Radiation Environment

M. I. Besana, F. Cerutti, A. Ferrari, V. Vlachoudis - EN-STI-FDA
 W. Riegler - EP-AIO

Outline

\square Detector geometry:

- conceptual design for a forward shielding
\square Radiation levels:
- effect of the shielding: neutron fluence rate
- charged particle fluence rate
- 1 MeV neutron equivalent fluence
- dose
\square Alternative geometry:
- forward calorimeter split into "forward" and "very forward" part
- forward muon sub-detector: reduced angular acceptance, but space for a thicker inner iron shielding
- performance quantified in terms of:
- $\quad 1 \mathrm{MeV}$ neutron equivalent fluence in the forward tracking stations
- charged particle fluence rates in the forward muon chambers
$\square \quad$ Conclusions \& Outlooks

Detector Geometry I

Old concept:

$\square \quad$ solenoid+dipole field: no cylindrical symmetry
\square bigger and hermetic detector

$$
\begin{aligned}
& \text { Cylindrical cavern: } \\
& \mathrm{R}=15 \mathrm{~m} \mathrm{\&} \mathrm{~L}=70 \mathrm{~m}
\end{aligned}
$$

$L^{*}=45 \mathrm{~m}$, the TAS absorber is put from 40 m to 43 m behind a 2 m thick concrete wall

Detector Geometry II

Barrel muon chambers

Shielding in the Forward Region

Details about the Simulation

$\square \quad$ FLUKA simulations using DPMJET-III generator

- c-hadrons included (b-hadrons and W/Z bosons are not included)
\square Normalization:
- non-elastic proton-proton cross section at 100 TeV of 108 mbarn
- fluence rates [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$] for an instantaneous luminosity of $3010^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- 1 MeV neutron equivalent fluence $\left[\mathrm{cm}^{-2}\right.$] and dose [MGy] for an integrated luminosity of $30 \mathrm{ab}^{-1}$
\square Resolution:
- inner part ($\mathrm{R}<175 \mathrm{~cm}, \mathrm{z}<37 \mathrm{~m}$): $\mathrm{R} \times \mathrm{z}: 5 \mathrm{~mm} \times 5 \mathrm{~cm}$
- external part ($\mathrm{R}>175 \mathrm{~cm}, \mathrm{z}<37 \mathrm{~m}$): $\mathrm{R} \times \mathrm{z}: 10 \mathrm{~cm} \times 5 \mathrm{~cm}$
- forward part ($\mathrm{R}<350 \mathrm{~cm}, 37 \mathrm{~m}<\mathrm{z}<47 \mathrm{~m}$): $\mathrm{R} \times \mathrm{z}: 5 \mathrm{~mm} \times 10 \mathrm{~cm}$
$\square \quad$ The contribution coming from the TAS has been included in this simulation
- NEW! Not included in the previous results

Shielding: Rates in the Muon Chambers

The shielding concepts are effective in reducing the rates, but localized leakage points These affect the rates in the muon chambers:

- barrel: $710^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, due to the leakage from the crack in the calorimeter - end-cap: six chambers at $z>10 \mathrm{~m}: 10^{5} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \&$ two chambers at $\mathrm{z}<10 \mathrm{~m}: 310^{5} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$>$ expected rates: up to $300 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, compared to $\sim 10 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ of the previous layout

Charged Particle Fluence Rate

Barrel and end-cap muon chambers:

- barrel: $\sim 300 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- end-cap chambers for $z>10 \mathrm{~m}: \sim 500 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, but for the two chambers at $z<10 \mathrm{~m}: 10^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- max previous detecror layout: $<100 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, but with an hermetic detector

1 MeV Neutron Equivalent Fluence

1D distributions: Tracking Chambers

For radii< $50-60 \mathrm{~cm}$ the fluence exceeds the value expected at $\mathrm{HL}-\mathrm{LHC}\left(10^{16} \mathrm{~cm}^{-2}\right)$ by ~ 2 orders of magnitude

- In the tracking station closer to the forward calo (16 m) the fluence is higher up to $\mathrm{R}=1.2 \mathrm{~m}$
- previous layout the values were higher up to a radius of 2.5 m , because of the dipole field

Dose

Alternative Geometry

Forward Tracker

$\square \quad 1 \mathrm{MeV}$ neutron equivalent fluence in the forward tracking stations

- minor reduction with the new layout
$\square \quad 2$ D distributions:

Forward Muon Chambers

Charged particle fluence rates in the forward muon chambers: comparison between old and new layout

- higher fluence rate in the first two tracking stations, because of the leakage from the "very forward" calorimeter - lower frate in the last two, thanks to thicker inner shielding
z [20.95 m-21.0 m]

Fluence rate values reduced by up to 25%

Fluence rate values reduced by $\sim 50 \%$

Conclusions

Conclusions:

First radiation studies for the second version of FCC detector have been shown

- the contribution coming from the TAS is taken into account
- results have been shown in terms of:
- fluence rates: neutron \& charged particle fluence rates
- long term damage: 1 MeV neutron equivalent fluence \& dose - other quantities available, like charged hadron, photon and high energy hadron fluence rates
$\square \quad$ A shielding strategy has been proposed to protect muon chambers against the leakage from the forward calorimeters and the back-scattering from the TAS:
- the shielding is effective, but there are localized leakage points that affect fluence values in the muon chambers \rightarrow higher values wrt the previous hermetic layout
An alternative geometry version has been explored with "very forward" calorimeters and a reduced muon acceptance the calorimeter split is not effective in reducing the fluence in the tracking stations \& it has a bad effect on the forward muon chambers the shielding inside the muon chambers has instead a positive impact

Outlooks:

The "very forward" calorimeter option will be dropped for future studiesTo protect forward muon tracking stations the shielding increase will be maintained and a deeper forward calorimeter will be considered
Back-up

Photon Fluence Rate

[^0]- two chambers at z<10 $\mathrm{m}: \sim 10^{5} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
expected rate in muon chambers up to $10^{3} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, compared to $20 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ of previous layout

Calorimeters

1 MeV Neutron Equivalent Fluence

Lower, because of the different maximum | $\eta \mid$ value,, decreased from 6.7 to 6 .

The shower is significantly narrower for the new layout

Dose in the Hadronic Calorimeter

Values for $30 a^{-1}$:

[^0]: - six chambers at $z>10 \mathrm{~m}: 210^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

