }}=\frac{1}{90}\left(106+31(\mathcal{N}-2)+n_{V}+n_{H}\right)
\end{aligned}
$$

- Contributions from fermions in $\mathcal{N} \geq 2$ theory:

$$
\begin{aligned}
& c^{\text {fermion }}=\frac{1}{60}\left(-137-12(\mathcal{N}-2)+3 n_{V}-2 n_{H}\right) \\
& a^{\text {fermion }}=\frac{1}{360}\left(-589+41(\mathcal{N}-2)+11 n_{V}-19 n_{H}\right)
\end{aligned}
$$

- The c coefficent vanishes in $\mathcal{N} \geq 2$ theory!
- A huge simplification: Weyl ${ }^{2}$ terms are complicated in general backgrounds.
- It is a surprise: SUSY of the background $\Rightarrow \mathrm{AdS}_{2} \times S^{2} \Rightarrow$ $\mathrm{Weyl}^{2}=0$

Summary: Quantum Corrections

- Logarithmic corrections to black hole entropy in $\mathcal{N} \geq 2$ SUGRA are determined by the coefficient of the Euler invariant.
- This coefficient depends only on the theory (not on parameters of the black hole) so the logarithmic corrections are universal:

$$
\delta S=\frac{1}{12}\left(23-11(\mathcal{N}-2)-n_{V}+n_{H}\right) \log A_{H}
$$

- These corrections can be reproduced from microscopic theory in some BPS cases.
- The IR theory is a window into the UV theory: apparently the deformation (far!) off extremality is independent of coupling!
- A minor caveat: fermionic zero modes (due to enhanced SUSY) gives a jump at extremality (in most ensembles).

Higher Derivative Corrections

- String theory corrections can give a Weyl ${ }^{2}$ term directly in the action.
- Quantum result: the coefficient of this term does not receive quantum corrections, it is not renormalized in $\mathcal{N} \geq 2$ SUGRA.
- A term directly in the action is complicated: the Einstein equation is modified by the Bach tensor

$$
\begin{aligned}
B_{\mu \nu}= & 4 R_{\mu \rho} R_{\nu}^{\rho}-g_{\mu \nu} R_{\rho \sigma} R^{\rho \sigma}-\frac{4}{3} R_{\mu \nu} R+\frac{1}{3} g_{\mu \nu} R^{2}-2 R_{\mu \nu} R^{\mu \nu} \\
& +4 D^{\rho} D_{\mu} R_{\nu \rho}+\frac{1}{3} g_{\mu \nu} R^{2}-\frac{4}{3} D_{\mu} D_{\nu} R
\end{aligned}
$$

- A perturbative approach: evaluate $B_{\mu \nu}$ on the Kerr-Newman background, use result to correct geometry, evaluate $B_{\mu \nu}$ on the corrected geometry,....
- This procedure is simple conceptually but the results are complicated and not illuminating.

SUSY Theory and BPS Black Holes

- We are interested in corrections with $\mathcal{N}=2$ SUSY, eg. a Weyl ${ }^{2}$ term along with its $N=2$ partners.
- Details of the action: off-shell formalism from reduction of superconformal supersymmetry, a lot of auxiliary fields.
- To find BPS solutions to the resulting action:
- Constrain solution using BPS conditions (independent of action in off-shell theory)
- Use action for the final details.
- This program has proven extremely successful:
- Corrections to BPS BH entropy were computed in detail.
- They were found to agree with microscopic considerations.
- Summary of agreements: OSV conjecture relating BPS black hole entropy to topological string amplitudes.

SUSY Theory and Kerr-Newman

- We have analyzed the full equations of motion of $\mathcal{N}=2$ SUGRA with Weyl ${ }^{2}$ (including SUSY partners).
- The equations of motion are extremely elaborate due to all the terms required by SUSY.
- In the simplest case of pure $\mathcal{N}=2$ SUGRA (no vector multiplets): the full equations motion are satisfied by Kerr-Newman.
- Cartoon: there is an elaborate cancellation between gravitational terms (Weyl ${ }^{2}$), their matter partners (F^{4}), and cross-terms $\left(R F^{2}\right)$.
- The simplifications are for a theory with $\mathcal{N}=2$ SUSY but solutions that preserve no SUSY.

Wald Entropy

- The geometry is the same, but the Wald entropy is changed.
- Corrections to Wald entropy simplify greatly. Schematically:

$$
\begin{aligned}
& \partial_{\text {Riem }}\left(\text { Weyl }{ }^{2}+\text { SUSY partners }\right)=\partial_{\text {Riem }}\left(\left(\operatorname{Riem}^{2}-2 \operatorname{Ric}^{2}+\frac{1}{3} R^{2}\right)+\frac{1}{4} \operatorname{Ric} F^{2}\right) \\
& =\partial_{\text {Riem }}\left(\operatorname{Riem}^{2}-4 \operatorname{Ric}^{2}+R^{2}\right)=\partial_{\text {Riem }} E_{4}
\end{aligned}
$$

- The correction to the Wald entropy due to higher order derivatives is a constant, independent of black hole parameters:

$$
\Delta S=256 \pi c_{2}
$$

- The value of the constant is related to the prepotential according to the OSV conjecture for BPS black holes.

Entropy Phenomenology

- Entropy of Kerr Newman BHs:

$$
S=2 \pi\left(\left(M^{2}-\frac{1}{2} Q^{2}\right)+\sqrt{M^{2}\left(M^{2}-Q^{2}\right)-J^{2}}\right)
$$

- The form of the formula is reminiscent of the Cardy formula for entropy of 2D CFTs:

$$
S=2 \pi\left[\sqrt{\frac{c_{L} h_{L}}{6}}+\sqrt{\frac{c_{R} h_{R}}{6}}\right]
$$

- The resemblance may be an important clue.
- Dependence on angular momentum J accounted for by the model: identify it with the $S U(2)_{R}$ quantum number in a $(0,4)$ CFT (as for 5D BPS BHs).

Matching Condition

- The levels assigned by the phenomenology satisfy a matching condition

$$
\frac{c_{L} h_{L}}{6}-\frac{c_{R} h_{R}}{6}=\frac{1}{4} Q^{4}=\text { integer }=\text { independent of } \mathrm{M}
$$

- This would be expected from modular invariance of a CFT (at least in the short string sector $\left.c_{L}=c_{R}=6\right)$.
- Complaint: $Q^{2}=n^{2} \alpha$ with $\alpha \simeq 1 / 137$ in QED is not an integer.
- Response: embedding into $\mathcal{N}=2$ SUGRA: $Q^{2} \rightarrow 4 Q P$. Dirac's quantization rule gives $Q P=\frac{1}{2} \times$ integer.
- So: $\mathcal{N}=2$ of theory gives simplifications for generic black holes.

Derivative Corrections to Entropy

- Higher derivative corrections (Euler or $\mathrm{Weyl}^{2}+$ SUSY) add a constant to the entropy.
- The value is independent of mass so same as BPS case so accounted for by BPS CFT (the OSV conjecture).
- The quantum corrections are also the same as the BPS case so accounted for by BPS CFT (the OSV conjecture).
- So all corrections pertain to L sector (as for BPS black holes).

The Inner Horizon Revisited

- For any black hole geometry there is an algorithm to split the entropy into " L " and " R " contributions:

$$
S_{+}=S_{L}+S_{R}=\frac{1}{2}\left(S_{+}+S_{-}\right)+\frac{1}{2}\left(S_{+}-S_{-}\right)
$$

where $S_{ \pm}=\frac{A_{ \pm}}{4 G_{N}}$ with \pm referring to outer and inner horizon.

- Higher derivative corrections are the same for outer and inner horizon.
- This algorithm agrees that all corrections are captured by S_{L}.
- Slogan for matching condition (leading order)

$$
\frac{1}{\left(8 \pi G_{4}\right)} A_{+} A_{-}=\text {integer }
$$

- Generalization to higher derivatives using $S_{L, R}$ as simple as using $S_{ \pm}$and apparently the correct one.

Nonextreme BH Entropy (Scenario)

- Extremal Black hole entropy is accounted for by chiral string field theory (multiple strings).
- These theories are complicated but we have much experience with them at the level of indices and/or localization.
- A scenario for nonextreme black hole entropy: couple L and R chiral string field theory minimally.
- The L theory same as BPS theory, the R theory contains oscillator excitations but no new corrections.
- This gives the correct result for the black hole entropy.

Summary

- We evaluated corrections to Kerr-Newman black holes motivated by string theory: quantum corrections and higher derivative corrections.
- Perspective: $\mathcal{N} \geq 2$ SUSY of the theory simplifies results greatly even when BHs preserve no SUSY.
- Quantum corrections: independent of mass (so the same as for BPS black holes)
- Higher derivative corrections (Weyl ${ }^{2}+$ SUSY) also independent of mass (so the same as for BPS black holes)
- Significance: evidence that black hole entropy far from extremality is accounted for by weakly coupled strings.

